Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import torch | |
import math | |
import numpy as np | |
import os | |
from PIL import Image | |
import torchvision.transforms as T | |
from torchvision.transforms.functional import InterpolationMode | |
from transformers import AutoModel, AutoTokenizer, AutoConfig | |
# ============================================================================= | |
# InternVL‑3 preprocessing utilities (image‑only version) | |
# ============================================================================= | |
IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_STD = (0.229, 0.224, 0.225) | |
def build_transform(input_size: int = 448): | |
"""Return torchvision transform matching InternVL pre‑training.""" | |
return T.Compose( | |
[ | |
T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), | |
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
T.ToTensor(), | |
T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD), | |
] | |
) | |
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
best_ratio_diff = float("inf") | |
best_ratio = (1, 1) | |
area = width * height | |
for ratio in target_ratios: | |
tgt_ar = ratio[0] / ratio[1] | |
diff = abs(aspect_ratio - tgt_ar) | |
if diff < best_ratio_diff or (diff == best_ratio_diff and area > 0.5 * image_size * image_size * ratio[0] * ratio[1]): | |
best_ratio_diff = diff | |
best_ratio = ratio | |
return best_ratio | |
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): | |
"""Split arbitrarily‑sized image into ≤12 tiles sized 448×448 (InternVL spec).""" | |
ow, oh = image.size | |
aspect_ratio = ow / oh | |
target_ratios = sorted( | |
{(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if min_num <= i * j <= max_num}, | |
key=lambda x: x[0] * x[1], | |
) | |
ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, ow, oh, image_size) | |
tw, th = image_size * ratio[0], image_size * ratio[1] | |
blocks = ratio[0] * ratio[1] | |
resized = image.resize((tw, th)) | |
tiles = [ | |
resized.crop( | |
( | |
(idx % (tw // image_size)) * image_size, | |
(idx // (tw // image_size)) * image_size, | |
((idx % (tw // image_size)) + 1) * image_size, | |
((idx // (tw // image_size)) + 1) * image_size, | |
) | |
) | |
for idx in range(blocks) | |
] | |
if use_thumbnail and blocks != 1: | |
tiles.append(image.resize((image_size, image_size))) | |
return tiles | |
def load_image(path: str, input_size: int = 448, max_num: int = 12): | |
"""Return tensor of shape (N, 3, H, W) ready for InternVL.""" | |
img = Image.open(path).convert("RGB") | |
transform = build_transform(input_size) | |
tiles = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
return torch.stack([transform(t) for t in tiles]) | |
# ============================================================================= | |
# InternVL‑3‑14B model loading (multi‑GPU aware) | |
# ============================================================================= | |
MODEL_ID = "OpenGVLab/InternVL3-14B" | |
def split_model(model_name: str): | |
"""Distribute LLM layers across GPUs, keeping vision encoder on GPU 0.""" | |
n_gpu = torch.cuda.device_count() | |
if n_gpu < 2: | |
return "auto" # let transformers decide | |
cfg = AutoConfig.from_pretrained(model_name, trust_remote_code=True) | |
n_layers = cfg.llm_config.num_hidden_layers # type: ignore[attr-defined] | |
# GPU0 does vision + some text layers => treat as 0.5 GPU | |
per_gpu = math.ceil(n_layers / (n_gpu - 0.5)) | |
alloc = [per_gpu] * n_gpu | |
alloc[0] = math.ceil(alloc[0] * 0.5) | |
dmap = { | |
"vision_model": 0, | |
"mlp1": 0, | |
"language_model.model.tok_embeddings": 0, | |
"language_model.model.embed_tokens": 0, | |
"language_model.output": 0, | |
"language_model.model.norm": 0, | |
"language_model.model.rotary_emb": 0, | |
"language_model.lm_head": 0, | |
} | |
layer_idx = 0 | |
for gpu, n in enumerate(alloc): | |
for _ in range(n): | |
if layer_idx >= n_layers: | |
break | |
dmap[f"language_model.model.layers.{layer_idx}"] = 0 if layer_idx == n_layers - 1 else gpu | |
layer_idx += 1 | |
return dmap | |
device_map = split_model(MODEL_ID) | |
model = AutoModel.from_pretrained( | |
MODEL_ID, | |
torch_dtype=torch.bfloat16, | |
low_cpu_mem_usage=True, | |
use_flash_attn=True, | |
trust_remote_code=True, | |
device_map=device_map, | |
).eval() | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, use_fast=False) | |
# ============================================================================= | |
# Inference function (image‑only) | |
# ============================================================================= | |
def internvl_inference(image_path: str | None, text_input: str | None = None): | |
if image_path is None: | |
return "Please upload an image first." | |
pixel_values = load_image(image_path, max_num=12).to(torch.bfloat16).cuda() | |
prompt = f"<image>\n{text_input}" if text_input else "<image>\n" | |
gen_cfg = dict(max_new_tokens=1024, do_sample=True) | |
return model.chat(tokenizer, pixel_values, prompt, gen_cfg) | |
# ============================================================================= | |
# Gradio UI (image‑only, Gradio 5 compatible) | |
# ============================================================================= | |
DESCRIPTION = ( | |
"[InternVL 3‑14B demo](https://huggingface.co/OpenGVLab/InternVL3-14B) — " | |
"upload an image and ask anything about it." | |
) | |
css = """ | |
#output_text { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css, theme="origin") as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(): | |
# Left column: image, question, submit button (stacked vertically) | |
with gr.Column(scale=1): | |
input_image = gr.Image(label="Upload Image", type="filepath") | |
text_input = gr.Textbox(label="Question") | |
submit_btn = gr.Button("Submit") | |
# Right column: model output | |
with gr.Column(scale=1): | |
output_text = gr.Textbox(label="Model Output", elem_id="output_text") | |
# 🔽 예제 추가 | |
gr.Examples( | |
examples=[["example.webp", "explain this image"]], | |
inputs=[input_image, text_input], | |
outputs=output_text, | |
fn=internvl_inference, # 클릭 시 바로 실행하려면 지정 | |
cache_examples=True, # 결과 캐시(선택) | |
label="Try an example" # 표기명(선택) | |
) | |
submit_btn.click(internvl_inference, [input_image, text_input], [output_text]) | |
if __name__ == "__main__": | |
demo.launch() |