Spaces:
Sleeping
Sleeping
update
Browse files- agent.py +83 -11
- app_playground.ipynb +0 -0
- requirements.txt +2 -1
agent.py
CHANGED
|
@@ -4,6 +4,9 @@ from langchain.chat_models import init_chat_model
|
|
| 4 |
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage, AnyMessage
|
| 5 |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 6 |
from langgraph.graph import add_messages, START, END, StateGraph
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
from typing_extensions import TypedDict, Annotated
|
| 9 |
|
|
@@ -30,33 +33,102 @@ def get_graph(llm):
|
|
| 30 |
]
|
| 31 |
)
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
messages = state["messages"]
|
|
|
|
| 36 |
messages.append(HumanMessage(content="Write a plan how to solve this qustion?"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
messages
|
| 42 |
-
messages
|
|
|
|
|
|
|
|
|
|
| 43 |
prompt_answer = prompt_template.invoke(messages)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
response = llm.invoke(prompt_answer)
|
|
|
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
-
|
|
|
|
|
|
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
| 51 |
|
| 52 |
# Build graph
|
| 53 |
builder = StateGraph(State)
|
|
|
|
|
|
|
| 54 |
builder.add_node("Agent", call_model)
|
|
|
|
|
|
|
| 55 |
|
| 56 |
|
| 57 |
# Logic
|
| 58 |
-
builder.add_edge(START, "
|
| 59 |
-
builder.add_edge("
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
return builder.compile()
|
| 62 |
|
|
|
|
| 4 |
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage, AnyMessage
|
| 5 |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 6 |
from langgraph.graph import add_messages, START, END, StateGraph
|
| 7 |
+
from langchain_core.tools import tool
|
| 8 |
+
from langgraph.prebuilt import ToolNode
|
| 9 |
+
|
| 10 |
|
| 11 |
from typing_extensions import TypedDict, Annotated
|
| 12 |
|
|
|
|
| 33 |
]
|
| 34 |
)
|
| 35 |
|
| 36 |
+
from langchain_community.retrievers import WikipediaRetriever
|
| 37 |
+
|
| 38 |
+
# Wikipedia retriever
|
| 39 |
+
wiki_retriever = WikipediaRetriever(load_max_docs =20)
|
| 40 |
+
|
| 41 |
+
@tool
|
| 42 |
+
def retrieve(query: str):
|
| 43 |
+
"""
|
| 44 |
+
This function retrieves Wikipedia entries based on the query.
|
| 45 |
+
"""
|
| 46 |
+
print("\n-------------------- Tool has been called --------------------\n")
|
| 47 |
+
print("The query is: ", query)
|
| 48 |
+
docs = wiki_retriever.invoke(query)
|
| 49 |
+
serialized = "\n\n".join(
|
| 50 |
+
(f"\nContent:\n{doc.page_content}")
|
| 51 |
+
for doc in docs
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
return serialized
|
| 55 |
+
|
| 56 |
+
tools = [retrieve]
|
| 57 |
+
tool_node = ToolNode(tools)
|
| 58 |
+
llm_with_tools = llm.bind_tools(tools)
|
| 59 |
+
|
| 60 |
+
def make_plan(state: State):
|
| 61 |
+
print("\n-------------------- Starting to create a plan --------------------\n")
|
| 62 |
+
# get all messages from the state
|
| 63 |
messages = state["messages"]
|
| 64 |
+
# append planning message
|
| 65 |
messages.append(HumanMessage(content="Write a plan how to solve this qustion?"))
|
| 66 |
+
# create prompt
|
| 67 |
+
prompt = prompt_template.invoke(messages)
|
| 68 |
+
# invoke LLM
|
| 69 |
+
response = llm.invoke(prompt)
|
| 70 |
+
print("The plan is: ", response.content)
|
| 71 |
+
return {"messages": [response], "aggregate": ["Plan"]}
|
| 72 |
+
|
| 73 |
+
|
| 74 |
|
| 75 |
|
| 76 |
+
def call_model(state: State):
|
| 77 |
+
print("\n-------------------- Agent has been called -----------------------------------\n")
|
| 78 |
+
# get all messages from the state
|
| 79 |
+
messages = state["messages"]
|
| 80 |
+
# append instruction message
|
| 81 |
+
messages.append(HumanMessage(content="Please provide me the answer to the question in detail."))
|
| 82 |
+
# create prompt
|
| 83 |
prompt_answer = prompt_template.invoke(messages)
|
| 84 |
+
# invoke LLM
|
| 85 |
+
response = llm_with_tools.invoke(prompt_answer)
|
| 86 |
+
print("\nThe Prompt is: ", prompt_answer, "\n")
|
| 87 |
+
print("Agent has made a decision:\n",response, response.content, response.tool_calls)
|
| 88 |
+
print("Type von der Antwort: ",type(response))
|
| 89 |
+
return {"messages": [response], "aggregate": ["Agent"]}
|
| 90 |
+
|
| 91 |
+
def get_answer(state: State):
|
| 92 |
+
# get all messages from the state
|
| 93 |
+
messages = state["messages"]
|
| 94 |
+
# add prompt message
|
| 95 |
+
messages.append(HumanMessage(content="Please provide me just the plain answer to the question"))
|
| 96 |
+
# create prompt
|
| 97 |
+
prompt_answer = prompt_template.invoke(messages)
|
| 98 |
+
# invoke LLM
|
| 99 |
response = llm.invoke(prompt_answer)
|
| 100 |
+
return {"messages": [response], "aggregate": ["Answer"]}
|
| 101 |
|
| 102 |
+
def should_continue(state: State):
|
| 103 |
+
print("\n-------------------- Decision of forwarding has been made --------------------\n")
|
| 104 |
+
messages = state["messages"]
|
| 105 |
+
print(type(messages[-1]))
|
| 106 |
+
print("The last message is: ", messages[-1])
|
| 107 |
|
| 108 |
+
if len(state["aggregate"]) < 8:
|
| 109 |
+
last_message = messages[-1]
|
| 110 |
+
if last_message.tool_calls:
|
| 111 |
|
| 112 |
+
return "tools"
|
| 113 |
+
return "Answer"
|
| 114 |
+
else:
|
| 115 |
+
return "Answer"
|
| 116 |
|
| 117 |
# Build graph
|
| 118 |
builder = StateGraph(State)
|
| 119 |
+
builder.add_node("tools", tool_node)
|
| 120 |
+
builder.add_node("Plan", make_plan)
|
| 121 |
builder.add_node("Agent", call_model)
|
| 122 |
+
builder.add_node("Answer", get_answer)
|
| 123 |
+
|
| 124 |
|
| 125 |
|
| 126 |
# Logic
|
| 127 |
+
builder.add_edge(START, "Plan")
|
| 128 |
+
builder.add_edge("Plan", "Agent")
|
| 129 |
+
builder.add_conditional_edges("Agent", should_continue, ["tools", "Answer"])
|
| 130 |
+
builder.add_edge("tools", "Agent")
|
| 131 |
+
builder.add_edge("Answer", END)
|
| 132 |
|
| 133 |
return builder.compile()
|
| 134 |
|
app_playground.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
CHANGED
|
@@ -7,4 +7,5 @@ python-dotenv~=1.1.0
|
|
| 7 |
typing_extensions~=4.13.2
|
| 8 |
langgraph~=0.3.34
|
| 9 |
langchain-core~=0.3.56
|
| 10 |
-
langchain-groq~=0.3.2
|
|
|
|
|
|
| 7 |
typing_extensions~=4.13.2
|
| 8 |
langgraph~=0.3.34
|
| 9 |
langchain-core~=0.3.56
|
| 10 |
+
langchain-groq~=0.3.2
|
| 11 |
+
langchain-community ~=0.3.22
|