Spaces:
Build error
Build error
import pickle | |
import pandas as pd | |
import shap | |
from shap.plots._force_matplotlib import draw_additive_plot | |
import gradio as gr | |
import numpy as np | |
import matplotlib.pyplot as plt | |
# load the model from disk | |
loaded_model = pickle.load(open("heart_xgb.pkl", 'rb')) | |
# Setup SHAP | |
explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS. | |
# Create the main function for server | |
def main_func(age, sex, cp, trtbps, chol, fbs, restecg, thalachh, exng, oldpeak, slp, caa, thall): | |
new_row = pd.DataFrame.from_dict({'age':age,'sex':sex, | |
'cp':cp,'trtbps':trtbps,'chol':chol, | |
'fbs':fbs, 'restecg':restecg, 'thalachh':thalachh, 'exng':exng, 'oldpeak':oldpeak, 'slp':slp, 'caa':caa, 'thall':thall}, orient = 'index').transpose() | |
prob = loaded_model.predict_proba(new_row) | |
shap_values = explainer(new_row) | |
# plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False) | |
# plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False) | |
plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False) | |
plt.tight_layout() | |
local_plot = plt.gcf() | |
plt.close() | |
return {"High Chance": float(prob[0][0]), "Low Chance": 1-float(prob[0][0])}, local_plot | |
# Create the UI | |
title = "**Heart Attack Predictor & Interpreter** 🪐" | |
description1 = """This app takes infor from subjects and predicts their heart attack likelihood. Do not use for medical diagnosis.""" | |
description2 = """ | |
To use the app, click on one of the examples, or adjust the values of the factors, and click on Analyze. 🤞 | |
""" | |
with gr.Blocks(title=title) as demo: | |
gr.Markdown(f"## {title}") | |
# gr.Markdown("""![marketing](file/marketing.jpg)""") | |
gr.Markdown(description1) | |
gr.Markdown("""---""") | |
gr.Markdown(description2) | |
gr.Markdown("""---""") | |
age = gr.Slider(label="age Score", minimum=15, maximum=90, value=40, step=5) | |
sex = gr.Slider(label="sex Score", minimum=0, maximum=1, value=1, step=1) | |
cp = gr.Slider(label="cp Score", minimum=1, maximum=5, value=4, step=1) | |
trtbps = gr.Slider(label="trtbps Score", minimum=1, maximum=5, value=4, step=1) | |
chol = gr.Slider(label="chol Score", minimum=1, maximum=5, value=4, step=1) | |
fbs = gr.Slider(label="fbs Score", minimum=1, maximum=5, value=4, step=1) | |
restecg = gr.Slider(label="restecg Score", minimum=1, maximum=5, value=4, step=1) | |
thalachh = gr.Slider(label="thalachh Score", minimum=1, maximum=5, value=4, step=1) | |
exng = gr.Slider(label="exng Score", minimum=1, maximum=5, value=4, step=1) | |
oldpeak = gr.Slider(label="oldpeak Score", minimum=1, maximum=5, value=4, step=1) | |
slp = gr.Slider(label="slp Score", minimum=1, maximum=5, value=4, step=1) | |
caa = gr.Slider(label="caa Score", minimum=1, maximum=5, value=4, step=1) | |
thall = gr.Slider(label="thall Score", minimum=1, maximum=5, value=4, step=1) | |
submit_btn = gr.Button("Analyze") | |
with gr.Column(visible=True) as output_col: | |
label = gr.Label(label = "Predicted Label") | |
local_plot = gr.Plot(label = 'Shap:') | |
submit_btn.click( | |
main_func, | |
[age, sex, cp, trtbps, chol, fbs, restecg, thalachh, exng, oldpeak, slp, caa, thall], | |
[label,local_plot], api_name="Heart_Predictor" | |
) | |
gr.Markdown("### Click on any of the examples below to see how it works:") | |
gr.Examples([[4,0,3,5,6,8,4,4,4,4,5,5,6], [5,2,3,4,2,3,3,4,2,4,5,4,4,4]], [age, sex, cp, trtbps, chol, fbs, restecg, thalachh, exng, oldpeak, slp, caa, thall], [label,local_plot], main_func, cache_examples=True) | |
demo.launch() |