Update app.py
Browse files
app.py
CHANGED
@@ -36,10 +36,10 @@ def chi2eng(filtered_data):
|
|
36 |
language_Classification = langid.classify(filtered_data[0])[0]
|
37 |
if language_Classification == "zh":
|
38 |
st.write("Your input is Chinese, translating to English")
|
39 |
-
st.write('▶️ Translation
|
40 |
trans_pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-zh-en")
|
41 |
-
st.write('⏺️ Translation
|
42 |
-
st.write('▶️ Start
|
43 |
translation_progress_count = 0
|
44 |
translation_bar = st.progress(0)
|
45 |
for i in filtered_data:
|
@@ -55,13 +55,13 @@ def chi2eng(filtered_data):
|
|
55 |
|
56 |
# Text Classification:Negative/Neutral/Positive
|
57 |
def emotion_classification(translated_data):
|
58 |
-
st.write('▶️ Classification
|
59 |
emo_pipe = pipeline("text-classification", model="deeplearningwithpython5240/twitter_roberta_base_sentiment_fintune_with_app_reviews")
|
60 |
-
st.write('⏺️ Classification
|
61 |
negative_count, neutral_count, positive_count = 0,0,0
|
62 |
negative_dict = {}
|
63 |
emotion_progress_count = 0
|
64 |
-
st.write('▶️ Data
|
65 |
emotion_bar = st.progress(0)
|
66 |
for i in translated_data:
|
67 |
labelled_result = emo_pipe(i)[0]['label']
|
@@ -78,7 +78,7 @@ def emotion_classification(translated_data):
|
|
78 |
emotion_progress_count += 1/len(translated_data)
|
79 |
emotion_bar.progress(emotion_progress_count)
|
80 |
sizes = [negative_count, neutral_count, positive_count]
|
81 |
-
labels = ['
|
82 |
# 创建饼状图
|
83 |
st.write('Number of Positive Reviews: ', positive_count)
|
84 |
st.write('Number of Neutral Reviews: ', neutral_count)
|
@@ -107,9 +107,9 @@ def emotion_classification(translated_data):
|
|
107 |
|
108 |
# Summarization
|
109 |
def summarization(top10_negative_str):
|
110 |
-
st.write('▶️ Summarizatio
|
111 |
summarize_pipe = pipeline("text2text-generation", model="deeplearningwithpython5240/summarisation-t5-finetuned-model", max_new_tokens =512)
|
112 |
-
st.write('⏺️ Summarization
|
113 |
st.write('▶️ Summarizing...')
|
114 |
summarized_text = summarize_pipe(top10_negative_str)
|
115 |
return summarized_text
|
@@ -149,7 +149,8 @@ def main():
|
|
149 |
#stage 4:Summarization
|
150 |
st.text('🔶 Processing Summarization 🔶')
|
151 |
summarized_text = summarization(top10_negative_str)
|
152 |
-
st.write(
|
|
|
153 |
st.text('️️🟢 Summarization Finished 🟢')
|
154 |
except:
|
155 |
st.write("")
|
|
|
36 |
language_Classification = langid.classify(filtered_data[0])[0]
|
37 |
if language_Classification == "zh":
|
38 |
st.write("Your input is Chinese, translating to English")
|
39 |
+
st.write('▶️ Loading Translation Model...')
|
40 |
trans_pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-zh-en")
|
41 |
+
st.write('⏺️ Translation Model Successfully Loaded')
|
42 |
+
st.write('▶️ Start Translating...')
|
43 |
translation_progress_count = 0
|
44 |
translation_bar = st.progress(0)
|
45 |
for i in filtered_data:
|
|
|
55 |
|
56 |
# Text Classification:Negative/Neutral/Positive
|
57 |
def emotion_classification(translated_data):
|
58 |
+
st.write('▶️ Loading Classification Model...')
|
59 |
emo_pipe = pipeline("text-classification", model="deeplearningwithpython5240/twitter_roberta_base_sentiment_fintune_with_app_reviews")
|
60 |
+
st.write('⏺️ Classification Model Successfully Loaded')
|
61 |
negative_count, neutral_count, positive_count = 0,0,0
|
62 |
negative_dict = {}
|
63 |
emotion_progress_count = 0
|
64 |
+
st.write('▶️ Data Processing ...')
|
65 |
emotion_bar = st.progress(0)
|
66 |
for i in translated_data:
|
67 |
labelled_result = emo_pipe(i)[0]['label']
|
|
|
78 |
emotion_progress_count += 1/len(translated_data)
|
79 |
emotion_bar.progress(emotion_progress_count)
|
80 |
sizes = [negative_count, neutral_count, positive_count]
|
81 |
+
labels = ['Negative_Reviews', 'Neutral_Reviews', 'Positive_Reviews']
|
82 |
# 创建饼状图
|
83 |
st.write('Number of Positive Reviews: ', positive_count)
|
84 |
st.write('Number of Neutral Reviews: ', neutral_count)
|
|
|
107 |
|
108 |
# Summarization
|
109 |
def summarization(top10_negative_str):
|
110 |
+
st.write('▶️ Loading Summarizatio Model...')
|
111 |
summarize_pipe = pipeline("text2text-generation", model="deeplearningwithpython5240/summarisation-t5-finetuned-model", max_new_tokens =512)
|
112 |
+
st.write('⏺️ Summarization Model Successfully Loaded')
|
113 |
st.write('▶️ Summarizing...')
|
114 |
summarized_text = summarize_pipe(top10_negative_str)
|
115 |
return summarized_text
|
|
|
149 |
#stage 4:Summarization
|
150 |
st.text('🔶 Processing Summarization 🔶')
|
151 |
summarized_text = summarization(top10_negative_str)
|
152 |
+
st.write('Summarized Negative Comments:')
|
153 |
+
st.write(summarized_text[0]["generated_text"])
|
154 |
st.text('️️🟢 Summarization Finished 🟢')
|
155 |
except:
|
156 |
st.write("")
|