deeplearningwithpython5240 commited on
Commit
db41ca1
·
verified ·
1 Parent(s): 901b59e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -4
app.py CHANGED
@@ -39,9 +39,13 @@ def chi2eng(filtered_data):
39
  st.write('▶️ Translation model start downing, loading model may takes time, please wait...')
40
  trans_pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-zh-en")
41
  st.write('⏺️ Translation model successfully loaded')
 
 
 
42
  for i in filtered_data:
43
- st.write(trans_pipe(i)[0]['translation_text'])
44
  translated_data.append(trans_pipe(i)[0]['translation_text'])
 
 
45
  elif language_Classification == 'en':
46
  st.write("Your input is English, moving to next stage...")
47
  translated_data = [i for i in filtered_data]
@@ -56,11 +60,14 @@ def emotion_classification(translated_data):
56
  st.write('⏺️ Classification model successfully loaded')
57
  negative_count, neutral_count, positive_count = 0,0,0
58
  negative_dict = {}
 
 
 
59
  for i in translated_data:
60
  labelled_result = emo_pipe(i)[0]['label']
61
- st.write('Text: ',i)
62
- st.write('Label: ',labelled_result)
63
- st.write(' ')
64
  if labelled_result == 'negative':
65
  negative_dict[i] = emo_pipe(i)[0]['score']
66
  negative_count += 1
@@ -68,6 +75,8 @@ def emotion_classification(translated_data):
68
  neutral_count += 1
69
  if labelled_result == 'positive':
70
  positive_count += 1
 
 
71
  sizes = [negative_count, neutral_count, positive_count]
72
  labels = ['negative_review', 'neutral_review', 'positive_review']
73
  # 创建饼状图
@@ -101,6 +110,7 @@ def summarization(top10_negative_str):
101
  st.write('▶️ Summarizatio model start downing, loading model may takes time, please wait...')
102
  summarize_pipe = pipeline("text2text-generation", model="deeplearningwithpython5240/summarisation-t5-finetuned-model", max_new_tokens =512)
103
  st.write('⏺️ Summarization model successfully loaded')
 
104
  summarized_text = summarize_pipe(top10_negative_str)
105
  return summarized_text
106
 
 
39
  st.write('▶️ Translation model start downing, loading model may takes time, please wait...')
40
  trans_pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-zh-en")
41
  st.write('⏺️ Translation model successfully loaded')
42
+ st.write('▶️ Start translating...')
43
+ translation_progress_count = 0
44
+ translation_bar = st.progress(0)
45
  for i in filtered_data:
 
46
  translated_data.append(trans_pipe(i)[0]['translation_text'])
47
+ translation_progress_count += 1/len(filtered_data)
48
+ translation_bar.progress(translation_progress_count)
49
  elif language_Classification == 'en':
50
  st.write("Your input is English, moving to next stage...")
51
  translated_data = [i for i in filtered_data]
 
60
  st.write('⏺️ Classification model successfully loaded')
61
  negative_count, neutral_count, positive_count = 0,0,0
62
  negative_dict = {}
63
+ emotion_progress_count = 0
64
+ st.write('▶️ Data processing ...')
65
+ emotion_bar = st.progress(0)
66
  for i in translated_data:
67
  labelled_result = emo_pipe(i)[0]['label']
68
+ # st.write('Text: ',i)
69
+ # st.write('Label: ',labelled_result)
70
+ # st.write(' ')
71
  if labelled_result == 'negative':
72
  negative_dict[i] = emo_pipe(i)[0]['score']
73
  negative_count += 1
 
75
  neutral_count += 1
76
  if labelled_result == 'positive':
77
  positive_count += 1
78
+ emotion_progress_count += 1/len(translated_data)
79
+ emotion_bar.progress(emotion_progress_count)
80
  sizes = [negative_count, neutral_count, positive_count]
81
  labels = ['negative_review', 'neutral_review', 'positive_review']
82
  # 创建饼状图
 
110
  st.write('▶️ Summarizatio model start downing, loading model may takes time, please wait...')
111
  summarize_pipe = pipeline("text2text-generation", model="deeplearningwithpython5240/summarisation-t5-finetuned-model", max_new_tokens =512)
112
  st.write('⏺️ Summarization model successfully loaded')
113
+ st.write('▶️ Summarizing...')
114
  summarized_text = summarize_pipe(top10_negative_str)
115
  return summarized_text
116