Spaces:
Runtime error
Runtime error
import os | |
from threading import Thread | |
from typing import Iterator, List, Tuple | |
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
# Constants | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
DESCRIPTION = """\ | |
# DeepCode-6.7B-Chat | |
This Space demonstrates model [DeepCode-AI](https://huggingface.co/deepcode-ai/deepcode-ai-6.7b-instruct) | |
by DeepCode, a code model with 6.7B parameters fine-tuned for chat instructions. | |
""" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
model = None | |
else: | |
model_id = "deepcode-ai/deepcode-ai-6.7b-instruct" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, torch_dtype=torch.bfloat16, device_map="auto" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
tokenizer.use_default_system_prompt = False | |
def trim_input_ids(input_ids: torch.Tensor) -> torch.Tensor: | |
""" | |
Trim input_ids to fit within the MAX_INPUT_TOKEN_LENGTH. | |
""" | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input as it exceeded {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
return input_ids | |
def build_conversation(message: str, chat_history: List[Tuple[str, str]], system_prompt: str) -> List[dict]: | |
""" | |
Build the conversation structure for the chat model. | |
""" | |
conversation = [] | |
if system_prompt: | |
conversation.append({"role": "system", "content": system_prompt}) | |
for user, assistant in chat_history: | |
conversation.extend([ | |
{"role": "user", "content": user}, | |
{"role": "assistant", "content": assistant} | |
]) | |
conversation.append({"role": "user", "content": message}) | |
return conversation | |
def generate( | |
message: str, | |
chat_history: List[Tuple[str, str]], | |
system_prompt: str, | |
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.0, | |
) -> Iterator[str]: | |
if model is None: | |
yield "GPU is unavailable. This demo does not run on CPU." | |
return | |
conversation = build_conversation(message, chat_history, system_prompt) | |
input_ids = tokenizer.apply_chat_template( | |
conversation, return_tensors="pt", add_generation_prompt=True | |
) | |
input_ids = trim_input_ids(input_ids.to(model.device)) | |
streamer = TextIteratorStreamer( | |
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True | |
) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=False, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
eos_token_id=tokenizer.eos_token_id, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
try: | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs).replace("<|EOT|>", "") | |
except Exception as e: | |
yield f"Error during generation: {e}" | |
# Gradio Interface | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Textbox(label="System prompt", lines=6), | |
gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.9, | |
), | |
gr.Slider( | |
label="Top-k", | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=50, | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.0, | |
), | |
], | |
examples=[ | |
["Implement snake game using pygame"], | |
["Can you explain what the Python programming language is?"], | |
["Write a program to find the factorial of a number"], | |
], | |
) | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
chat_interface.render() | |
if __name__ == "__main__": | |
demo.queue().launch(share=True) | |