khulnasoft's picture
Update app.py
5a8bfb5 verified
import os
from threading import Thread
from typing import Iterator, List, Tuple
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
# Constants
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# DeepCode-6.7B-Chat
This Space demonstrates model [DeepCode-AI](https://huggingface.co/deepcode-ai/deepcode-ai-6.7b-instruct)
by DeepCode, a code model with 6.7B parameters fine-tuned for chat instructions.
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
model = None
else:
model_id = "deepcode-ai/deepcode-ai-6.7b-instruct"
model = AutoModelForCausalLM.from_pretrained(
model_id, torch_dtype=torch.bfloat16, device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
def trim_input_ids(input_ids: torch.Tensor) -> torch.Tensor:
"""
Trim input_ids to fit within the MAX_INPUT_TOKEN_LENGTH.
"""
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input as it exceeded {MAX_INPUT_TOKEN_LENGTH} tokens.")
return input_ids
def build_conversation(message: str, chat_history: List[Tuple[str, str]], system_prompt: str) -> List[dict]:
"""
Build the conversation structure for the chat model.
"""
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([
{"role": "user", "content": user},
{"role": "assistant", "content": assistant}
])
conversation.append({"role": "user", "content": message})
return conversation
def generate(
message: str,
chat_history: List[Tuple[str, str]],
system_prompt: str,
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.0,
) -> Iterator[str]:
if model is None:
yield "GPU is unavailable. This demo does not run on CPU."
return
conversation = build_conversation(message, chat_history, system_prompt)
input_ids = tokenizer.apply_chat_template(
conversation, return_tensors="pt", add_generation_prompt=True
)
input_ids = trim_input_ids(input_ids.to(model.device))
streamer = TextIteratorStreamer(
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=False,
num_beams=1,
repetition_penalty=repetition_penalty,
eos_token_id=tokenizer.eos_token_id,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
try:
for text in streamer:
outputs.append(text)
yield "".join(outputs).replace("<|EOT|>", "")
except Exception as e:
yield f"Error during generation: {e}"
# Gradio Interface
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.0,
),
],
examples=[
["Implement snake game using pygame"],
["Can you explain what the Python programming language is?"],
["Write a program to find the factorial of a number"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
chat_interface.render()
if __name__ == "__main__":
demo.queue().launch(share=True)