import os from threading import Thread from typing import Iterator, List, Tuple import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer # Constants MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) DESCRIPTION = """\ # DeepCode-6.7B-Chat This Space demonstrates model [DeepCode-AI](https://huggingface.co/deepcode-ai/deepcode-ai-6.7b-instruct) by DeepCode, a code model with 6.7B parameters fine-tuned for chat instructions. """ if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" model = None else: model_id = "deepcode-ai/deepcode-ai-6.7b-instruct" model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.use_default_system_prompt = False def trim_input_ids(input_ids: torch.Tensor) -> torch.Tensor: """ Trim input_ids to fit within the MAX_INPUT_TOKEN_LENGTH. """ if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input as it exceeded {MAX_INPUT_TOKEN_LENGTH} tokens.") return input_ids def build_conversation(message: str, chat_history: List[Tuple[str, str]], system_prompt: str) -> List[dict]: """ Build the conversation structure for the chat model. """ conversation = [] if system_prompt: conversation.append({"role": "system", "content": system_prompt}) for user, assistant in chat_history: conversation.extend([ {"role": "user", "content": user}, {"role": "assistant", "content": assistant} ]) conversation.append({"role": "user", "content": message}) return conversation def generate( message: str, chat_history: List[Tuple[str, str]], system_prompt: str, max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.0, ) -> Iterator[str]: if model is None: yield "GPU is unavailable. This demo does not run on CPU." return conversation = build_conversation(message, chat_history, system_prompt) input_ids = tokenizer.apply_chat_template( conversation, return_tensors="pt", add_generation_prompt=True ) input_ids = trim_input_ids(input_ids.to(model.device)) streamer = TextIteratorStreamer( tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True ) generate_kwargs = dict( input_ids=input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=False, num_beams=1, repetition_penalty=repetition_penalty, eos_token_id=tokenizer.eos_token_id, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] try: for text in streamer: outputs.append(text) yield "".join(outputs).replace("<|EOT|>", "") except Exception as e: yield f"Error during generation: {e}" # Gradio Interface chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Textbox(label="System prompt", lines=6), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0, ), ], examples=[ ["Implement snake game using pygame"], ["Can you explain what the Python programming language is?"], ["Write a program to find the factorial of a number"], ], ) with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) chat_interface.render() if __name__ == "__main__": demo.queue().launch(share=True)