LatComp / app.py
decodingchris's picture
Fix caching
7d6b90a verified
import gradio as gr
import io
import json
import numpy
import os
import pandas as pd
import piexif
import spaces
import timeit
import torch
import torchvision
from diffusers import AutoencoderKL, AutoencoderTiny
from PIL import Image
from PIL.PngImagePlugin import PngInfo
from torchvision.io import decode_image
from torchvision.transforms import v2
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
vae = vae.to(device)
# Encoding
def image_to_latent(image):
transforms = v2.Compose([
v2.ToImage(),
v2.Resize(512),
v2.ToDtype(torch.float32, scale=True)
])
tensor = transforms(image).unsqueeze(0).to(device) * 2 - 1
with torch.no_grad():
encoded_image = vae.encode(tensor)
return encoded_image.latent_dist.sample()
def latent_to_latcomp(latent):
latent = latent.to(device)
min_val, max_val = latent.min(), latent.max()
normalised_latent = (latent - min_val) / (max_val - min_val) * 255
clamped_latent = normalised_latent.clamp(0, 255).squeeze(0).byte()
np_latent = clamped_latent.permute(1, 2, 0).cpu().numpy()
latcomp = Image.fromarray(np_latent, mode="RGBA")
range_data = { "min_val": min_val.item(), "max_val": max_val.item() }
json_comment = json.dumps(range_data)
exif_dict = piexif.load(latcomp.info["exif"]) if "exif" in latcomp.info else {}
if "Exif" not in exif_dict:
exif_dict["Exif"] = {}
exif_dict["Exif"][piexif.ExifIFD.UserComment] = json_comment.encode("utf-16")
exif_bytes = piexif.dump(exif_dict)
filepath = "latcomp.webp"
latcomp.save(filepath, format="WebP", exif=exif_bytes, lossless=True)
return filepath
@spaces.GPU
def image_to_latcomp(image):
latent = image_to_latent(image)
latcomp = latent_to_latcomp(latent)
return latcomp
# Decoding
def latcomp_to_latent(latcomp):
exif_dict = piexif.load(latcomp.info["exif"])
user_comment = exif_dict.get("Exif", {}).get(piexif.ExifIFD.UserComment)
user_comment = user_comment.decode("utf-16")
metadata = json.loads(user_comment)
min_val = metadata["min_val"]
max_val = metadata["max_val"]
latent = v2.PILToTensor()(latcomp).unsqueeze(0).float().to(device)
denormalised_latent = (latent / 255) * (max_val - min_val) + min_val
return denormalised_latent
def latent_to_image(latent):
with torch.no_grad():
decoded_image = vae.decode(latent).sample
tensor = ((decoded_image + 1) / 2).squeeze(0).clamp(0, 1)
transforms = v2.Compose([
v2.ToDtype(torch.uint8, scale=True),
])
int_tensor = transforms(tensor.to(device))
np_image = int_tensor.permute(1, 2, 0).cpu().numpy()
image = Image.fromarray(np_image)
filepath = "image.webp"
image.save(filepath, format="WebP", lossless=True)
return filepath
@spaces.GPU
def latcomp_to_image(latcomp):
latent = latcomp_to_latent(latcomp)
image = latent_to_image(latent)
return image
# Gradio
comparison_data = {
"Method": ["Size (KB)"],
"No Compression": [338],
"LatComp": [11],
"WebP": [35],
"JPEG": [66],
"TinyPNG": [92],
"PNG": [107],
"WebP (Lossless)": [214],
"PNG (Lossless)": [271],
"ZIP (Lossless)": [338]
}
df = pd.DataFrame(comparison_data)
styled_df = df.style.background_gradient(subset=['LatComp'], cmap='YlOrRd')
with gr.Blocks() as app:
gr.Markdown("# LatComp (Latent Compression)")
gr.Markdown()
gr.Markdown(
"""
## LatComp compression uses an AI model (VAE) and some custom code & math to compress images into a small, reversible format.
"""
)
gr.Markdown(
"""
This work was inspired by **Jeremy Howard** and **Jonathan Whitaker** of [fast.ai](https://www.fast.ai/) and [answer.ai](https://www.answer.ai/).<br>
While taking the fast.ai course, I was learning about **Variational Autoencoders (VAE)** and began to wonder:<br>
*Is it possible to represent the latent space as an image, and then reconstruct the original image from that representation?*
"""
)
gr.Markdown()
gr.Markdown("### **Compression Comparison:** A 338 KB image compressed using various methods.")
gr.Dataframe(styled_df)
gr.Markdown("**Note:** *Lossless compression means the original image can be perfectly reconstructed.*")
gr.Markdown()
with gr.Row():
gr.Markdown(
"""
## **Use Cases:**
- Save storage space
- Faster file transfers
- Backups & archives
"""
)
gr.Markdown(
"""
## **Potential Improvements:**
- Better/Faster AI model (VAE)
- Replace custom code & math with an AI model
- All-in-one AI Model
"""
)
gr.Markdown()
with gr.Tab("Compression"):
gr.Markdown(
"""
## Compress your image into a small and reversible format.
Images bigger than 512x512 will be resized to reduce GPU memory usage.
"""
)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Image", type="pil")
with gr.Row():
clear_compress_button = gr.ClearButton()
compress_button = gr.Button("Compress", variant="primary")
output_latcomp = gr.Image(label="Latcomp")
gr.Examples(
examples=[["macaw.png"], ["flowers.jpg"], ["newyork.jpg"]],
inputs=input_image,
outputs=output_latcomp,
fn=image_to_latcomp,
cache_examples=True,
cache_mode="eager"
)
with gr.Tab("Decompression"):
gr.Markdown("## Get your original image back from a latcomp.")
with gr.Row():
with gr.Column():
input_latcomp = gr.Image(label="Latcomp", type="pil", image_mode="RGBA", sources=["upload", "clipboard"])
with gr.Row():
clear_decompress_button = gr.ClearButton()
decompress_button = gr.Button("Decompress", variant="primary")
output_image = gr.Image(label="Image")
gr.Examples(
examples=[["macaw_latcomp.webp"], ["flowers_latcomp.webp"], ["newyork_latcomp.webp"]],
inputs=input_latcomp,
outputs=output_image,
fn=latcomp_to_image,
cache_examples=True,
cache_mode="eager"
)
clear_compress_button.add([input_image, output_latcomp])
compress_button.click(fn=image_to_latcomp, inputs=input_image, outputs=output_latcomp)
clear_decompress_button.add([input_latcomp, output_image])
decompress_button.click(fn=latcomp_to_image, inputs=input_latcomp, outputs=output_image)
app.launch()