Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import math | |
import matplotlib.pyplot as plt | |
import json | |
import yaml | |
class Fundamental_Music_Embedding(nn.Module): | |
def __init__(self, d_model, base, if_trainable = False, if_translation_bias_trainable = True, device='cpu', type = "se",emb_nn=None,translation_bias_type = "nd"): | |
super().__init__() | |
self.d_model = d_model | |
self.device = device | |
self.base = base | |
self.if_trainable = if_trainable #whether the se is trainable | |
if translation_bias_type is not None: | |
self.if_translation_bias = True | |
self.if_translation_bias_trainable = if_translation_bias_trainable #default the 2d vector is trainable | |
if translation_bias_type=="2d": | |
translation_bias = torch.rand((1, 2), dtype = torch.float32) #Returns a tensor filled with random numbers from a uniform distribution on the interval [0, 1)[0,1) | |
elif translation_bias_type=="nd": | |
translation_bias = torch.rand((1, self.d_model), dtype = torch.float32) | |
translation_bias = nn.Parameter(translation_bias, requires_grad=True) | |
self.register_parameter("translation_bias", translation_bias) | |
else: | |
self.if_translation_bias = False | |
i = torch.arange(d_model) | |
angle_rates = 1 / torch.pow(self.base, (2 * (i//2)) / d_model) | |
angle_rates = angle_rates[None, ... ]#.cuda() | |
if self.if_trainable: | |
angles = nn.Parameter(angle_rates, requires_grad=True) | |
self.register_parameter("angles", angles) | |
else: | |
self.angles = angle_rates | |
def __call__(self, inp, device): | |
if inp.dim()==2: | |
inp = inp[..., None] #pos (batch, num_pitch, 1) | |
elif inp.dim()==1: | |
inp = inp[None, ..., None] #pos (1, num_pitch, 1) | |
angle_rads = inp*self.angles.to(device) #(batch, num_pitch)*(1,dim) | |
# apply sin to even indices in the array; 2i | |
angle_rads[:, :, 0::2] = torch.sin(angle_rads.clone()[:, : , 0::2]) | |
# apply cos to odd indices in the array; 2i+1 | |
angle_rads[:, :, 1::2] = torch.cos(angle_rads.clone()[:, :, 1::2]) | |
pos_encoding = angle_rads.to(torch.float32) | |
if self.if_translation_bias: | |
if self.translation_bias.size()[-1]!= self.d_model: | |
translation_bias = self.translation_bias.repeat(1, 1,int(self.d_model/2)) | |
else: | |
translation_bias = self.translation_bias | |
pos_encoding += translation_bias | |
else: | |
self.translation_bias = None | |
return pos_encoding | |
class Music_PositionalEncoding(nn.Module): | |
def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000, if_index = True, if_global_timing = True, if_modulo_timing = True, device = 'cuda:0'): | |
super().__init__() | |
self.if_index = if_index | |
self.if_global_timing = if_global_timing | |
self.if_modulo_timing = if_modulo_timing | |
self.dropout = nn.Dropout(p=dropout) | |
self.index_embedding = Fundamental_Music_Embedding( | |
d_model = d_model, base=10000, if_trainable=False, translation_bias_type = None, | |
if_translation_bias_trainable = False, type = "se" | |
)# .cuda() | |
self.global_time_embedding = Fundamental_Music_Embedding( | |
d_model = d_model, base=10001, if_trainable=False, translation_bias_type = None, | |
if_translation_bias_trainable = False, type = "se" | |
)# .cuda() | |
self.modulo_time_embedding = Fundamental_Music_Embedding( | |
d_model = d_model, base=10001, if_trainable=False, translation_bias_type = None, | |
if_translation_bias_trainable = False, type = "se" | |
)# .cuda() | |
position = torch.arange(max_len).unsqueeze(1) | |
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) | |
pe = torch.zeros(max_len, 1, d_model) | |
pe[:, 0, 0::2] = torch.sin(position * div_term) | |
pe[:, 0, 1::2] = torch.cos(position * div_term) | |
self.register_buffer('pe', pe) | |
''' | |
if self.if_global_timing: | |
print("pe add global time") | |
if self.if_modulo_timing: | |
print("pe add modulo time") | |
if self.if_index: | |
print("pe add idx") | |
''' | |
def forward(self, inp,dur_onset_cumsum = None): | |
if self.if_index: | |
pe_index = self.pe[:inp.size(1)] #[seq_len, batch_size, embedding_dim] | |
pe_index = torch.swapaxes(pe_index, 0, 1) #[batch_size, seq_len, embedding_dim] | |
inp += pe_index | |
if self.if_global_timing: | |
global_timing = dur_onset_cumsum | |
global_timing_embedding = self.global_time_embedding(global_timing) | |
inp += global_timing_embedding | |
if self.if_modulo_timing: | |
modulo_timing = dur_onset_cumsum%4 | |
modulo_timing_embedding = self.modulo_time_embedding(modulo_timing) | |
inp += modulo_timing_embedding | |
return self.dropout(inp) | |
class PositionalEncoding(nn.Module): | |
def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000): | |
super().__init__() | |
self.dropout = nn.Dropout(p=dropout) | |
position = torch.arange(max_len).unsqueeze(1) | |
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) | |
pe = torch.zeros(max_len, 1, d_model) | |
pe[:, 0, 0::2] = torch.sin(position * div_term) | |
pe[:, 0, 1::2] = torch.cos(position * div_term) | |
self.register_buffer('pe', pe) | |
def forward(self, x): | |
pos = self.pe[:x.size(1)] #[seq_len, batch_size, embedding_dim] | |
pos = torch.swapaxes(pos, 0, 1) #[batch_size, seq_len, embedding_dim] | |
x = x + pos | |
return self.dropout(x) | |
class chord_tokenizer(): | |
def __init__(self,seq_len_chord=88,if_pad = True): | |
# self.pitch_dict = {'pad': 0, "None":1, "A": 2, "A#": 3, "Bb":3, "B":4, "C":5, "C#":6, "Db":6, "D": 7, "D#":8, "Eb":8, "E": 9 ,"F":10, "F#":11, "Gb":11, "G":12, "G#":13, "Ab":13} | |
self.pitch_dict = {'pad': 0, "None":1, "N":1, "A": 2, "A#": 3, "Bb":3, "B":4, "Cb": 4, "B#":5, "C":5, "C#":6, "Db":6, "D": 7, "D#":8, "Eb":8, "E": 9 , "Fb": 9, "E#": 10, "F":10, "F#":11, "Gb":11, "G":12, "G#":13, "Ab":13} | |
self.chord_type_dict = {'pad': 0, "None": 1,"N": 1, "maj": 2, "maj7": 3, "m": 4, "m6": 5, "m7": 6, "m7b5": 7, "6": 8, "7": 9, "aug": 10, "dim":11} #, "/": | |
self.chord_inversion_dict = {'pad': 0, "None":1, "N":1,"inv": 2, "no_inv":3} | |
self.seq_len_chord = seq_len_chord | |
self.if_pad = if_pad | |
def __call__(self, chord, chord_time): | |
if len(chord)==0: | |
chord, chord_time = ["N"], [0.] | |
if self.if_pad: | |
pad_len_chord = self.seq_len_chord - len(chord) | |
chord_mask = [True]*len(chord) +[False]*pad_len_chord | |
chord += ["pad"]*pad_len_chord | |
chord_time += [chord_time[-1]]*pad_len_chord | |
else: | |
chord_mask = [True]*len(chord) | |
self.chord_root, self.chord_type, self.chord_inv = self.tokenize_chord_lst(chord) | |
self.chord_time = chord_time | |
self.chord_mask = chord_mask | |
# print("out",self.chord_root, self.chord_type, self.chord_inv, self.chord_time, self.chord_mask) | |
return self.chord_root, self.chord_type, self.chord_inv, self.chord_time, self.chord_mask | |
def get_chord_root_type_inversion_timestamp(self, chord): | |
if chord =="pad": | |
return "pad", "pad", "pad" | |
if chord =="N": | |
return "N", "N", "N" | |
if len(chord.split('/'))>1: | |
chord_inv = "inv" | |
else: | |
chord_inv = "no_inv" | |
chord_wo_inv = chord.split('/')[0] | |
if len(chord_wo_inv)>1: # this part might have a '#' or 'b' | |
if chord_wo_inv[1]=='#' or chord_wo_inv[1]=='b': | |
chord_root=chord_wo_inv[0:2] | |
else: | |
chord_root=chord_wo_inv[0] | |
else: | |
chord_root=chord_wo_inv[0] | |
if len(chord_wo_inv)>len(chord_root): | |
chord_type=chord_wo_inv[len(chord_root):] | |
else: | |
chord_type='maj' | |
return chord_root, chord_type, chord_inv | |
def tokenize_chord_lst(self, chord_lst): | |
out_root = [] | |
out_type = [] | |
out_inv = [] | |
for chord in chord_lst: | |
chord_root, chord_type, chord_inversion= self.get_chord_root_type_inversion_timestamp(chord) | |
out_root.append(self.pitch_dict[chord_root]) | |
out_type.append(self.chord_type_dict[chord_type]) | |
out_inv.append(self.chord_inversion_dict[chord_inversion]) | |
return out_root, out_type, out_inv | |
class beat_tokenizer(): | |
def __init__(self,seq_len_beat=88,if_pad = True): | |
self.beat_dict = {'pad': 0, "None":1, 1.: 2, 2.: 3, 3.:4, 4.:5, 5.:6, 6.:7, 7.:8} | |
self.if_pad = if_pad | |
self.seq_len_beat = seq_len_beat | |
def __call__(self, beat_lst): | |
# beats = [[0.56, 1.1, 1.66, 2.24, 2.8, 3.36, 3.92, 4.48, 5.04, 5.6, 6.16, 6.74, 7.32, 7.9, 8.46, 9.0, 9.58], [3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0]] | |
if self.if_pad: | |
if len(beat_lst[0])==0: | |
beat_mask = [False]*self.seq_len_beat | |
beat_lst = [[0.]*self.seq_len_beat, ["pad"]*self.seq_len_beat] | |
else: | |
pad_len_beat = self.seq_len_beat - len(beat_lst[0]) | |
beat_mask = [True]*len(beat_lst[0]) +[False]*pad_len_beat | |
beat_lst = [beat_lst[0]+[beat_lst[0][-1]]*pad_len_beat, beat_lst[1]+["pad"]*pad_len_beat ] | |
else: | |
beat_mask = [True]*len(beat_lst[0]) | |
self.beat = [self.beat_dict[x] for x in beat_lst[1]] | |
self.beat_timing = beat_lst[0] | |
return self.beat, self.beat_timing, beat_mask | |
# class beat_tokenizer_by_frame(): | |
# def __init__(self, frame_resolution = 0.01, max_len = 10): | |
# def __call__(self, beat_lst): | |
# def timestamp2frame(,frame_resolution, max_len): | |
# def frame2timestamp(frame_resolution, man_len) | |
def l2_norm(a, b): | |
return torch.linalg.norm(a-b, ord = 2, dim = -1) | |
def rounding(x): | |
return x-torch.sin(2.*math.pi*x)/(2.*math.pi) | |
class Chord_Embedding(nn.Module): | |
def __init__(self, FME, PE, d_model = 256, d_oh_type = 12, d_oh_inv = 4): | |
super().__init__() | |
self.FME = FME | |
self.PE = PE | |
self.d_model = d_model | |
self.d_oh_type = d_oh_type | |
self.d_oh_inv = d_oh_inv | |
self.chord_ffn = nn.Linear(d_oh_type + d_oh_inv + d_model + d_model, d_model) #.cuda() | |
def __call__(self, chord_root, chord_type, chord_inv, chord_timing, device): | |
#chords: (B, LEN, 4) | |
#Embed root using FME | |
#Embed chord type, chord inversion using OH | |
#Embed timestamps using shared PE | |
chord_root_emb = self.FME(chord_root, device) | |
# print(chord_root_emb.size()) | |
# print('this is chord root: ', chord_root) | |
# print('this is chord type: ', chord_type) | |
# print('this is chord inv: ', chord_inv) | |
# chord_root_emb = torch.randn((2,20,1024)).cuda() | |
# print(chord_root_emb.device) | |
# chord_root_emb = F.one_hot(chord_type.to(torch.int64), num_classes = self.d_model).to(torch.float32) | |
chord_type_emb = F.one_hot(chord_type.to(torch.int64), num_classes = self.d_oh_type).to(torch.float32) | |
chord_inv_emb = F.one_hot(chord_inv.to(torch.int64), num_classes = self.d_oh_inv).to(torch.float32) | |
chord_time_emb = self.PE.global_time_embedding(chord_timing, device) | |
chord_emb = self.chord_ffn(torch.cat((chord_root_emb, chord_type_emb, chord_inv_emb, chord_time_emb), dim = -1).to(device)) | |
# print("TADY toje", chord_emb.device) | |
return chord_emb | |
class Beat_Embedding(nn.Module): | |
def __init__(self, PE, d_model = 256, d_oh_beat_type = 4): | |
super().__init__() | |
self.PE = PE | |
self.d_model = d_model | |
self.d_oh_beat_type = d_oh_beat_type | |
self.beat_ffn = nn.Linear(d_oh_beat_type+d_model, d_model) | |
def __call__(self, beats, beats_timing, device): | |
#Embed beat type using OH | |
#Embed time using PE | |
beat_type_emb = F.one_hot(beats.to(torch.int64), num_classes = self.d_oh_beat_type).to(torch.float32).to(device) | |
beat_time_emb = self.PE.global_time_embedding(beats_timing, device) | |
merged_beat = torch.cat((beat_type_emb, beat_time_emb), dim = -1) | |
beat_emb = self.beat_ffn(merged_beat) | |
return beat_emb | |
if __name__ == "__main__": | |
config_path = "/data/nicolas/TANGO/config/model_embedding_config.yaml" | |
with open (config_path, 'r') as f: | |
cfg = yaml.safe_load(f) | |
beats = [[0.56, 1.1, 1.66, 2.24, 2.8, 3.36, 3.92, 4.48, 5.04, 5.6, 6.16, 6.74, 7.32, 7.9, 8.46, 9.0, 9.58], [3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0]] | |
beats = np.array(beats).T.tolist() | |
chords = [["Gm", 0.464399092], ["Eb", 1.393197278], ["F", 3.157913832], ["Bb", 4.736870748], ["F7", 5.758548752], ["Gm", 6.501587301], ["Eb", 8.173424036], ["F7", 9.938140589]] | |
chord_tokenizer = chord_tokenizer(seq_len_chord=30,if_pad = True) | |
beat_tokenizer = beat_tokenizer(seq_len_beat=17,if_pad = True) | |
#TOKENIZE CHORDS AND BEATS AT DATALOADING PART | |
chord_tokens, chord_masks = chord_tokenizer(chords)#adding batch dimension | |
beat_tokens, beat_masks = beat_tokenizer(beats) | |
chord_tokens, chord_masks, beat_tokens, beat_masks = chord_tokens[None, ...], chord_masks[None, ...], beat_tokens[None, ...], beat_masks[None, ...] #adding batch dimension | |
print("tokeninzing chords and beats", chord_tokens.shape, beat_tokens.shape) | |
#EMBEDDING CHORDS AND BEATS WITHIN THE MODEL | |
FME = Fundamental_Music_Embedding(**cfg["FME_embedding_conf"]) | |
PE = Music_PositionalEncoding(**cfg["Position_encoding_conf"]) | |
chord_embedding_layer = Chord_Embedding(FME, PE, **cfg["Chord_Embedding_conf"]) | |
chord_embedded = chord_embedding_layer(chord_tokens) | |
beat_embedding_layer = Beat_Embedding(PE, **cfg["Beat_Embedding_conf"]) | |
beat_embedded = beat_embedding_layer(beat_tokens) | |
print("embedding tokenized chords and beats", chord_embedded.shape, beat_embedded.shape) | |