Spaces:
Build error
Build error
update files for device agnostic inference
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .ipynb_checkpoints/app-checkpoint.py +7 -1
- .ipynb_checkpoints/modelling_deberta_v2-checkpoint.py +1750 -0
- .ipynb_checkpoints/models-checkpoint.py +700 -698
- .ipynb_checkpoints/requirements-checkpoint.txt +7 -6
- __pycache__/modelling_deberta_v2.cpython-310.pyc +0 -0
- __pycache__/models.cpython-310.pyc +0 -0
- app.py +7 -1
- audioldm/__pycache__/__init__.cpython-310.pyc +0 -0
- audioldm/__pycache__/ldm.cpython-310.pyc +0 -0
- audioldm/__pycache__/pipeline.cpython-310.pyc +0 -0
- audioldm/__pycache__/utils.cpython-310.pyc +0 -0
- audioldm/audio/__pycache__/__init__.cpython-310.pyc +0 -0
- audioldm/audio/__pycache__/audio_processing.cpython-310.pyc +0 -0
- audioldm/audio/__pycache__/stft.cpython-310.pyc +0 -0
- audioldm/audio/__pycache__/tools.cpython-310.pyc +0 -0
- audioldm/hifigan/__pycache__/__init__.cpython-310.pyc +0 -0
- audioldm/hifigan/__pycache__/models.cpython-310.pyc +0 -0
- audioldm/hifigan/__pycache__/utilities.cpython-310.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/__init__.cpython-310.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/attention.cpython-310.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/ddim.cpython-310.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/ddpm.cpython-310.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/ema.cpython-310.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/util.cpython-310.pyc +0 -0
- audioldm/variational_autoencoder/__pycache__/__init__.cpython-310.pyc +0 -0
- audioldm/variational_autoencoder/__pycache__/autoencoder.cpython-310.pyc +0 -0
- audioldm/variational_autoencoder/__pycache__/distributions.cpython-310.pyc +0 -0
- audioldm/variational_autoencoder/__pycache__/modules.cpython-310.pyc +0 -0
- diffusers/src/diffusers/__pycache__/__init__.cpython-310.pyc +0 -0
- diffusers/src/diffusers/__pycache__/configuration_utils.cpython-310.pyc +0 -0
- diffusers/src/diffusers/__pycache__/image_processor.cpython-310.pyc +0 -0
- diffusers/src/diffusers/__pycache__/loaders.cpython-310.pyc +0 -0
- diffusers/src/diffusers/__pycache__/optimization.cpython-310.pyc +0 -0
- diffusers/src/diffusers/__pycache__/pipeline_utils.cpython-310.pyc +0 -0
- diffusers/src/diffusers/__pycache__/training_utils.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/__init__.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/attention.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/attention_processor.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/autoencoder_kl.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/controlnet.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/dual_transformer_2d.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/embeddings.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/modeling_utils.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/prior_transformer.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/resnet.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/t5_film_transformer.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/transformer_2d.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/transformer_temporal.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/unet_1d.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/unet_1d_blocks.cpython-310.pyc +0 -0
.ipynb_checkpoints/app-checkpoint.py
CHANGED
|
@@ -2,6 +2,7 @@ import gradio as gr
|
|
| 2 |
import json
|
| 3 |
import torch
|
| 4 |
import wavio
|
|
|
|
| 5 |
from tqdm import tqdm
|
| 6 |
from huggingface_hub import snapshot_download
|
| 7 |
|
|
@@ -23,6 +24,7 @@ class MusicFeaturePredictor:
|
|
| 23 |
def __init__(self, path, device="cuda:0", cache_dir=None, local_files_only=False):
|
| 24 |
self.beats_tokenizer = AutoTokenizer.from_pretrained(
|
| 25 |
"microsoft/deberta-v3-large",
|
|
|
|
| 26 |
cache_dir=cache_dir,
|
| 27 |
local_files_only=local_files_only,
|
| 28 |
)
|
|
@@ -164,6 +166,7 @@ class Mustango:
|
|
| 164 |
main_config["scheduler_name"],
|
| 165 |
unet_model_config_path=f"{path}/configs/music_diffusion_model_config.json",
|
| 166 |
).to(device)
|
|
|
|
| 167 |
|
| 168 |
vae_weights = torch.load(
|
| 169 |
f"{path}/vae/pytorch_model_vae.bin", map_location=device
|
|
@@ -213,9 +216,11 @@ class Mustango:
|
|
| 213 |
|
| 214 |
# Initialize Mustango
|
| 215 |
if torch.cuda.is_available():
|
| 216 |
-
mustango = Mustango()
|
| 217 |
else:
|
| 218 |
mustango = Mustango(device="cpu")
|
|
|
|
|
|
|
| 219 |
|
| 220 |
def gradio_generate(prompt, steps, guidance):
|
| 221 |
output_wave = mustango.generate(prompt, steps, guidance)
|
|
@@ -225,6 +230,7 @@ def gradio_generate(prompt, steps, guidance):
|
|
| 225 |
|
| 226 |
return output_filename
|
| 227 |
|
|
|
|
| 228 |
# description_text = """
|
| 229 |
# <p><a href="https://huggingface.co/spaces/declare-lab/mustango/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
|
| 230 |
# Generate music using Mustango by providing a text prompt.
|
|
|
|
| 2 |
import json
|
| 3 |
import torch
|
| 4 |
import wavio
|
| 5 |
+
import numpy as np
|
| 6 |
from tqdm import tqdm
|
| 7 |
from huggingface_hub import snapshot_download
|
| 8 |
|
|
|
|
| 24 |
def __init__(self, path, device="cuda:0", cache_dir=None, local_files_only=False):
|
| 25 |
self.beats_tokenizer = AutoTokenizer.from_pretrained(
|
| 26 |
"microsoft/deberta-v3-large",
|
| 27 |
+
use_fast=False,
|
| 28 |
cache_dir=cache_dir,
|
| 29 |
local_files_only=local_files_only,
|
| 30 |
)
|
|
|
|
| 166 |
main_config["scheduler_name"],
|
| 167 |
unet_model_config_path=f"{path}/configs/music_diffusion_model_config.json",
|
| 168 |
).to(device)
|
| 169 |
+
self.model.device = device
|
| 170 |
|
| 171 |
vae_weights = torch.load(
|
| 172 |
f"{path}/vae/pytorch_model_vae.bin", map_location=device
|
|
|
|
| 216 |
|
| 217 |
# Initialize Mustango
|
| 218 |
if torch.cuda.is_available():
|
| 219 |
+
mustango = Mustango(device="cpu")
|
| 220 |
else:
|
| 221 |
mustango = Mustango(device="cpu")
|
| 222 |
+
|
| 223 |
+
output_wave = mustango.generate("This techno song features a synth lead playing the main melody.", 5, 3, disable_progress=False)
|
| 224 |
|
| 225 |
def gradio_generate(prompt, steps, guidance):
|
| 226 |
output_wave = mustango.generate(prompt, steps, guidance)
|
|
|
|
| 230 |
|
| 231 |
return output_filename
|
| 232 |
|
| 233 |
+
|
| 234 |
# description_text = """
|
| 235 |
# <p><a href="https://huggingface.co/spaces/declare-lab/mustango/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
|
| 236 |
# Generate music using Mustango by providing a text prompt.
|
.ipynb_checkpoints/modelling_deberta_v2-checkpoint.py
ADDED
|
@@ -0,0 +1,1750 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2020 Microsoft and the Hugging Face Inc. team.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" PyTorch DeBERTa-v2 model."""
|
| 16 |
+
|
| 17 |
+
from collections.abc import Sequence
|
| 18 |
+
from typing import Optional, Tuple, Union
|
| 19 |
+
|
| 20 |
+
import torch
|
| 21 |
+
import torch.utils.checkpoint
|
| 22 |
+
from torch import nn
|
| 23 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
|
| 24 |
+
|
| 25 |
+
from transformers.activations import ACT2FN
|
| 26 |
+
from transformers.modeling_outputs import (
|
| 27 |
+
ModelOutput,
|
| 28 |
+
BaseModelOutput,
|
| 29 |
+
MaskedLMOutput,
|
| 30 |
+
MultipleChoiceModelOutput,
|
| 31 |
+
QuestionAnsweringModelOutput,
|
| 32 |
+
SequenceClassifierOutput,
|
| 33 |
+
TokenClassifierOutput,
|
| 34 |
+
)
|
| 35 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 36 |
+
from transformers.pytorch_utils import softmax_backward_data
|
| 37 |
+
from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
| 38 |
+
from transformers.models.deberta_v2.configuration_deberta_v2 import DebertaV2Config
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
logger = logging.get_logger(__name__)
|
| 42 |
+
|
| 43 |
+
_CONFIG_FOR_DOC = "DebertaV2Config"
|
| 44 |
+
_CHECKPOINT_FOR_DOC = "microsoft/deberta-v2-xlarge"
|
| 45 |
+
_QA_TARGET_START_INDEX = 2
|
| 46 |
+
_QA_TARGET_END_INDEX = 9
|
| 47 |
+
|
| 48 |
+
DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 49 |
+
"microsoft/deberta-v2-xlarge",
|
| 50 |
+
"microsoft/deberta-v2-xxlarge",
|
| 51 |
+
"microsoft/deberta-v2-xlarge-mnli",
|
| 52 |
+
"microsoft/deberta-v2-xxlarge-mnli",
|
| 53 |
+
]
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# Copied from transformers.models.deberta.modeling_deberta.ContextPooler
|
| 57 |
+
class ContextPooler(nn.Module):
|
| 58 |
+
def __init__(self, config):
|
| 59 |
+
super().__init__()
|
| 60 |
+
self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
|
| 61 |
+
self.dropout = StableDropout(config.pooler_dropout)
|
| 62 |
+
self.config = config
|
| 63 |
+
|
| 64 |
+
def forward(self, hidden_states):
|
| 65 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
| 66 |
+
# to the first token.
|
| 67 |
+
|
| 68 |
+
context_token = hidden_states[:, 0]
|
| 69 |
+
context_token = self.dropout(context_token)
|
| 70 |
+
pooled_output = self.dense(context_token)
|
| 71 |
+
pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
|
| 72 |
+
return pooled_output
|
| 73 |
+
|
| 74 |
+
@property
|
| 75 |
+
def output_dim(self):
|
| 76 |
+
return self.config.hidden_size
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
# Copied from transformers.models.deberta.modeling_deberta.XSoftmax with deberta->deberta_v2
|
| 80 |
+
class XSoftmax(torch.autograd.Function):
|
| 81 |
+
"""
|
| 82 |
+
Masked Softmax which is optimized for saving memory
|
| 83 |
+
|
| 84 |
+
Args:
|
| 85 |
+
input (`torch.tensor`): The input tensor that will apply softmax.
|
| 86 |
+
mask (`torch.IntTensor`):
|
| 87 |
+
The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
|
| 88 |
+
dim (int): The dimension that will apply softmax
|
| 89 |
+
|
| 90 |
+
Example:
|
| 91 |
+
|
| 92 |
+
```python
|
| 93 |
+
>>> import torch
|
| 94 |
+
>>> from transformers.models.deberta_v2.modeling_deberta_v2 import XSoftmax
|
| 95 |
+
|
| 96 |
+
>>> # Make a tensor
|
| 97 |
+
>>> x = torch.randn([4, 20, 100])
|
| 98 |
+
|
| 99 |
+
>>> # Create a mask
|
| 100 |
+
>>> mask = (x > 0).int()
|
| 101 |
+
|
| 102 |
+
>>> # Specify the dimension to apply softmax
|
| 103 |
+
>>> dim = -1
|
| 104 |
+
|
| 105 |
+
>>> y = XSoftmax.apply(x, mask, dim)
|
| 106 |
+
```"""
|
| 107 |
+
|
| 108 |
+
@staticmethod
|
| 109 |
+
def forward(self, input, mask, dim):
|
| 110 |
+
self.dim = dim
|
| 111 |
+
rmask = ~(mask.to(torch.bool))
|
| 112 |
+
|
| 113 |
+
output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min))
|
| 114 |
+
output = torch.softmax(output, self.dim)
|
| 115 |
+
output.masked_fill_(rmask, 0)
|
| 116 |
+
self.save_for_backward(output)
|
| 117 |
+
return output
|
| 118 |
+
|
| 119 |
+
@staticmethod
|
| 120 |
+
def backward(self, grad_output):
|
| 121 |
+
(output,) = self.saved_tensors
|
| 122 |
+
inputGrad = softmax_backward_data(self, grad_output, output, self.dim, output)
|
| 123 |
+
return inputGrad, None, None
|
| 124 |
+
|
| 125 |
+
@staticmethod
|
| 126 |
+
def symbolic(g, self, mask, dim):
|
| 127 |
+
import torch.onnx.symbolic_helper as sym_help
|
| 128 |
+
from torch.onnx.symbolic_opset9 import masked_fill, softmax
|
| 129 |
+
|
| 130 |
+
mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx["Long"])
|
| 131 |
+
r_mask = g.op(
|
| 132 |
+
"Cast",
|
| 133 |
+
g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value),
|
| 134 |
+
to_i=sym_help.cast_pytorch_to_onnx["Bool"],
|
| 135 |
+
)
|
| 136 |
+
output = masked_fill(
|
| 137 |
+
g, self, r_mask, g.op("Constant", value_t=torch.tensor(torch.finfo(self.type().dtype()).min))
|
| 138 |
+
)
|
| 139 |
+
output = softmax(g, output, dim)
|
| 140 |
+
return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.bool)))
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
# Copied from transformers.models.deberta.modeling_deberta.DropoutContext
|
| 144 |
+
class DropoutContext(object):
|
| 145 |
+
def __init__(self):
|
| 146 |
+
self.dropout = 0
|
| 147 |
+
self.mask = None
|
| 148 |
+
self.scale = 1
|
| 149 |
+
self.reuse_mask = True
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
# Copied from transformers.models.deberta.modeling_deberta.get_mask
|
| 153 |
+
def get_mask(input, local_context):
|
| 154 |
+
if not isinstance(local_context, DropoutContext):
|
| 155 |
+
dropout = local_context
|
| 156 |
+
mask = None
|
| 157 |
+
else:
|
| 158 |
+
dropout = local_context.dropout
|
| 159 |
+
dropout *= local_context.scale
|
| 160 |
+
mask = local_context.mask if local_context.reuse_mask else None
|
| 161 |
+
|
| 162 |
+
if dropout > 0 and mask is None:
|
| 163 |
+
mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).to(torch.bool)
|
| 164 |
+
|
| 165 |
+
if isinstance(local_context, DropoutContext):
|
| 166 |
+
if local_context.mask is None:
|
| 167 |
+
local_context.mask = mask
|
| 168 |
+
|
| 169 |
+
return mask, dropout
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
# Copied from transformers.models.deberta.modeling_deberta.XDropout
|
| 173 |
+
class XDropout(torch.autograd.Function):
|
| 174 |
+
"""Optimized dropout function to save computation and memory by using mask operation instead of multiplication."""
|
| 175 |
+
|
| 176 |
+
@staticmethod
|
| 177 |
+
def forward(ctx, input, local_ctx):
|
| 178 |
+
mask, dropout = get_mask(input, local_ctx)
|
| 179 |
+
ctx.scale = 1.0 / (1 - dropout)
|
| 180 |
+
if dropout > 0:
|
| 181 |
+
ctx.save_for_backward(mask)
|
| 182 |
+
return input.masked_fill(mask, 0) * ctx.scale
|
| 183 |
+
else:
|
| 184 |
+
return input
|
| 185 |
+
|
| 186 |
+
@staticmethod
|
| 187 |
+
def backward(ctx, grad_output):
|
| 188 |
+
if ctx.scale > 1:
|
| 189 |
+
(mask,) = ctx.saved_tensors
|
| 190 |
+
return grad_output.masked_fill(mask, 0) * ctx.scale, None
|
| 191 |
+
else:
|
| 192 |
+
return grad_output, None
|
| 193 |
+
|
| 194 |
+
@staticmethod
|
| 195 |
+
def symbolic(g: torch._C.Graph, input: torch._C.Value, local_ctx: Union[float, DropoutContext]) -> torch._C.Value:
|
| 196 |
+
from torch.onnx import symbolic_opset12
|
| 197 |
+
|
| 198 |
+
dropout_p = local_ctx
|
| 199 |
+
if isinstance(local_ctx, DropoutContext):
|
| 200 |
+
dropout_p = local_ctx.dropout
|
| 201 |
+
# StableDropout only calls this function when training.
|
| 202 |
+
train = True
|
| 203 |
+
# TODO: We should check if the opset_version being used to export
|
| 204 |
+
# is > 12 here, but there's no good way to do that. As-is, if the
|
| 205 |
+
# opset_version < 12, export will fail with a CheckerError.
|
| 206 |
+
# Once https://github.com/pytorch/pytorch/issues/78391 is fixed, do something like:
|
| 207 |
+
# if opset_version < 12:
|
| 208 |
+
# return torch.onnx.symbolic_opset9.dropout(g, input, dropout_p, train)
|
| 209 |
+
return symbolic_opset12.dropout(g, input, dropout_p, train)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
# Copied from transformers.models.deberta.modeling_deberta.StableDropout
|
| 213 |
+
class StableDropout(nn.Module):
|
| 214 |
+
"""
|
| 215 |
+
Optimized dropout module for stabilizing the training
|
| 216 |
+
|
| 217 |
+
Args:
|
| 218 |
+
drop_prob (float): the dropout probabilities
|
| 219 |
+
"""
|
| 220 |
+
|
| 221 |
+
def __init__(self, drop_prob):
|
| 222 |
+
super().__init__()
|
| 223 |
+
self.drop_prob = drop_prob
|
| 224 |
+
self.count = 0
|
| 225 |
+
self.context_stack = None
|
| 226 |
+
|
| 227 |
+
def forward(self, x):
|
| 228 |
+
"""
|
| 229 |
+
Call the module
|
| 230 |
+
|
| 231 |
+
Args:
|
| 232 |
+
x (`torch.tensor`): The input tensor to apply dropout
|
| 233 |
+
"""
|
| 234 |
+
if self.training and self.drop_prob > 0:
|
| 235 |
+
return XDropout.apply(x, self.get_context())
|
| 236 |
+
return x
|
| 237 |
+
|
| 238 |
+
def clear_context(self):
|
| 239 |
+
self.count = 0
|
| 240 |
+
self.context_stack = None
|
| 241 |
+
|
| 242 |
+
def init_context(self, reuse_mask=True, scale=1):
|
| 243 |
+
if self.context_stack is None:
|
| 244 |
+
self.context_stack = []
|
| 245 |
+
self.count = 0
|
| 246 |
+
for c in self.context_stack:
|
| 247 |
+
c.reuse_mask = reuse_mask
|
| 248 |
+
c.scale = scale
|
| 249 |
+
|
| 250 |
+
def get_context(self):
|
| 251 |
+
if self.context_stack is not None:
|
| 252 |
+
if self.count >= len(self.context_stack):
|
| 253 |
+
self.context_stack.append(DropoutContext())
|
| 254 |
+
ctx = self.context_stack[self.count]
|
| 255 |
+
ctx.dropout = self.drop_prob
|
| 256 |
+
self.count += 1
|
| 257 |
+
return ctx
|
| 258 |
+
else:
|
| 259 |
+
return self.drop_prob
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaSelfOutput with DebertaLayerNorm->LayerNorm
|
| 263 |
+
class DebertaV2SelfOutput(nn.Module):
|
| 264 |
+
def __init__(self, config):
|
| 265 |
+
super().__init__()
|
| 266 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 267 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
| 268 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
| 269 |
+
|
| 270 |
+
def forward(self, hidden_states, input_tensor):
|
| 271 |
+
hidden_states = self.dense(hidden_states)
|
| 272 |
+
hidden_states = self.dropout(hidden_states)
|
| 273 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 274 |
+
return hidden_states
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaAttention with Deberta->DebertaV2
|
| 278 |
+
class DebertaV2Attention(nn.Module):
|
| 279 |
+
def __init__(self, config):
|
| 280 |
+
super().__init__()
|
| 281 |
+
self.self = DisentangledSelfAttention(config)
|
| 282 |
+
self.output = DebertaV2SelfOutput(config)
|
| 283 |
+
self.config = config
|
| 284 |
+
|
| 285 |
+
def forward(
|
| 286 |
+
self,
|
| 287 |
+
hidden_states,
|
| 288 |
+
attention_mask,
|
| 289 |
+
output_attentions=False,
|
| 290 |
+
query_states=None,
|
| 291 |
+
relative_pos=None,
|
| 292 |
+
rel_embeddings=None,
|
| 293 |
+
):
|
| 294 |
+
self_output = self.self(
|
| 295 |
+
hidden_states,
|
| 296 |
+
attention_mask,
|
| 297 |
+
output_attentions,
|
| 298 |
+
query_states=query_states,
|
| 299 |
+
relative_pos=relative_pos,
|
| 300 |
+
rel_embeddings=rel_embeddings,
|
| 301 |
+
)
|
| 302 |
+
if output_attentions:
|
| 303 |
+
self_output, att_matrix = self_output
|
| 304 |
+
if query_states is None:
|
| 305 |
+
query_states = hidden_states
|
| 306 |
+
attention_output = self.output(self_output, query_states)
|
| 307 |
+
|
| 308 |
+
if output_attentions:
|
| 309 |
+
return (attention_output, att_matrix)
|
| 310 |
+
else:
|
| 311 |
+
return attention_output
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->DebertaV2
|
| 315 |
+
class DebertaV2Intermediate(nn.Module):
|
| 316 |
+
def __init__(self, config):
|
| 317 |
+
super().__init__()
|
| 318 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 319 |
+
if isinstance(config.hidden_act, str):
|
| 320 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
| 321 |
+
else:
|
| 322 |
+
self.intermediate_act_fn = config.hidden_act
|
| 323 |
+
|
| 324 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 325 |
+
hidden_states = self.dense(hidden_states)
|
| 326 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
| 327 |
+
return hidden_states
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaOutput with DebertaLayerNorm->LayerNorm
|
| 331 |
+
class DebertaV2Output(nn.Module):
|
| 332 |
+
def __init__(self, config):
|
| 333 |
+
super().__init__()
|
| 334 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 335 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
| 336 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
| 337 |
+
self.config = config
|
| 338 |
+
|
| 339 |
+
def forward(self, hidden_states, input_tensor):
|
| 340 |
+
hidden_states = self.dense(hidden_states)
|
| 341 |
+
hidden_states = self.dropout(hidden_states)
|
| 342 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 343 |
+
return hidden_states
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaLayer with Deberta->DebertaV2
|
| 347 |
+
class DebertaV2Layer(nn.Module):
|
| 348 |
+
def __init__(self, config):
|
| 349 |
+
super().__init__()
|
| 350 |
+
self.attention = DebertaV2Attention(config)
|
| 351 |
+
self.intermediate = DebertaV2Intermediate(config)
|
| 352 |
+
self.output = DebertaV2Output(config)
|
| 353 |
+
|
| 354 |
+
def forward(
|
| 355 |
+
self,
|
| 356 |
+
hidden_states,
|
| 357 |
+
attention_mask,
|
| 358 |
+
query_states=None,
|
| 359 |
+
relative_pos=None,
|
| 360 |
+
rel_embeddings=None,
|
| 361 |
+
output_attentions=False,
|
| 362 |
+
):
|
| 363 |
+
attention_output = self.attention(
|
| 364 |
+
hidden_states,
|
| 365 |
+
attention_mask,
|
| 366 |
+
output_attentions=output_attentions,
|
| 367 |
+
query_states=query_states,
|
| 368 |
+
relative_pos=relative_pos,
|
| 369 |
+
rel_embeddings=rel_embeddings,
|
| 370 |
+
)
|
| 371 |
+
if output_attentions:
|
| 372 |
+
attention_output, att_matrix = attention_output
|
| 373 |
+
intermediate_output = self.intermediate(attention_output)
|
| 374 |
+
layer_output = self.output(intermediate_output, attention_output)
|
| 375 |
+
if output_attentions:
|
| 376 |
+
return (layer_output, att_matrix)
|
| 377 |
+
else:
|
| 378 |
+
return layer_output
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
class ConvLayer(nn.Module):
|
| 382 |
+
def __init__(self, config):
|
| 383 |
+
super().__init__()
|
| 384 |
+
kernel_size = getattr(config, "conv_kernel_size", 3)
|
| 385 |
+
groups = getattr(config, "conv_groups", 1)
|
| 386 |
+
self.conv_act = getattr(config, "conv_act", "tanh")
|
| 387 |
+
self.conv = nn.Conv1d(
|
| 388 |
+
config.hidden_size, config.hidden_size, kernel_size, padding=(kernel_size - 1) // 2, groups=groups
|
| 389 |
+
)
|
| 390 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
| 391 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
| 392 |
+
self.config = config
|
| 393 |
+
|
| 394 |
+
def forward(self, hidden_states, residual_states, input_mask):
|
| 395 |
+
out = self.conv(hidden_states.permute(0, 2, 1).contiguous()).permute(0, 2, 1).contiguous()
|
| 396 |
+
rmask = (1 - input_mask).bool()
|
| 397 |
+
out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0)
|
| 398 |
+
out = ACT2FN[self.conv_act](self.dropout(out))
|
| 399 |
+
|
| 400 |
+
layer_norm_input = residual_states + out
|
| 401 |
+
output = self.LayerNorm(layer_norm_input).to(layer_norm_input)
|
| 402 |
+
|
| 403 |
+
if input_mask is None:
|
| 404 |
+
output_states = output
|
| 405 |
+
else:
|
| 406 |
+
if input_mask.dim() != layer_norm_input.dim():
|
| 407 |
+
if input_mask.dim() == 4:
|
| 408 |
+
input_mask = input_mask.squeeze(1).squeeze(1)
|
| 409 |
+
input_mask = input_mask.unsqueeze(2)
|
| 410 |
+
|
| 411 |
+
input_mask = input_mask.to(output.dtype)
|
| 412 |
+
output_states = output * input_mask
|
| 413 |
+
|
| 414 |
+
return output_states
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
class DebertaV2Encoder(nn.Module):
|
| 418 |
+
"""Modified BertEncoder with relative position bias support"""
|
| 419 |
+
|
| 420 |
+
def __init__(self, config):
|
| 421 |
+
super().__init__()
|
| 422 |
+
|
| 423 |
+
self.layer = nn.ModuleList([DebertaV2Layer(config) for _ in range(config.num_hidden_layers)])
|
| 424 |
+
self.relative_attention = getattr(config, "relative_attention", False)
|
| 425 |
+
|
| 426 |
+
if self.relative_attention:
|
| 427 |
+
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
|
| 428 |
+
if self.max_relative_positions < 1:
|
| 429 |
+
self.max_relative_positions = config.max_position_embeddings
|
| 430 |
+
|
| 431 |
+
self.position_buckets = getattr(config, "position_buckets", -1)
|
| 432 |
+
pos_ebd_size = self.max_relative_positions * 2
|
| 433 |
+
|
| 434 |
+
if self.position_buckets > 0:
|
| 435 |
+
pos_ebd_size = self.position_buckets * 2
|
| 436 |
+
|
| 437 |
+
self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size)
|
| 438 |
+
|
| 439 |
+
self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")]
|
| 440 |
+
|
| 441 |
+
if "layer_norm" in self.norm_rel_ebd:
|
| 442 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
|
| 443 |
+
|
| 444 |
+
self.conv = ConvLayer(config) if getattr(config, "conv_kernel_size", 0) > 0 else None
|
| 445 |
+
self.gradient_checkpointing = False
|
| 446 |
+
|
| 447 |
+
def get_rel_embedding(self):
|
| 448 |
+
rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
|
| 449 |
+
if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd):
|
| 450 |
+
rel_embeddings = self.LayerNorm(rel_embeddings)
|
| 451 |
+
return rel_embeddings
|
| 452 |
+
|
| 453 |
+
def get_attention_mask(self, attention_mask):
|
| 454 |
+
if attention_mask.dim() <= 2:
|
| 455 |
+
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
| 456 |
+
attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
|
| 457 |
+
elif attention_mask.dim() == 3:
|
| 458 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 459 |
+
|
| 460 |
+
return attention_mask
|
| 461 |
+
|
| 462 |
+
def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
|
| 463 |
+
if self.relative_attention and relative_pos is None:
|
| 464 |
+
q = query_states.size(-2) if query_states is not None else hidden_states.size(-2)
|
| 465 |
+
relative_pos = build_relative_position(
|
| 466 |
+
q,
|
| 467 |
+
hidden_states.size(-2),
|
| 468 |
+
bucket_size=self.position_buckets,
|
| 469 |
+
max_position=self.max_relative_positions,
|
| 470 |
+
device=hidden_states.device,
|
| 471 |
+
)
|
| 472 |
+
return relative_pos
|
| 473 |
+
|
| 474 |
+
def forward(
|
| 475 |
+
self,
|
| 476 |
+
hidden_states,
|
| 477 |
+
attention_mask,
|
| 478 |
+
output_hidden_states=True,
|
| 479 |
+
output_attentions=False,
|
| 480 |
+
query_states=None,
|
| 481 |
+
relative_pos=None,
|
| 482 |
+
return_dict=True,
|
| 483 |
+
):
|
| 484 |
+
if attention_mask.dim() <= 2:
|
| 485 |
+
input_mask = attention_mask
|
| 486 |
+
else:
|
| 487 |
+
input_mask = attention_mask.sum(-2) > 0
|
| 488 |
+
attention_mask = self.get_attention_mask(attention_mask)
|
| 489 |
+
relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
|
| 490 |
+
|
| 491 |
+
all_hidden_states = () if output_hidden_states else None
|
| 492 |
+
all_attentions = () if output_attentions else None
|
| 493 |
+
|
| 494 |
+
if isinstance(hidden_states, Sequence):
|
| 495 |
+
next_kv = hidden_states[0]
|
| 496 |
+
else:
|
| 497 |
+
next_kv = hidden_states
|
| 498 |
+
rel_embeddings = self.get_rel_embedding()
|
| 499 |
+
output_states = next_kv
|
| 500 |
+
for i, layer_module in enumerate(self.layer):
|
| 501 |
+
if output_hidden_states:
|
| 502 |
+
all_hidden_states = all_hidden_states + (output_states,)
|
| 503 |
+
|
| 504 |
+
if self.gradient_checkpointing and self.training:
|
| 505 |
+
|
| 506 |
+
def create_custom_forward(module):
|
| 507 |
+
def custom_forward(*inputs):
|
| 508 |
+
return module(*inputs, output_attentions)
|
| 509 |
+
|
| 510 |
+
return custom_forward
|
| 511 |
+
|
| 512 |
+
output_states = torch.utils.checkpoint.checkpoint(
|
| 513 |
+
create_custom_forward(layer_module),
|
| 514 |
+
next_kv,
|
| 515 |
+
attention_mask,
|
| 516 |
+
query_states,
|
| 517 |
+
relative_pos,
|
| 518 |
+
rel_embeddings,
|
| 519 |
+
)
|
| 520 |
+
else:
|
| 521 |
+
output_states = layer_module(
|
| 522 |
+
next_kv,
|
| 523 |
+
attention_mask,
|
| 524 |
+
query_states=query_states,
|
| 525 |
+
relative_pos=relative_pos,
|
| 526 |
+
rel_embeddings=rel_embeddings,
|
| 527 |
+
output_attentions=output_attentions,
|
| 528 |
+
)
|
| 529 |
+
|
| 530 |
+
if output_attentions:
|
| 531 |
+
output_states, att_m = output_states
|
| 532 |
+
|
| 533 |
+
if i == 0 and self.conv is not None:
|
| 534 |
+
output_states = self.conv(hidden_states, output_states, input_mask)
|
| 535 |
+
|
| 536 |
+
if query_states is not None:
|
| 537 |
+
query_states = output_states
|
| 538 |
+
if isinstance(hidden_states, Sequence):
|
| 539 |
+
next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
|
| 540 |
+
else:
|
| 541 |
+
next_kv = output_states
|
| 542 |
+
|
| 543 |
+
if output_attentions:
|
| 544 |
+
all_attentions = all_attentions + (att_m,)
|
| 545 |
+
|
| 546 |
+
if output_hidden_states:
|
| 547 |
+
all_hidden_states = all_hidden_states + (output_states,)
|
| 548 |
+
|
| 549 |
+
if not return_dict:
|
| 550 |
+
return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None)
|
| 551 |
+
return BaseModelOutput(
|
| 552 |
+
last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions
|
| 553 |
+
)
|
| 554 |
+
|
| 555 |
+
|
| 556 |
+
def make_log_bucket_position(relative_pos, bucket_size, max_position):
|
| 557 |
+
sign = torch.sign(relative_pos)
|
| 558 |
+
mid = bucket_size // 2
|
| 559 |
+
abs_pos = torch.where(
|
| 560 |
+
(relative_pos < mid) & (relative_pos > -mid),
|
| 561 |
+
torch.tensor(mid - 1).type_as(relative_pos),
|
| 562 |
+
torch.abs(relative_pos),
|
| 563 |
+
)
|
| 564 |
+
log_pos = (
|
| 565 |
+
torch.ceil(torch.log(abs_pos / mid) / torch.log(torch.tensor((max_position - 1) / mid)) * (mid - 1)) + mid
|
| 566 |
+
)
|
| 567 |
+
bucket_pos = torch.where(abs_pos <= mid, relative_pos.type_as(log_pos), log_pos * sign)
|
| 568 |
+
return bucket_pos
|
| 569 |
+
|
| 570 |
+
|
| 571 |
+
def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1, device=None):
|
| 572 |
+
"""
|
| 573 |
+
Build relative position according to the query and key
|
| 574 |
+
|
| 575 |
+
We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key
|
| 576 |
+
\\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q -
|
| 577 |
+
P_k\\)
|
| 578 |
+
|
| 579 |
+
Args:
|
| 580 |
+
query_size (int): the length of query
|
| 581 |
+
key_size (int): the length of key
|
| 582 |
+
bucket_size (int): the size of position bucket
|
| 583 |
+
max_position (int): the maximum allowed absolute position
|
| 584 |
+
device (`torch.device`): the device on which tensors will be created.
|
| 585 |
+
|
| 586 |
+
Return:
|
| 587 |
+
`torch.LongTensor`: A tensor with shape [1, query_size, key_size]
|
| 588 |
+
"""
|
| 589 |
+
|
| 590 |
+
q_ids = torch.arange(0, query_size, device=device)
|
| 591 |
+
k_ids = torch.arange(0, key_size, device=device)
|
| 592 |
+
rel_pos_ids = q_ids[:, None] - k_ids[None, :]
|
| 593 |
+
if bucket_size > 0 and max_position > 0:
|
| 594 |
+
rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position)
|
| 595 |
+
rel_pos_ids = rel_pos_ids.to(torch.long)
|
| 596 |
+
rel_pos_ids = rel_pos_ids[:query_size, :]
|
| 597 |
+
rel_pos_ids = rel_pos_ids.unsqueeze(0)
|
| 598 |
+
return rel_pos_ids
|
| 599 |
+
|
| 600 |
+
|
| 601 |
+
@torch.jit.script
|
| 602 |
+
# Copied from transformers.models.deberta.modeling_deberta.c2p_dynamic_expand
|
| 603 |
+
def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
|
| 604 |
+
return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)])
|
| 605 |
+
|
| 606 |
+
|
| 607 |
+
@torch.jit.script
|
| 608 |
+
# Copied from transformers.models.deberta.modeling_deberta.p2c_dynamic_expand
|
| 609 |
+
def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
|
| 610 |
+
return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)])
|
| 611 |
+
|
| 612 |
+
|
| 613 |
+
@torch.jit.script
|
| 614 |
+
# Copied from transformers.models.deberta.modeling_deberta.pos_dynamic_expand
|
| 615 |
+
def pos_dynamic_expand(pos_index, p2c_att, key_layer):
|
| 616 |
+
return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2)))
|
| 617 |
+
|
| 618 |
+
|
| 619 |
+
class DisentangledSelfAttention(nn.Module):
|
| 620 |
+
"""
|
| 621 |
+
Disentangled self-attention module
|
| 622 |
+
|
| 623 |
+
Parameters:
|
| 624 |
+
config (`DebertaV2Config`):
|
| 625 |
+
A model config class instance with the configuration to build a new model. The schema is similar to
|
| 626 |
+
*BertConfig*, for more details, please refer [`DebertaV2Config`]
|
| 627 |
+
|
| 628 |
+
"""
|
| 629 |
+
|
| 630 |
+
def __init__(self, config):
|
| 631 |
+
super().__init__()
|
| 632 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
| 633 |
+
raise ValueError(
|
| 634 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
| 635 |
+
f"heads ({config.num_attention_heads})"
|
| 636 |
+
)
|
| 637 |
+
self.num_attention_heads = config.num_attention_heads
|
| 638 |
+
_attention_head_size = config.hidden_size // config.num_attention_heads
|
| 639 |
+
self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size)
|
| 640 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
| 641 |
+
self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
| 642 |
+
self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
| 643 |
+
self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
| 644 |
+
|
| 645 |
+
self.share_att_key = getattr(config, "share_att_key", False)
|
| 646 |
+
self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
|
| 647 |
+
self.relative_attention = getattr(config, "relative_attention", False)
|
| 648 |
+
|
| 649 |
+
if self.relative_attention:
|
| 650 |
+
self.position_buckets = getattr(config, "position_buckets", -1)
|
| 651 |
+
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
|
| 652 |
+
if self.max_relative_positions < 1:
|
| 653 |
+
self.max_relative_positions = config.max_position_embeddings
|
| 654 |
+
self.pos_ebd_size = self.max_relative_positions
|
| 655 |
+
if self.position_buckets > 0:
|
| 656 |
+
self.pos_ebd_size = self.position_buckets
|
| 657 |
+
|
| 658 |
+
self.pos_dropout = StableDropout(config.hidden_dropout_prob)
|
| 659 |
+
|
| 660 |
+
if not self.share_att_key:
|
| 661 |
+
if "c2p" in self.pos_att_type:
|
| 662 |
+
self.pos_key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
| 663 |
+
if "p2c" in self.pos_att_type:
|
| 664 |
+
self.pos_query_proj = nn.Linear(config.hidden_size, self.all_head_size)
|
| 665 |
+
|
| 666 |
+
self.dropout = StableDropout(config.attention_probs_dropout_prob)
|
| 667 |
+
|
| 668 |
+
def transpose_for_scores(self, x, attention_heads):
|
| 669 |
+
new_x_shape = x.size()[:-1] + (attention_heads, -1)
|
| 670 |
+
x = x.view(new_x_shape)
|
| 671 |
+
return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1))
|
| 672 |
+
|
| 673 |
+
def forward(
|
| 674 |
+
self,
|
| 675 |
+
hidden_states,
|
| 676 |
+
attention_mask,
|
| 677 |
+
output_attentions=False,
|
| 678 |
+
query_states=None,
|
| 679 |
+
relative_pos=None,
|
| 680 |
+
rel_embeddings=None,
|
| 681 |
+
):
|
| 682 |
+
"""
|
| 683 |
+
Call the module
|
| 684 |
+
|
| 685 |
+
Args:
|
| 686 |
+
hidden_states (`torch.FloatTensor`):
|
| 687 |
+
Input states to the module usually the output from previous layer, it will be the Q,K and V in
|
| 688 |
+
*Attention(Q,K,V)*
|
| 689 |
+
|
| 690 |
+
attention_mask (`torch.BoolTensor`):
|
| 691 |
+
An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
|
| 692 |
+
sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
|
| 693 |
+
th token.
|
| 694 |
+
|
| 695 |
+
output_attentions (`bool`, optional):
|
| 696 |
+
Whether return the attention matrix.
|
| 697 |
+
|
| 698 |
+
query_states (`torch.FloatTensor`, optional):
|
| 699 |
+
The *Q* state in *Attention(Q,K,V)*.
|
| 700 |
+
|
| 701 |
+
relative_pos (`torch.LongTensor`):
|
| 702 |
+
The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
|
| 703 |
+
values ranging in [*-max_relative_positions*, *max_relative_positions*].
|
| 704 |
+
|
| 705 |
+
rel_embeddings (`torch.FloatTensor`):
|
| 706 |
+
The embedding of relative distances. It's a tensor of shape [\\(2 \\times
|
| 707 |
+
\\text{max_relative_positions}\\), *hidden_size*].
|
| 708 |
+
|
| 709 |
+
|
| 710 |
+
"""
|
| 711 |
+
if query_states is None:
|
| 712 |
+
query_states = hidden_states
|
| 713 |
+
query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads)
|
| 714 |
+
key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads)
|
| 715 |
+
value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads)
|
| 716 |
+
|
| 717 |
+
rel_att = None
|
| 718 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
| 719 |
+
scale_factor = 1
|
| 720 |
+
if "c2p" in self.pos_att_type:
|
| 721 |
+
scale_factor += 1
|
| 722 |
+
if "p2c" in self.pos_att_type:
|
| 723 |
+
scale_factor += 1
|
| 724 |
+
scale = torch.sqrt(torch.tensor(query_layer.size(-1), dtype=torch.float) * scale_factor)
|
| 725 |
+
attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2)) / scale.to(dtype=query_layer.dtype)
|
| 726 |
+
if self.relative_attention:
|
| 727 |
+
rel_embeddings = self.pos_dropout(rel_embeddings)
|
| 728 |
+
rel_att = self.disentangled_attention_bias(
|
| 729 |
+
query_layer, key_layer, relative_pos, rel_embeddings, scale_factor
|
| 730 |
+
)
|
| 731 |
+
|
| 732 |
+
if rel_att is not None:
|
| 733 |
+
attention_scores = attention_scores + rel_att
|
| 734 |
+
attention_scores = attention_scores
|
| 735 |
+
attention_scores = attention_scores.view(
|
| 736 |
+
-1, self.num_attention_heads, attention_scores.size(-2), attention_scores.size(-1)
|
| 737 |
+
)
|
| 738 |
+
|
| 739 |
+
# bsz x height x length x dimension
|
| 740 |
+
attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1)
|
| 741 |
+
attention_probs = self.dropout(attention_probs)
|
| 742 |
+
context_layer = torch.bmm(
|
| 743 |
+
attention_probs.view(-1, attention_probs.size(-2), attention_probs.size(-1)), value_layer
|
| 744 |
+
)
|
| 745 |
+
context_layer = (
|
| 746 |
+
context_layer.view(-1, self.num_attention_heads, context_layer.size(-2), context_layer.size(-1))
|
| 747 |
+
.permute(0, 2, 1, 3)
|
| 748 |
+
.contiguous()
|
| 749 |
+
)
|
| 750 |
+
new_context_layer_shape = context_layer.size()[:-2] + (-1,)
|
| 751 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
| 752 |
+
if output_attentions:
|
| 753 |
+
return (context_layer, attention_probs)
|
| 754 |
+
else:
|
| 755 |
+
return context_layer
|
| 756 |
+
|
| 757 |
+
def disentangled_attention_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
|
| 758 |
+
if relative_pos is None:
|
| 759 |
+
q = query_layer.size(-2)
|
| 760 |
+
relative_pos = build_relative_position(
|
| 761 |
+
q,
|
| 762 |
+
key_layer.size(-2),
|
| 763 |
+
bucket_size=self.position_buckets,
|
| 764 |
+
max_position=self.max_relative_positions,
|
| 765 |
+
device=query_layer.device,
|
| 766 |
+
)
|
| 767 |
+
if relative_pos.dim() == 2:
|
| 768 |
+
relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
|
| 769 |
+
elif relative_pos.dim() == 3:
|
| 770 |
+
relative_pos = relative_pos.unsqueeze(1)
|
| 771 |
+
# bsz x height x query x key
|
| 772 |
+
elif relative_pos.dim() != 4:
|
| 773 |
+
raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}")
|
| 774 |
+
|
| 775 |
+
att_span = self.pos_ebd_size
|
| 776 |
+
relative_pos = relative_pos.long().to(query_layer.device)
|
| 777 |
+
|
| 778 |
+
rel_embeddings = rel_embeddings[0 : att_span * 2, :].unsqueeze(0)
|
| 779 |
+
if self.share_att_key:
|
| 780 |
+
pos_query_layer = self.transpose_for_scores(
|
| 781 |
+
self.query_proj(rel_embeddings), self.num_attention_heads
|
| 782 |
+
).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1)
|
| 783 |
+
pos_key_layer = self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads).repeat(
|
| 784 |
+
query_layer.size(0) // self.num_attention_heads, 1, 1
|
| 785 |
+
)
|
| 786 |
+
else:
|
| 787 |
+
if "c2p" in self.pos_att_type:
|
| 788 |
+
pos_key_layer = self.transpose_for_scores(
|
| 789 |
+
self.pos_key_proj(rel_embeddings), self.num_attention_heads
|
| 790 |
+
).repeat(
|
| 791 |
+
query_layer.size(0) // self.num_attention_heads, 1, 1
|
| 792 |
+
) # .split(self.all_head_size, dim=-1)
|
| 793 |
+
if "p2c" in self.pos_att_type:
|
| 794 |
+
pos_query_layer = self.transpose_for_scores(
|
| 795 |
+
self.pos_query_proj(rel_embeddings), self.num_attention_heads
|
| 796 |
+
).repeat(
|
| 797 |
+
query_layer.size(0) // self.num_attention_heads, 1, 1
|
| 798 |
+
) # .split(self.all_head_size, dim=-1)
|
| 799 |
+
|
| 800 |
+
score = 0
|
| 801 |
+
# content->position
|
| 802 |
+
if "c2p" in self.pos_att_type:
|
| 803 |
+
scale = torch.sqrt(torch.tensor(pos_key_layer.size(-1), dtype=torch.float) * scale_factor)
|
| 804 |
+
c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2))
|
| 805 |
+
c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
|
| 806 |
+
c2p_att = torch.gather(
|
| 807 |
+
c2p_att,
|
| 808 |
+
dim=-1,
|
| 809 |
+
index=c2p_pos.squeeze(0).expand([query_layer.size(0), query_layer.size(1), relative_pos.size(-1)]),
|
| 810 |
+
)
|
| 811 |
+
score += c2p_att / scale.to(dtype=c2p_att.dtype)
|
| 812 |
+
|
| 813 |
+
# position->content
|
| 814 |
+
if "p2c" in self.pos_att_type:
|
| 815 |
+
scale = torch.sqrt(torch.tensor(pos_query_layer.size(-1), dtype=torch.float) * scale_factor)
|
| 816 |
+
if key_layer.size(-2) != query_layer.size(-2):
|
| 817 |
+
r_pos = build_relative_position(
|
| 818 |
+
key_layer.size(-2),
|
| 819 |
+
key_layer.size(-2),
|
| 820 |
+
bucket_size=self.position_buckets,
|
| 821 |
+
max_position=self.max_relative_positions,
|
| 822 |
+
device=query_layer.device,
|
| 823 |
+
)
|
| 824 |
+
r_pos = r_pos.unsqueeze(0)
|
| 825 |
+
else:
|
| 826 |
+
r_pos = relative_pos
|
| 827 |
+
|
| 828 |
+
p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
|
| 829 |
+
p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2))
|
| 830 |
+
p2c_att = torch.gather(
|
| 831 |
+
p2c_att,
|
| 832 |
+
dim=-1,
|
| 833 |
+
index=p2c_pos.squeeze(0).expand([query_layer.size(0), key_layer.size(-2), key_layer.size(-2)]),
|
| 834 |
+
).transpose(-1, -2)
|
| 835 |
+
score += p2c_att / scale.to(dtype=p2c_att.dtype)
|
| 836 |
+
|
| 837 |
+
return score
|
| 838 |
+
|
| 839 |
+
|
| 840 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaEmbeddings with DebertaLayerNorm->LayerNorm
|
| 841 |
+
class DebertaV2Embeddings(nn.Module):
|
| 842 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
| 843 |
+
|
| 844 |
+
def __init__(self, config):
|
| 845 |
+
super().__init__()
|
| 846 |
+
pad_token_id = getattr(config, "pad_token_id", 0)
|
| 847 |
+
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
|
| 848 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id)
|
| 849 |
+
|
| 850 |
+
self.position_biased_input = getattr(config, "position_biased_input", True)
|
| 851 |
+
if not self.position_biased_input:
|
| 852 |
+
self.position_embeddings = None
|
| 853 |
+
else:
|
| 854 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size)
|
| 855 |
+
|
| 856 |
+
if config.type_vocab_size > 0:
|
| 857 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size)
|
| 858 |
+
|
| 859 |
+
if self.embedding_size != config.hidden_size:
|
| 860 |
+
self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False)
|
| 861 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
| 862 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
| 863 |
+
self.config = config
|
| 864 |
+
|
| 865 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
| 866 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
| 867 |
+
|
| 868 |
+
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None):
|
| 869 |
+
if input_ids is not None:
|
| 870 |
+
input_shape = input_ids.size()
|
| 871 |
+
else:
|
| 872 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 873 |
+
|
| 874 |
+
seq_length = input_shape[1]
|
| 875 |
+
|
| 876 |
+
if position_ids is None:
|
| 877 |
+
position_ids = self.position_ids[:, :seq_length]
|
| 878 |
+
|
| 879 |
+
if token_type_ids is None:
|
| 880 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
| 881 |
+
|
| 882 |
+
if inputs_embeds is None:
|
| 883 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
| 884 |
+
|
| 885 |
+
if self.position_embeddings is not None:
|
| 886 |
+
position_embeddings = self.position_embeddings(position_ids.long())
|
| 887 |
+
else:
|
| 888 |
+
position_embeddings = torch.zeros_like(inputs_embeds)
|
| 889 |
+
|
| 890 |
+
embeddings = inputs_embeds
|
| 891 |
+
if self.position_biased_input:
|
| 892 |
+
embeddings += position_embeddings
|
| 893 |
+
if self.config.type_vocab_size > 0:
|
| 894 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
| 895 |
+
embeddings += token_type_embeddings
|
| 896 |
+
|
| 897 |
+
if self.embedding_size != self.config.hidden_size:
|
| 898 |
+
embeddings = self.embed_proj(embeddings)
|
| 899 |
+
|
| 900 |
+
embeddings = self.LayerNorm(embeddings)
|
| 901 |
+
|
| 902 |
+
if mask is not None:
|
| 903 |
+
if mask.dim() != embeddings.dim():
|
| 904 |
+
if mask.dim() == 4:
|
| 905 |
+
mask = mask.squeeze(1).squeeze(1)
|
| 906 |
+
mask = mask.unsqueeze(2)
|
| 907 |
+
mask = mask.to(embeddings.dtype)
|
| 908 |
+
|
| 909 |
+
embeddings = embeddings * mask
|
| 910 |
+
|
| 911 |
+
embeddings = self.dropout(embeddings)
|
| 912 |
+
return embeddings
|
| 913 |
+
|
| 914 |
+
|
| 915 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaPreTrainedModel with Deberta->DebertaV2
|
| 916 |
+
class DebertaV2PreTrainedModel(PreTrainedModel):
|
| 917 |
+
"""
|
| 918 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 919 |
+
models.
|
| 920 |
+
"""
|
| 921 |
+
|
| 922 |
+
config_class = DebertaV2Config
|
| 923 |
+
base_model_prefix = "deberta"
|
| 924 |
+
_keys_to_ignore_on_load_missing = ["position_ids"]
|
| 925 |
+
_keys_to_ignore_on_load_unexpected = ["position_embeddings"]
|
| 926 |
+
supports_gradient_checkpointing = True
|
| 927 |
+
|
| 928 |
+
def _init_weights(self, module):
|
| 929 |
+
"""Initialize the weights."""
|
| 930 |
+
if isinstance(module, nn.Linear):
|
| 931 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 932 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 933 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 934 |
+
if module.bias is not None:
|
| 935 |
+
module.bias.data.zero_()
|
| 936 |
+
elif isinstance(module, nn.Embedding):
|
| 937 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 938 |
+
if module.padding_idx is not None:
|
| 939 |
+
module.weight.data[module.padding_idx].zero_()
|
| 940 |
+
|
| 941 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 942 |
+
if isinstance(module, DebertaV2Encoder):
|
| 943 |
+
module.gradient_checkpointing = value
|
| 944 |
+
|
| 945 |
+
|
| 946 |
+
DEBERTA_START_DOCSTRING = r"""
|
| 947 |
+
The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled
|
| 948 |
+
Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build
|
| 949 |
+
on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two
|
| 950 |
+
improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data.
|
| 951 |
+
|
| 952 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 953 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 954 |
+
and behavior.
|
| 955 |
+
|
| 956 |
+
|
| 957 |
+
Parameters:
|
| 958 |
+
config ([`DebertaV2Config`]): Model configuration class with all the parameters of the model.
|
| 959 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
| 960 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 961 |
+
"""
|
| 962 |
+
|
| 963 |
+
DEBERTA_INPUTS_DOCSTRING = r"""
|
| 964 |
+
Args:
|
| 965 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
| 966 |
+
Indices of input sequence tokens in the vocabulary.
|
| 967 |
+
|
| 968 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 969 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 970 |
+
|
| 971 |
+
[What are input IDs?](../glossary#input-ids)
|
| 972 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
| 973 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 974 |
+
|
| 975 |
+
- 1 for tokens that are **not masked**,
|
| 976 |
+
- 0 for tokens that are **masked**.
|
| 977 |
+
|
| 978 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 979 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 980 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
| 981 |
+
1]`:
|
| 982 |
+
|
| 983 |
+
- 0 corresponds to a *sentence A* token,
|
| 984 |
+
- 1 corresponds to a *sentence B* token.
|
| 985 |
+
|
| 986 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
| 987 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 988 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 989 |
+
config.max_position_embeddings - 1]`.
|
| 990 |
+
|
| 991 |
+
[What are position IDs?](../glossary#position-ids)
|
| 992 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
| 993 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 994 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
| 995 |
+
model's internal embedding lookup matrix.
|
| 996 |
+
output_attentions (`bool`, *optional*):
|
| 997 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 998 |
+
tensors for more detail.
|
| 999 |
+
output_hidden_states (`bool`, *optional*):
|
| 1000 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 1001 |
+
more detail.
|
| 1002 |
+
return_dict (`bool`, *optional*):
|
| 1003 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1004 |
+
"""
|
| 1005 |
+
|
| 1006 |
+
|
| 1007 |
+
@add_start_docstrings(
|
| 1008 |
+
"The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.",
|
| 1009 |
+
DEBERTA_START_DOCSTRING,
|
| 1010 |
+
)
|
| 1011 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaModel with Deberta->DebertaV2
|
| 1012 |
+
class DebertaV2Model(DebertaV2PreTrainedModel):
|
| 1013 |
+
def __init__(self, config):
|
| 1014 |
+
super().__init__(config)
|
| 1015 |
+
|
| 1016 |
+
self.embeddings = DebertaV2Embeddings(config)
|
| 1017 |
+
self.encoder = DebertaV2Encoder(config)
|
| 1018 |
+
self.z_steps = 0
|
| 1019 |
+
self.config = config
|
| 1020 |
+
# Initialize weights and apply final processing
|
| 1021 |
+
self.post_init()
|
| 1022 |
+
|
| 1023 |
+
def get_input_embeddings(self):
|
| 1024 |
+
return self.embeddings.word_embeddings
|
| 1025 |
+
|
| 1026 |
+
def set_input_embeddings(self, new_embeddings):
|
| 1027 |
+
self.embeddings.word_embeddings = new_embeddings
|
| 1028 |
+
|
| 1029 |
+
def _prune_heads(self, heads_to_prune):
|
| 1030 |
+
"""
|
| 1031 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
| 1032 |
+
class PreTrainedModel
|
| 1033 |
+
"""
|
| 1034 |
+
raise NotImplementedError("The prune function is not implemented in DeBERTa model.")
|
| 1035 |
+
|
| 1036 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1037 |
+
@add_code_sample_docstrings(
|
| 1038 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1039 |
+
output_type=BaseModelOutput,
|
| 1040 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1041 |
+
)
|
| 1042 |
+
def forward(
|
| 1043 |
+
self,
|
| 1044 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1045 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1046 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1047 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1048 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1049 |
+
output_attentions: Optional[bool] = None,
|
| 1050 |
+
output_hidden_states: Optional[bool] = None,
|
| 1051 |
+
return_dict: Optional[bool] = None,
|
| 1052 |
+
) -> Union[Tuple, BaseModelOutput]:
|
| 1053 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1054 |
+
output_hidden_states = (
|
| 1055 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1056 |
+
)
|
| 1057 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1058 |
+
|
| 1059 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 1060 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 1061 |
+
elif input_ids is not None:
|
| 1062 |
+
input_shape = input_ids.size()
|
| 1063 |
+
elif inputs_embeds is not None:
|
| 1064 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 1065 |
+
else:
|
| 1066 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 1067 |
+
|
| 1068 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 1069 |
+
|
| 1070 |
+
if attention_mask is None:
|
| 1071 |
+
attention_mask = torch.ones(input_shape, device=device)
|
| 1072 |
+
if token_type_ids is None:
|
| 1073 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
| 1074 |
+
|
| 1075 |
+
embedding_output = self.embeddings(
|
| 1076 |
+
input_ids=input_ids,
|
| 1077 |
+
token_type_ids=token_type_ids,
|
| 1078 |
+
position_ids=position_ids,
|
| 1079 |
+
mask=attention_mask,
|
| 1080 |
+
inputs_embeds=inputs_embeds,
|
| 1081 |
+
)
|
| 1082 |
+
|
| 1083 |
+
encoder_outputs = self.encoder(
|
| 1084 |
+
embedding_output,
|
| 1085 |
+
attention_mask,
|
| 1086 |
+
output_hidden_states=True,
|
| 1087 |
+
output_attentions=output_attentions,
|
| 1088 |
+
return_dict=return_dict,
|
| 1089 |
+
)
|
| 1090 |
+
encoded_layers = encoder_outputs[1]
|
| 1091 |
+
|
| 1092 |
+
if self.z_steps > 1:
|
| 1093 |
+
hidden_states = encoded_layers[-2]
|
| 1094 |
+
layers = [self.encoder.layer[-1] for _ in range(self.z_steps)]
|
| 1095 |
+
query_states = encoded_layers[-1]
|
| 1096 |
+
rel_embeddings = self.encoder.get_rel_embedding()
|
| 1097 |
+
attention_mask = self.encoder.get_attention_mask(attention_mask)
|
| 1098 |
+
rel_pos = self.encoder.get_rel_pos(embedding_output)
|
| 1099 |
+
for layer in layers[1:]:
|
| 1100 |
+
query_states = layer(
|
| 1101 |
+
hidden_states,
|
| 1102 |
+
attention_mask,
|
| 1103 |
+
output_attentions=False,
|
| 1104 |
+
query_states=query_states,
|
| 1105 |
+
relative_pos=rel_pos,
|
| 1106 |
+
rel_embeddings=rel_embeddings,
|
| 1107 |
+
)
|
| 1108 |
+
encoded_layers.append(query_states)
|
| 1109 |
+
|
| 1110 |
+
sequence_output = encoded_layers[-1]
|
| 1111 |
+
|
| 1112 |
+
if not return_dict:
|
| 1113 |
+
return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2) :]
|
| 1114 |
+
|
| 1115 |
+
return BaseModelOutput(
|
| 1116 |
+
last_hidden_state=sequence_output,
|
| 1117 |
+
hidden_states=encoder_outputs.hidden_states if output_hidden_states else None,
|
| 1118 |
+
attentions=encoder_outputs.attentions,
|
| 1119 |
+
)
|
| 1120 |
+
|
| 1121 |
+
|
| 1122 |
+
@add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING)
|
| 1123 |
+
class DebertaV2ForMaskedLM(DebertaV2PreTrainedModel):
|
| 1124 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
| 1125 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
| 1126 |
+
|
| 1127 |
+
def __init__(self, config):
|
| 1128 |
+
super().__init__(config)
|
| 1129 |
+
|
| 1130 |
+
self.deberta = DebertaV2Model(config)
|
| 1131 |
+
self.cls = DebertaV2OnlyMLMHead(config)
|
| 1132 |
+
|
| 1133 |
+
# Initialize weights and apply final processing
|
| 1134 |
+
self.post_init()
|
| 1135 |
+
|
| 1136 |
+
def get_output_embeddings(self):
|
| 1137 |
+
return self.cls.predictions.decoder
|
| 1138 |
+
|
| 1139 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1140 |
+
self.cls.predictions.decoder = new_embeddings
|
| 1141 |
+
|
| 1142 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1143 |
+
@add_code_sample_docstrings(
|
| 1144 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1145 |
+
output_type=MaskedLMOutput,
|
| 1146 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1147 |
+
mask="[MASK]",
|
| 1148 |
+
)
|
| 1149 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaForMaskedLM.forward with Deberta->DebertaV2
|
| 1150 |
+
def forward(
|
| 1151 |
+
self,
|
| 1152 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1153 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1154 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1155 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1156 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1157 |
+
labels: Optional[torch.Tensor] = None,
|
| 1158 |
+
output_attentions: Optional[bool] = None,
|
| 1159 |
+
output_hidden_states: Optional[bool] = None,
|
| 1160 |
+
return_dict: Optional[bool] = None,
|
| 1161 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
| 1162 |
+
r"""
|
| 1163 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1164 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
| 1165 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
| 1166 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
| 1167 |
+
"""
|
| 1168 |
+
|
| 1169 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1170 |
+
|
| 1171 |
+
outputs = self.deberta(
|
| 1172 |
+
input_ids,
|
| 1173 |
+
attention_mask=attention_mask,
|
| 1174 |
+
token_type_ids=token_type_ids,
|
| 1175 |
+
position_ids=position_ids,
|
| 1176 |
+
inputs_embeds=inputs_embeds,
|
| 1177 |
+
output_attentions=output_attentions,
|
| 1178 |
+
output_hidden_states=output_hidden_states,
|
| 1179 |
+
return_dict=return_dict,
|
| 1180 |
+
)
|
| 1181 |
+
|
| 1182 |
+
sequence_output = outputs[0]
|
| 1183 |
+
prediction_scores = self.cls(sequence_output)
|
| 1184 |
+
|
| 1185 |
+
masked_lm_loss = None
|
| 1186 |
+
if labels is not None:
|
| 1187 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
| 1188 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
| 1189 |
+
|
| 1190 |
+
if not return_dict:
|
| 1191 |
+
output = (prediction_scores,) + outputs[1:]
|
| 1192 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
| 1193 |
+
|
| 1194 |
+
return MaskedLMOutput(
|
| 1195 |
+
loss=masked_lm_loss,
|
| 1196 |
+
logits=prediction_scores,
|
| 1197 |
+
hidden_states=outputs.hidden_states,
|
| 1198 |
+
attentions=outputs.attentions,
|
| 1199 |
+
)
|
| 1200 |
+
|
| 1201 |
+
|
| 1202 |
+
# copied from transformers.models.bert.BertPredictionHeadTransform with bert -> deberta
|
| 1203 |
+
class DebertaV2PredictionHeadTransform(nn.Module):
|
| 1204 |
+
def __init__(self, config):
|
| 1205 |
+
super().__init__()
|
| 1206 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 1207 |
+
if isinstance(config.hidden_act, str):
|
| 1208 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
| 1209 |
+
else:
|
| 1210 |
+
self.transform_act_fn = config.hidden_act
|
| 1211 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 1212 |
+
|
| 1213 |
+
def forward(self, hidden_states):
|
| 1214 |
+
hidden_states = self.dense(hidden_states)
|
| 1215 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
| 1216 |
+
hidden_states = self.LayerNorm(hidden_states)
|
| 1217 |
+
return hidden_states
|
| 1218 |
+
|
| 1219 |
+
|
| 1220 |
+
# copied from transformers.models.bert.BertLMPredictionHead with bert -> deberta
|
| 1221 |
+
class DebertaV2LMPredictionHead(nn.Module):
|
| 1222 |
+
def __init__(self, config):
|
| 1223 |
+
super().__init__()
|
| 1224 |
+
self.transform = DebertaV2PredictionHeadTransform(config)
|
| 1225 |
+
|
| 1226 |
+
# The output weights are the same as the input embeddings, but there is
|
| 1227 |
+
# an output-only bias for each token.
|
| 1228 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1229 |
+
|
| 1230 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
| 1231 |
+
|
| 1232 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
| 1233 |
+
self.decoder.bias = self.bias
|
| 1234 |
+
|
| 1235 |
+
def forward(self, hidden_states):
|
| 1236 |
+
hidden_states = self.transform(hidden_states)
|
| 1237 |
+
hidden_states = self.decoder(hidden_states)
|
| 1238 |
+
return hidden_states
|
| 1239 |
+
|
| 1240 |
+
|
| 1241 |
+
# copied from transformers.models.bert.BertOnlyMLMHead with bert -> deberta
|
| 1242 |
+
class DebertaV2OnlyMLMHead(nn.Module):
|
| 1243 |
+
def __init__(self, config):
|
| 1244 |
+
super().__init__()
|
| 1245 |
+
self.predictions = DebertaV2LMPredictionHead(config)
|
| 1246 |
+
|
| 1247 |
+
def forward(self, sequence_output):
|
| 1248 |
+
prediction_scores = self.predictions(sequence_output)
|
| 1249 |
+
return prediction_scores
|
| 1250 |
+
|
| 1251 |
+
|
| 1252 |
+
@add_start_docstrings(
|
| 1253 |
+
"""
|
| 1254 |
+
DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
| 1255 |
+
pooled output) e.g. for GLUE tasks.
|
| 1256 |
+
""",
|
| 1257 |
+
DEBERTA_START_DOCSTRING,
|
| 1258 |
+
)
|
| 1259 |
+
class DebertaV2ForSequenceClassification(DebertaV2PreTrainedModel):
|
| 1260 |
+
def __init__(self, config):
|
| 1261 |
+
super().__init__(config)
|
| 1262 |
+
|
| 1263 |
+
num_labels = getattr(config, "num_labels", 2)
|
| 1264 |
+
self.num_labels = num_labels
|
| 1265 |
+
|
| 1266 |
+
self.deberta = DebertaV2Model(config)
|
| 1267 |
+
self.pooler = ContextPooler(config)
|
| 1268 |
+
output_dim = self.pooler.output_dim
|
| 1269 |
+
|
| 1270 |
+
self.classifier = nn.Linear(output_dim, num_labels)
|
| 1271 |
+
drop_out = getattr(config, "cls_dropout", None)
|
| 1272 |
+
drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
|
| 1273 |
+
self.dropout = StableDropout(drop_out)
|
| 1274 |
+
|
| 1275 |
+
# Initialize weights and apply final processing
|
| 1276 |
+
self.post_init()
|
| 1277 |
+
|
| 1278 |
+
def get_input_embeddings(self):
|
| 1279 |
+
return self.deberta.get_input_embeddings()
|
| 1280 |
+
|
| 1281 |
+
def set_input_embeddings(self, new_embeddings):
|
| 1282 |
+
self.deberta.set_input_embeddings(new_embeddings)
|
| 1283 |
+
|
| 1284 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1285 |
+
@add_code_sample_docstrings(
|
| 1286 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1287 |
+
output_type=SequenceClassifierOutput,
|
| 1288 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1289 |
+
)
|
| 1290 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaForSequenceClassification.forward with Deberta->DebertaV2
|
| 1291 |
+
def forward(
|
| 1292 |
+
self,
|
| 1293 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1294 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1295 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1296 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1297 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1298 |
+
labels: Optional[torch.Tensor] = None,
|
| 1299 |
+
output_attentions: Optional[bool] = None,
|
| 1300 |
+
output_hidden_states: Optional[bool] = None,
|
| 1301 |
+
return_dict: Optional[bool] = None,
|
| 1302 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
| 1303 |
+
r"""
|
| 1304 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1305 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1306 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1307 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1308 |
+
"""
|
| 1309 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1310 |
+
|
| 1311 |
+
outputs = self.deberta(
|
| 1312 |
+
input_ids,
|
| 1313 |
+
token_type_ids=token_type_ids,
|
| 1314 |
+
attention_mask=attention_mask,
|
| 1315 |
+
position_ids=position_ids,
|
| 1316 |
+
inputs_embeds=inputs_embeds,
|
| 1317 |
+
output_attentions=output_attentions,
|
| 1318 |
+
output_hidden_states=output_hidden_states,
|
| 1319 |
+
return_dict=return_dict,
|
| 1320 |
+
)
|
| 1321 |
+
|
| 1322 |
+
encoder_layer = outputs[0]
|
| 1323 |
+
pooled_output = self.pooler(encoder_layer)
|
| 1324 |
+
pooled_output = self.dropout(pooled_output)
|
| 1325 |
+
logits = self.classifier(pooled_output)
|
| 1326 |
+
|
| 1327 |
+
loss = None
|
| 1328 |
+
if labels is not None:
|
| 1329 |
+
if self.config.problem_type is None:
|
| 1330 |
+
if self.num_labels == 1:
|
| 1331 |
+
# regression task
|
| 1332 |
+
loss_fn = nn.MSELoss()
|
| 1333 |
+
logits = logits.view(-1).to(labels.dtype)
|
| 1334 |
+
loss = loss_fn(logits, labels.view(-1))
|
| 1335 |
+
elif labels.dim() == 1 or labels.size(-1) == 1:
|
| 1336 |
+
label_index = (labels >= 0).nonzero()
|
| 1337 |
+
labels = labels.long()
|
| 1338 |
+
if label_index.size(0) > 0:
|
| 1339 |
+
labeled_logits = torch.gather(
|
| 1340 |
+
logits, 0, label_index.expand(label_index.size(0), logits.size(1))
|
| 1341 |
+
)
|
| 1342 |
+
labels = torch.gather(labels, 0, label_index.view(-1))
|
| 1343 |
+
loss_fct = CrossEntropyLoss()
|
| 1344 |
+
loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
|
| 1345 |
+
else:
|
| 1346 |
+
loss = torch.tensor(0).to(logits)
|
| 1347 |
+
else:
|
| 1348 |
+
log_softmax = nn.LogSoftmax(-1)
|
| 1349 |
+
loss = -((log_softmax(logits) * labels).sum(-1)).mean()
|
| 1350 |
+
elif self.config.problem_type == "regression":
|
| 1351 |
+
loss_fct = MSELoss()
|
| 1352 |
+
if self.num_labels == 1:
|
| 1353 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 1354 |
+
else:
|
| 1355 |
+
loss = loss_fct(logits, labels)
|
| 1356 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1357 |
+
loss_fct = CrossEntropyLoss()
|
| 1358 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1359 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1360 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1361 |
+
loss = loss_fct(logits, labels)
|
| 1362 |
+
if not return_dict:
|
| 1363 |
+
output = (logits,) + outputs[1:]
|
| 1364 |
+
return ((loss,) + output) if loss is not None else output
|
| 1365 |
+
|
| 1366 |
+
return SequenceClassifierOutput(
|
| 1367 |
+
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
| 1368 |
+
)
|
| 1369 |
+
|
| 1370 |
+
|
| 1371 |
+
@add_start_docstrings(
|
| 1372 |
+
"""
|
| 1373 |
+
DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
| 1374 |
+
Named-Entity-Recognition (NER) tasks.
|
| 1375 |
+
""",
|
| 1376 |
+
DEBERTA_START_DOCSTRING,
|
| 1377 |
+
)
|
| 1378 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaForTokenClassification with Deberta->DebertaV2
|
| 1379 |
+
class DebertaV2ForTokenClassification(DebertaV2PreTrainedModel):
|
| 1380 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
| 1381 |
+
|
| 1382 |
+
def __init__(self, config):
|
| 1383 |
+
super().__init__(config)
|
| 1384 |
+
self.num_labels = config.num_labels
|
| 1385 |
+
|
| 1386 |
+
self.deberta = DebertaV2Model(config)
|
| 1387 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 1388 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1389 |
+
|
| 1390 |
+
# Initialize weights and apply final processing
|
| 1391 |
+
self.post_init()
|
| 1392 |
+
|
| 1393 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1394 |
+
@add_code_sample_docstrings(
|
| 1395 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1396 |
+
output_type=TokenClassifierOutput,
|
| 1397 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1398 |
+
)
|
| 1399 |
+
def forward(
|
| 1400 |
+
self,
|
| 1401 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1402 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1403 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1404 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1405 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1406 |
+
labels: Optional[torch.Tensor] = None,
|
| 1407 |
+
output_attentions: Optional[bool] = None,
|
| 1408 |
+
output_hidden_states: Optional[bool] = None,
|
| 1409 |
+
return_dict: Optional[bool] = None,
|
| 1410 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
| 1411 |
+
r"""
|
| 1412 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1413 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
| 1414 |
+
"""
|
| 1415 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1416 |
+
|
| 1417 |
+
outputs = self.deberta(
|
| 1418 |
+
input_ids,
|
| 1419 |
+
attention_mask=attention_mask,
|
| 1420 |
+
token_type_ids=token_type_ids,
|
| 1421 |
+
position_ids=position_ids,
|
| 1422 |
+
inputs_embeds=inputs_embeds,
|
| 1423 |
+
output_attentions=output_attentions,
|
| 1424 |
+
output_hidden_states=output_hidden_states,
|
| 1425 |
+
return_dict=return_dict,
|
| 1426 |
+
)
|
| 1427 |
+
|
| 1428 |
+
sequence_output = outputs[0]
|
| 1429 |
+
|
| 1430 |
+
sequence_output = self.dropout(sequence_output)
|
| 1431 |
+
logits = self.classifier(sequence_output)
|
| 1432 |
+
|
| 1433 |
+
loss = None
|
| 1434 |
+
if labels is not None:
|
| 1435 |
+
loss_fct = CrossEntropyLoss()
|
| 1436 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1437 |
+
|
| 1438 |
+
if not return_dict:
|
| 1439 |
+
output = (logits,) + outputs[1:]
|
| 1440 |
+
return ((loss,) + output) if loss is not None else output
|
| 1441 |
+
|
| 1442 |
+
return TokenClassifierOutput(
|
| 1443 |
+
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
| 1444 |
+
)
|
| 1445 |
+
|
| 1446 |
+
class TokenClassifierRegressionOutput(ModelOutput):
|
| 1447 |
+
"""
|
| 1448 |
+
Base class for outputs of token classification models.
|
| 1449 |
+
|
| 1450 |
+
Args:
|
| 1451 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) :
|
| 1452 |
+
Classification loss.
|
| 1453 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
|
| 1454 |
+
Classification scores (before SoftMax).
|
| 1455 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 1456 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 1457 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 1458 |
+
|
| 1459 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 1460 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 1461 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 1462 |
+
sequence_length)`.
|
| 1463 |
+
|
| 1464 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 1465 |
+
heads.
|
| 1466 |
+
"""
|
| 1467 |
+
|
| 1468 |
+
loss: Optional[torch.FloatTensor] = None
|
| 1469 |
+
logits: torch.FloatTensor = None
|
| 1470 |
+
values: torch.FloatTensor = None
|
| 1471 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 1472 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 1473 |
+
|
| 1474 |
+
class DebertaV2ForTokenClassificationRegression(DebertaV2PreTrainedModel):
|
| 1475 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
| 1476 |
+
|
| 1477 |
+
def __init__(self, config):
|
| 1478 |
+
super().__init__(config)
|
| 1479 |
+
self.num_labels = 4
|
| 1480 |
+
|
| 1481 |
+
self.deberta = DebertaV2Model(config)
|
| 1482 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 1483 |
+
|
| 1484 |
+
self.hidden1 = nn.Linear(config.hidden_size, config.hidden_size)
|
| 1485 |
+
self.classifier = nn.Linear(config.hidden_size, self.num_labels)
|
| 1486 |
+
|
| 1487 |
+
self.hidden2 = nn.Linear(config.hidden_size, config.hidden_size)
|
| 1488 |
+
self.regressor = nn.Linear(config.hidden_size, 1)
|
| 1489 |
+
|
| 1490 |
+
# Initialize weights and apply final processing
|
| 1491 |
+
self.post_init()
|
| 1492 |
+
|
| 1493 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1494 |
+
@add_code_sample_docstrings(
|
| 1495 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1496 |
+
output_type=TokenClassifierOutput,
|
| 1497 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1498 |
+
)
|
| 1499 |
+
def forward(
|
| 1500 |
+
self,
|
| 1501 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1502 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1503 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1504 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1505 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1506 |
+
labels: Optional[torch.Tensor] = None,
|
| 1507 |
+
output_attentions: Optional[bool] = None,
|
| 1508 |
+
output_hidden_states: Optional[bool] = None,
|
| 1509 |
+
return_dict: Optional[bool] = None,
|
| 1510 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
| 1511 |
+
r"""
|
| 1512 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1513 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
| 1514 |
+
"""
|
| 1515 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1516 |
+
|
| 1517 |
+
outputs = self.deberta(
|
| 1518 |
+
input_ids,
|
| 1519 |
+
attention_mask=attention_mask,
|
| 1520 |
+
token_type_ids=token_type_ids,
|
| 1521 |
+
position_ids=position_ids,
|
| 1522 |
+
inputs_embeds=inputs_embeds,
|
| 1523 |
+
output_attentions=output_attentions,
|
| 1524 |
+
output_hidden_states=output_hidden_states,
|
| 1525 |
+
return_dict=return_dict,
|
| 1526 |
+
)
|
| 1527 |
+
|
| 1528 |
+
sequence_output = outputs[0]
|
| 1529 |
+
|
| 1530 |
+
sequence_output = self.dropout(sequence_output)
|
| 1531 |
+
|
| 1532 |
+
logits = self.classifier(self.hidden1(sequence_output))
|
| 1533 |
+
values = self.regressor(self.hidden2(sequence_output))
|
| 1534 |
+
|
| 1535 |
+
loss = None
|
| 1536 |
+
if labels is not None:
|
| 1537 |
+
loss_fct = CrossEntropyLoss()
|
| 1538 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1539 |
+
|
| 1540 |
+
if not return_dict:
|
| 1541 |
+
output = (logits,) + outputs[1:]
|
| 1542 |
+
return ((loss,) + output) if loss is not None else output
|
| 1543 |
+
|
| 1544 |
+
return TokenClassifierRegressionOutput(
|
| 1545 |
+
loss=loss, logits=logits, values=values, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
| 1546 |
+
)
|
| 1547 |
+
|
| 1548 |
+
|
| 1549 |
+
@add_start_docstrings(
|
| 1550 |
+
"""
|
| 1551 |
+
DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
| 1552 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
| 1553 |
+
""",
|
| 1554 |
+
DEBERTA_START_DOCSTRING,
|
| 1555 |
+
)
|
| 1556 |
+
class DebertaV2ForQuestionAnswering(DebertaV2PreTrainedModel):
|
| 1557 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
| 1558 |
+
|
| 1559 |
+
def __init__(self, config):
|
| 1560 |
+
super().__init__(config)
|
| 1561 |
+
self.num_labels = config.num_labels
|
| 1562 |
+
|
| 1563 |
+
self.deberta = DebertaV2Model(config)
|
| 1564 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
| 1565 |
+
|
| 1566 |
+
# Initialize weights and apply final processing
|
| 1567 |
+
self.post_init()
|
| 1568 |
+
|
| 1569 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1570 |
+
@add_code_sample_docstrings(
|
| 1571 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1572 |
+
output_type=QuestionAnsweringModelOutput,
|
| 1573 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1574 |
+
qa_target_start_index=_QA_TARGET_START_INDEX,
|
| 1575 |
+
qa_target_end_index=_QA_TARGET_END_INDEX,
|
| 1576 |
+
)
|
| 1577 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaForQuestionAnswering.forward with Deberta->DebertaV2
|
| 1578 |
+
def forward(
|
| 1579 |
+
self,
|
| 1580 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1581 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1582 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1583 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1584 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1585 |
+
start_positions: Optional[torch.Tensor] = None,
|
| 1586 |
+
end_positions: Optional[torch.Tensor] = None,
|
| 1587 |
+
output_attentions: Optional[bool] = None,
|
| 1588 |
+
output_hidden_states: Optional[bool] = None,
|
| 1589 |
+
return_dict: Optional[bool] = None,
|
| 1590 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
| 1591 |
+
r"""
|
| 1592 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1593 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
| 1594 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 1595 |
+
are not taken into account for computing the loss.
|
| 1596 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1597 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
| 1598 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 1599 |
+
are not taken into account for computing the loss.
|
| 1600 |
+
"""
|
| 1601 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1602 |
+
|
| 1603 |
+
outputs = self.deberta(
|
| 1604 |
+
input_ids,
|
| 1605 |
+
attention_mask=attention_mask,
|
| 1606 |
+
token_type_ids=token_type_ids,
|
| 1607 |
+
position_ids=position_ids,
|
| 1608 |
+
inputs_embeds=inputs_embeds,
|
| 1609 |
+
output_attentions=output_attentions,
|
| 1610 |
+
output_hidden_states=output_hidden_states,
|
| 1611 |
+
return_dict=return_dict,
|
| 1612 |
+
)
|
| 1613 |
+
|
| 1614 |
+
sequence_output = outputs[0]
|
| 1615 |
+
|
| 1616 |
+
logits = self.qa_outputs(sequence_output)
|
| 1617 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
| 1618 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
| 1619 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
| 1620 |
+
|
| 1621 |
+
total_loss = None
|
| 1622 |
+
if start_positions is not None and end_positions is not None:
|
| 1623 |
+
# If we are on multi-GPU, split add a dimension
|
| 1624 |
+
if len(start_positions.size()) > 1:
|
| 1625 |
+
start_positions = start_positions.squeeze(-1)
|
| 1626 |
+
if len(end_positions.size()) > 1:
|
| 1627 |
+
end_positions = end_positions.squeeze(-1)
|
| 1628 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
| 1629 |
+
ignored_index = start_logits.size(1)
|
| 1630 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
| 1631 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
| 1632 |
+
|
| 1633 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
| 1634 |
+
start_loss = loss_fct(start_logits, start_positions)
|
| 1635 |
+
end_loss = loss_fct(end_logits, end_positions)
|
| 1636 |
+
total_loss = (start_loss + end_loss) / 2
|
| 1637 |
+
|
| 1638 |
+
if not return_dict:
|
| 1639 |
+
output = (start_logits, end_logits) + outputs[1:]
|
| 1640 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
| 1641 |
+
|
| 1642 |
+
return QuestionAnsweringModelOutput(
|
| 1643 |
+
loss=total_loss,
|
| 1644 |
+
start_logits=start_logits,
|
| 1645 |
+
end_logits=end_logits,
|
| 1646 |
+
hidden_states=outputs.hidden_states,
|
| 1647 |
+
attentions=outputs.attentions,
|
| 1648 |
+
)
|
| 1649 |
+
|
| 1650 |
+
|
| 1651 |
+
@add_start_docstrings(
|
| 1652 |
+
"""
|
| 1653 |
+
DeBERTa Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
| 1654 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
| 1655 |
+
""",
|
| 1656 |
+
DEBERTA_START_DOCSTRING,
|
| 1657 |
+
)
|
| 1658 |
+
class DebertaV2ForMultipleChoice(DebertaV2PreTrainedModel):
|
| 1659 |
+
def __init__(self, config):
|
| 1660 |
+
super().__init__(config)
|
| 1661 |
+
|
| 1662 |
+
num_labels = getattr(config, "num_labels", 2)
|
| 1663 |
+
self.num_labels = num_labels
|
| 1664 |
+
|
| 1665 |
+
self.deberta = DebertaV2Model(config)
|
| 1666 |
+
self.pooler = ContextPooler(config)
|
| 1667 |
+
output_dim = self.pooler.output_dim
|
| 1668 |
+
|
| 1669 |
+
self.classifier = nn.Linear(output_dim, 1)
|
| 1670 |
+
drop_out = getattr(config, "cls_dropout", None)
|
| 1671 |
+
drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
|
| 1672 |
+
self.dropout = StableDropout(drop_out)
|
| 1673 |
+
|
| 1674 |
+
self.init_weights()
|
| 1675 |
+
|
| 1676 |
+
def get_input_embeddings(self):
|
| 1677 |
+
return self.deberta.get_input_embeddings()
|
| 1678 |
+
|
| 1679 |
+
def set_input_embeddings(self, new_embeddings):
|
| 1680 |
+
self.deberta.set_input_embeddings(new_embeddings)
|
| 1681 |
+
|
| 1682 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1683 |
+
@add_code_sample_docstrings(
|
| 1684 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1685 |
+
output_type=MultipleChoiceModelOutput,
|
| 1686 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1687 |
+
)
|
| 1688 |
+
def forward(
|
| 1689 |
+
self,
|
| 1690 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1691 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1692 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1693 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1694 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1695 |
+
labels: Optional[torch.Tensor] = None,
|
| 1696 |
+
output_attentions: Optional[bool] = None,
|
| 1697 |
+
output_hidden_states: Optional[bool] = None,
|
| 1698 |
+
return_dict: Optional[bool] = None,
|
| 1699 |
+
) -> Union[Tuple, MultipleChoiceModelOutput]:
|
| 1700 |
+
r"""
|
| 1701 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1702 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
| 1703 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
| 1704 |
+
`input_ids` above)
|
| 1705 |
+
"""
|
| 1706 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1707 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
| 1708 |
+
|
| 1709 |
+
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
| 1710 |
+
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
| 1711 |
+
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
| 1712 |
+
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
| 1713 |
+
flat_inputs_embeds = (
|
| 1714 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
| 1715 |
+
if inputs_embeds is not None
|
| 1716 |
+
else None
|
| 1717 |
+
)
|
| 1718 |
+
|
| 1719 |
+
outputs = self.deberta(
|
| 1720 |
+
flat_input_ids,
|
| 1721 |
+
position_ids=flat_position_ids,
|
| 1722 |
+
token_type_ids=flat_token_type_ids,
|
| 1723 |
+
attention_mask=flat_attention_mask,
|
| 1724 |
+
inputs_embeds=flat_inputs_embeds,
|
| 1725 |
+
output_attentions=output_attentions,
|
| 1726 |
+
output_hidden_states=output_hidden_states,
|
| 1727 |
+
return_dict=return_dict,
|
| 1728 |
+
)
|
| 1729 |
+
|
| 1730 |
+
encoder_layer = outputs[0]
|
| 1731 |
+
pooled_output = self.pooler(encoder_layer)
|
| 1732 |
+
pooled_output = self.dropout(pooled_output)
|
| 1733 |
+
logits = self.classifier(pooled_output)
|
| 1734 |
+
reshaped_logits = logits.view(-1, num_choices)
|
| 1735 |
+
|
| 1736 |
+
loss = None
|
| 1737 |
+
if labels is not None:
|
| 1738 |
+
loss_fct = CrossEntropyLoss()
|
| 1739 |
+
loss = loss_fct(reshaped_logits, labels)
|
| 1740 |
+
|
| 1741 |
+
if not return_dict:
|
| 1742 |
+
output = (reshaped_logits,) + outputs[1:]
|
| 1743 |
+
return ((loss,) + output) if loss is not None else output
|
| 1744 |
+
|
| 1745 |
+
return MultipleChoiceModelOutput(
|
| 1746 |
+
loss=loss,
|
| 1747 |
+
logits=reshaped_logits,
|
| 1748 |
+
hidden_states=outputs.hidden_states,
|
| 1749 |
+
attentions=outputs.attentions,
|
| 1750 |
+
)
|
.ipynb_checkpoints/models-checkpoint.py
CHANGED
|
@@ -28,711 +28,713 @@ from diffusers import AutoencoderKL as DiffuserAutoencoderKL
|
|
| 28 |
from layers.layers import chord_tokenizer, beat_tokenizer, Chord_Embedding, Beat_Embedding, Music_PositionalEncoding, Fundamental_Music_Embedding
|
| 29 |
|
| 30 |
def build_pretrained_models(name):
|
| 31 |
-
|
| 32 |
-
|
| 33 |
|
| 34 |
-
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
|
| 57 |
|
| 58 |
class AudioDiffusion(nn.Module):
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
|
| 312 |
class MusicAudioDiffusion(nn.Module):
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
|
| 738 |
-
|
|
|
|
|
|
|
|
|
| 28 |
from layers.layers import chord_tokenizer, beat_tokenizer, Chord_Embedding, Beat_Embedding, Music_PositionalEncoding, Fundamental_Music_Embedding
|
| 29 |
|
| 30 |
def build_pretrained_models(name):
|
| 31 |
+
checkpoint = torch.load(get_metadata()[name]["path"], map_location="cpu")
|
| 32 |
+
scale_factor = checkpoint["state_dict"]["scale_factor"].item()
|
| 33 |
|
| 34 |
+
vae_state_dict = {k[18:]: v for k, v in checkpoint["state_dict"].items() if "first_stage_model." in k}
|
| 35 |
|
| 36 |
+
config = default_audioldm_config(name)
|
| 37 |
+
vae_config = config["model"]["params"]["first_stage_config"]["params"]
|
| 38 |
+
vae_config["scale_factor"] = scale_factor
|
| 39 |
|
| 40 |
+
vae = AutoencoderKL(**vae_config)
|
| 41 |
+
vae.load_state_dict(vae_state_dict)
|
| 42 |
|
| 43 |
+
fn_STFT = TacotronSTFT(
|
| 44 |
+
config["preprocessing"]["stft"]["filter_length"],
|
| 45 |
+
config["preprocessing"]["stft"]["hop_length"],
|
| 46 |
+
config["preprocessing"]["stft"]["win_length"],
|
| 47 |
+
config["preprocessing"]["mel"]["n_mel_channels"],
|
| 48 |
+
config["preprocessing"]["audio"]["sampling_rate"],
|
| 49 |
+
config["preprocessing"]["mel"]["mel_fmin"],
|
| 50 |
+
config["preprocessing"]["mel"]["mel_fmax"],
|
| 51 |
+
)
|
| 52 |
|
| 53 |
+
vae.eval()
|
| 54 |
+
fn_STFT.eval()
|
| 55 |
+
return vae, fn_STFT
|
| 56 |
|
| 57 |
|
| 58 |
class AudioDiffusion(nn.Module):
|
| 59 |
+
def __init__(
|
| 60 |
+
self,
|
| 61 |
+
text_encoder_name,
|
| 62 |
+
scheduler_name,
|
| 63 |
+
unet_model_name=None,
|
| 64 |
+
unet_model_config_path=None,
|
| 65 |
+
snr_gamma=None,
|
| 66 |
+
freeze_text_encoder=True,
|
| 67 |
+
uncondition=False,
|
| 68 |
+
|
| 69 |
+
):
|
| 70 |
+
super().__init__()
|
| 71 |
+
|
| 72 |
+
assert unet_model_name is not None or unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required"
|
| 73 |
+
|
| 74 |
+
self.text_encoder_name = text_encoder_name
|
| 75 |
+
self.scheduler_name = scheduler_name
|
| 76 |
+
self.unet_model_name = unet_model_name
|
| 77 |
+
self.unet_model_config_path = unet_model_config_path
|
| 78 |
+
self.snr_gamma = snr_gamma
|
| 79 |
+
self.freeze_text_encoder = freeze_text_encoder
|
| 80 |
+
self.uncondition = uncondition
|
| 81 |
+
|
| 82 |
+
# https://huggingface.co/docs/diffusers/v0.14.0/en/api/schedulers/overview
|
| 83 |
+
self.noise_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
|
| 84 |
+
self.inference_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
|
| 85 |
+
|
| 86 |
+
if unet_model_config_path:
|
| 87 |
+
unet_config = UNet2DConditionModel.load_config(unet_model_config_path)
|
| 88 |
+
self.unet = UNet2DConditionModel.from_config(unet_config, subfolder="unet")
|
| 89 |
+
self.set_from = "random"
|
| 90 |
+
print("UNet initialized randomly.")
|
| 91 |
+
else:
|
| 92 |
+
self.unet = UNet2DConditionModel.from_pretrained(unet_model_name, subfolder="unet")
|
| 93 |
+
self.set_from = "pre-trained"
|
| 94 |
+
self.group_in = nn.Sequential(nn.Linear(8, 512), nn.Linear(512, 4))
|
| 95 |
+
self.group_out = nn.Sequential(nn.Linear(4, 512), nn.Linear(512, 8))
|
| 96 |
+
print("UNet initialized from stable diffusion checkpoint.")
|
| 97 |
+
|
| 98 |
+
if "stable-diffusion" in self.text_encoder_name:
|
| 99 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(self.text_encoder_name, subfolder="tokenizer")
|
| 100 |
+
self.text_encoder = CLIPTextModel.from_pretrained(self.text_encoder_name, subfolder="text_encoder")
|
| 101 |
+
elif "t5" in self.text_encoder_name:
|
| 102 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name)
|
| 103 |
+
self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name)
|
| 104 |
+
else:
|
| 105 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name)
|
| 106 |
+
self.text_encoder = AutoModel.from_pretrained(self.text_encoder_name)
|
| 107 |
+
|
| 108 |
+
def compute_snr(self, timesteps):
|
| 109 |
+
"""
|
| 110 |
+
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
|
| 111 |
+
"""
|
| 112 |
+
alphas_cumprod = self.noise_scheduler.alphas_cumprod
|
| 113 |
+
sqrt_alphas_cumprod = alphas_cumprod**0.5
|
| 114 |
+
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
|
| 115 |
+
|
| 116 |
+
# Expand the tensors.
|
| 117 |
+
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
|
| 118 |
+
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
|
| 119 |
+
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
|
| 120 |
+
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
|
| 121 |
+
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
|
| 122 |
+
|
| 123 |
+
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
|
| 124 |
+
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
|
| 125 |
+
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
|
| 126 |
+
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
|
| 127 |
+
|
| 128 |
+
# Compute SNR.
|
| 129 |
+
snr = (alpha / sigma) ** 2
|
| 130 |
+
return snr
|
| 131 |
+
|
| 132 |
+
def encode_text(self, prompt):
|
| 133 |
+
device = self.text_encoder.device
|
| 134 |
+
batch = self.tokenizer(
|
| 135 |
+
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
|
| 136 |
+
)
|
| 137 |
+
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
|
| 138 |
+
|
| 139 |
+
if self.freeze_text_encoder:
|
| 140 |
+
with torch.no_grad():
|
| 141 |
+
encoder_hidden_states = self.text_encoder(
|
| 142 |
+
input_ids=input_ids, attention_mask=attention_mask
|
| 143 |
+
)[0]
|
| 144 |
+
else:
|
| 145 |
+
encoder_hidden_states = self.text_encoder(
|
| 146 |
+
input_ids=input_ids, attention_mask=attention_mask
|
| 147 |
+
)[0]
|
| 148 |
+
|
| 149 |
+
boolean_encoder_mask = (attention_mask == 1).to(device)
|
| 150 |
+
return encoder_hidden_states, boolean_encoder_mask
|
| 151 |
+
|
| 152 |
+
def forward(self, latents, prompt, validation_mode=False):
|
| 153 |
+
device = self.text_encoder.device
|
| 154 |
+
num_train_timesteps = self.noise_scheduler.num_train_timesteps
|
| 155 |
+
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device)
|
| 156 |
+
|
| 157 |
+
encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt)
|
| 158 |
+
|
| 159 |
+
if self.uncondition:
|
| 160 |
+
mask_indices = [k for k in range(len(prompt)) if random.random() < 0.1]
|
| 161 |
+
if len(mask_indices) > 0:
|
| 162 |
+
encoder_hidden_states[mask_indices] = 0
|
| 163 |
+
|
| 164 |
+
bsz = latents.shape[0]
|
| 165 |
+
|
| 166 |
+
if validation_mode:
|
| 167 |
+
timesteps = (self.noise_scheduler.num_train_timesteps//2) * torch.ones((bsz,), dtype=torch.int64, device=device)
|
| 168 |
+
else:
|
| 169 |
+
# Sample a random timestep for each instance
|
| 170 |
+
timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bsz,), device=device)
|
| 171 |
+
# print('in if ', timesteps)
|
| 172 |
+
timesteps = timesteps.long()
|
| 173 |
+
# print('outside if ' , timesteps)
|
| 174 |
+
noise = torch.randn_like(latents)
|
| 175 |
+
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)
|
| 176 |
+
|
| 177 |
+
# Get the target for loss depending on the prediction type
|
| 178 |
+
if self.noise_scheduler.config.prediction_type == "epsilon":
|
| 179 |
+
target = noise
|
| 180 |
+
elif self.noise_scheduler.config.prediction_type == "v_prediction":
|
| 181 |
+
target = self.noise_scheduler.get_velocity(latents, noise, timesteps)
|
| 182 |
+
else:
|
| 183 |
+
raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}")
|
| 184 |
+
|
| 185 |
+
if self.set_from == "random":
|
| 186 |
+
model_pred = self.unet(
|
| 187 |
+
noisy_latents, timesteps, encoder_hidden_states,
|
| 188 |
+
encoder_attention_mask=boolean_encoder_mask
|
| 189 |
+
).sample
|
| 190 |
+
|
| 191 |
+
elif self.set_from == "pre-trained":
|
| 192 |
+
compressed_latents = self.group_in(noisy_latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
|
| 193 |
+
model_pred = self.unet(
|
| 194 |
+
compressed_latents, timesteps, encoder_hidden_states,
|
| 195 |
+
encoder_attention_mask=boolean_encoder_mask
|
| 196 |
+
).sample
|
| 197 |
+
model_pred = self.group_out(model_pred.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
|
| 198 |
+
|
| 199 |
+
if self.snr_gamma is None:
|
| 200 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
| 201 |
+
else:
|
| 202 |
+
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
|
| 203 |
+
# Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py
|
| 204 |
+
snr = self.compute_snr(timesteps)
|
| 205 |
+
mse_loss_weights = (
|
| 206 |
+
torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
|
| 207 |
+
)
|
| 208 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
|
| 209 |
+
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
|
| 210 |
+
loss = loss.mean()
|
| 211 |
+
|
| 212 |
+
return loss
|
| 213 |
+
|
| 214 |
+
@torch.no_grad()
|
| 215 |
+
def inference(self, prompt, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1,
|
| 216 |
+
disable_progress=True):
|
| 217 |
+
device = self.text_encoder.device
|
| 218 |
+
classifier_free_guidance = guidance_scale > 1.0
|
| 219 |
+
batch_size = len(prompt) * num_samples_per_prompt
|
| 220 |
+
|
| 221 |
+
if classifier_free_guidance:
|
| 222 |
+
prompt_embeds, boolean_prompt_mask = self.encode_text_classifier_free(prompt, num_samples_per_prompt)
|
| 223 |
+
else:
|
| 224 |
+
prompt_embeds, boolean_prompt_mask = self.encode_text(prompt)
|
| 225 |
+
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
| 226 |
+
boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)
|
| 227 |
+
|
| 228 |
+
inference_scheduler.set_timesteps(num_steps, device=device)
|
| 229 |
+
timesteps = inference_scheduler.timesteps
|
| 230 |
+
|
| 231 |
+
num_channels_latents = self.unet.in_channels
|
| 232 |
+
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device)
|
| 233 |
+
|
| 234 |
+
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order
|
| 235 |
+
progress_bar = tqdm(range(num_steps), disable=disable_progress)
|
| 236 |
+
|
| 237 |
+
for i, t in enumerate(timesteps):
|
| 238 |
+
# expand the latents if we are doing classifier free guidance
|
| 239 |
+
latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
|
| 240 |
+
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t)
|
| 241 |
+
|
| 242 |
+
noise_pred = self.unet(
|
| 243 |
+
latent_model_input, t, encoder_hidden_states=prompt_embeds,
|
| 244 |
+
encoder_attention_mask=boolean_prompt_mask
|
| 245 |
+
).sample
|
| 246 |
+
|
| 247 |
+
# perform guidance
|
| 248 |
+
if classifier_free_guidance:
|
| 249 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 250 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 251 |
+
|
| 252 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 253 |
+
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample
|
| 254 |
+
|
| 255 |
+
# call the callback, if provided
|
| 256 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0):
|
| 257 |
+
progress_bar.update(1)
|
| 258 |
+
|
| 259 |
+
if self.set_from == "pre-trained":
|
| 260 |
+
latents = self.group_out(latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
|
| 261 |
+
return latents
|
| 262 |
+
|
| 263 |
+
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device):
|
| 264 |
+
shape = (batch_size, num_channels_latents, 256, 16)
|
| 265 |
+
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
|
| 266 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 267 |
+
latents = latents * inference_scheduler.init_noise_sigma
|
| 268 |
+
return latents
|
| 269 |
+
|
| 270 |
+
def encode_text_classifier_free(self, prompt, num_samples_per_prompt):
|
| 271 |
+
device = self.text_encoder.device
|
| 272 |
+
batch = self.tokenizer(
|
| 273 |
+
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
|
| 274 |
+
)
|
| 275 |
+
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
|
| 276 |
+
|
| 277 |
+
with torch.no_grad():
|
| 278 |
+
prompt_embeds = self.text_encoder(
|
| 279 |
+
input_ids=input_ids, attention_mask=attention_mask
|
| 280 |
+
)[0]
|
| 281 |
+
|
| 282 |
+
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
| 283 |
+
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
|
| 284 |
+
|
| 285 |
+
# get unconditional embeddings for classifier free guidance
|
| 286 |
+
uncond_tokens = [""] * len(prompt)
|
| 287 |
+
|
| 288 |
+
max_length = prompt_embeds.shape[1]
|
| 289 |
+
uncond_batch = self.tokenizer(
|
| 290 |
+
uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt",
|
| 291 |
+
)
|
| 292 |
+
uncond_input_ids = uncond_batch.input_ids.to(device)
|
| 293 |
+
uncond_attention_mask = uncond_batch.attention_mask.to(device)
|
| 294 |
+
|
| 295 |
+
with torch.no_grad():
|
| 296 |
+
negative_prompt_embeds = self.text_encoder(
|
| 297 |
+
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
|
| 298 |
+
)[0]
|
| 299 |
+
|
| 300 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
| 301 |
+
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
|
| 302 |
+
|
| 303 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 304 |
+
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
|
| 305 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
| 306 |
+
prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
|
| 307 |
+
boolean_prompt_mask = (prompt_mask == 1).to(device)
|
| 308 |
+
|
| 309 |
+
return prompt_embeds, boolean_prompt_mask
|
| 310 |
+
|
| 311 |
|
| 312 |
class MusicAudioDiffusion(nn.Module):
|
| 313 |
+
def __init__(
|
| 314 |
+
self,
|
| 315 |
+
text_encoder_name,
|
| 316 |
+
scheduler_name,
|
| 317 |
+
unet_model_name=None,
|
| 318 |
+
unet_model_config_path=None,
|
| 319 |
+
snr_gamma=None,
|
| 320 |
+
freeze_text_encoder=True,
|
| 321 |
+
uncondition=False,
|
| 322 |
+
|
| 323 |
+
d_fme = 1024, #FME
|
| 324 |
+
fme_type = "se",
|
| 325 |
+
base = 1,
|
| 326 |
+
if_trainable = True,
|
| 327 |
+
translation_bias_type = "nd",
|
| 328 |
+
emb_nn = True,
|
| 329 |
+
d_pe = 1024, #PE
|
| 330 |
+
if_index = True,
|
| 331 |
+
if_global_timing = True,
|
| 332 |
+
if_modulo_timing = False,
|
| 333 |
+
d_beat = 1024, #Beat
|
| 334 |
+
d_oh_beat_type = 7,
|
| 335 |
+
beat_len = 50,
|
| 336 |
+
d_chord = 1024, #Chord
|
| 337 |
+
d_oh_chord_type = 12,
|
| 338 |
+
d_oh_inv_type = 4,
|
| 339 |
+
chord_len = 20,
|
| 340 |
+
|
| 341 |
+
):
|
| 342 |
+
super().__init__()
|
| 343 |
+
|
| 344 |
+
assert unet_model_name is not None or unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required"
|
| 345 |
+
|
| 346 |
+
self.text_encoder_name = text_encoder_name
|
| 347 |
+
self.scheduler_name = scheduler_name
|
| 348 |
+
self.unet_model_name = unet_model_name
|
| 349 |
+
self.unet_model_config_path = unet_model_config_path
|
| 350 |
+
self.snr_gamma = snr_gamma
|
| 351 |
+
self.freeze_text_encoder = freeze_text_encoder
|
| 352 |
+
self.uncondition = uncondition
|
| 353 |
+
|
| 354 |
+
# https://huggingface.co/docs/diffusers/v0.14.0/en/api/schedulers/overview
|
| 355 |
+
self.noise_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
|
| 356 |
+
self.inference_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
|
| 357 |
+
|
| 358 |
+
if unet_model_config_path:
|
| 359 |
+
unet_config = UNet2DConditionModelMusic.load_config(unet_model_config_path)
|
| 360 |
+
self.unet = UNet2DConditionModelMusic.from_config(unet_config, subfolder="unet")
|
| 361 |
+
self.set_from = "random"
|
| 362 |
+
print("UNet initialized randomly.")
|
| 363 |
+
else:
|
| 364 |
+
self.unet = UNet2DConditionModel.from_pretrained(unet_model_name, subfolder="unet")
|
| 365 |
+
self.set_from = "pre-trained"
|
| 366 |
+
self.group_in = nn.Sequential(nn.Linear(8, 512), nn.Linear(512, 4))
|
| 367 |
+
self.group_out = nn.Sequential(nn.Linear(4, 512), nn.Linear(512, 8))
|
| 368 |
+
print("UNet initialized from stable diffusion checkpoint.")
|
| 369 |
+
|
| 370 |
+
if "stable-diffusion" in self.text_encoder_name:
|
| 371 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(self.text_encoder_name, subfolder="tokenizer")
|
| 372 |
+
self.text_encoder = CLIPTextModel.from_pretrained(self.text_encoder_name, subfolder="text_encoder")
|
| 373 |
+
elif "t5" in self.text_encoder_name:
|
| 374 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name)
|
| 375 |
+
self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name)
|
| 376 |
+
else:
|
| 377 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name)
|
| 378 |
+
self.text_encoder = AutoModel.from_pretrained(self.text_encoder_name)
|
| 379 |
+
|
| 380 |
+
self.device = self.text_encoder.device
|
| 381 |
+
#Music Feature Encoder
|
| 382 |
+
self.FME = Fundamental_Music_Embedding(d_model = d_fme, base= base, if_trainable = False, type = fme_type,emb_nn=emb_nn,translation_bias_type = translation_bias_type)
|
| 383 |
+
self.PE = Music_PositionalEncoding(d_model = d_pe, if_index = if_index, if_global_timing = if_global_timing, if_modulo_timing = if_modulo_timing, device = self.device)
|
| 384 |
+
# self.PE2 = Music_PositionalEncoding(d_model = d_pe, if_index = if_index, if_global_timing = if_global_timing, if_modulo_timing = if_modulo_timing, device = self.device)
|
| 385 |
+
self.beat_tokenizer = beat_tokenizer(seq_len_beat=beat_len, if_pad = True)
|
| 386 |
+
self.beat_embedding_layer = Beat_Embedding(self.PE, d_model = d_beat, d_oh_beat_type = d_oh_beat_type)
|
| 387 |
+
self.chord_embedding_layer = Chord_Embedding(self.FME, self.PE, d_model = d_chord, d_oh_type = d_oh_chord_type, d_oh_inv = d_oh_inv_type)
|
| 388 |
+
self.chord_tokenizer = chord_tokenizer(seq_len_chord=chord_len, if_pad = True)
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
def compute_snr(self, timesteps):
|
| 392 |
+
"""
|
| 393 |
+
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
|
| 394 |
+
"""
|
| 395 |
+
alphas_cumprod = self.noise_scheduler.alphas_cumprod
|
| 396 |
+
sqrt_alphas_cumprod = alphas_cumprod**0.5
|
| 397 |
+
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
|
| 398 |
+
|
| 399 |
+
# Expand the tensors.
|
| 400 |
+
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
|
| 401 |
+
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
|
| 402 |
+
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
|
| 403 |
+
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
|
| 404 |
+
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
|
| 405 |
+
|
| 406 |
+
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
|
| 407 |
+
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
|
| 408 |
+
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
|
| 409 |
+
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
|
| 410 |
+
|
| 411 |
+
# Compute SNR.
|
| 412 |
+
snr = (alpha / sigma) ** 2
|
| 413 |
+
return snr
|
| 414 |
+
|
| 415 |
+
def encode_text(self, prompt):
|
| 416 |
+
device = self.text_encoder.device
|
| 417 |
+
batch = self.tokenizer(
|
| 418 |
+
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
|
| 419 |
+
)
|
| 420 |
+
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) #cuda
|
| 421 |
+
if self.freeze_text_encoder:
|
| 422 |
+
with torch.no_grad():
|
| 423 |
+
encoder_hidden_states = self.text_encoder(
|
| 424 |
+
input_ids=input_ids, attention_mask=attention_mask
|
| 425 |
+
)[0] #batch, len_text, dim
|
| 426 |
+
else:
|
| 427 |
+
encoder_hidden_states = self.text_encoder(
|
| 428 |
+
input_ids=input_ids, attention_mask=attention_mask
|
| 429 |
+
)[0]
|
| 430 |
+
boolean_encoder_mask = (attention_mask == 1).to(device) ##batch, len_text
|
| 431 |
+
return encoder_hidden_states, boolean_encoder_mask
|
| 432 |
+
|
| 433 |
+
def encode_beats(self, beats):
|
| 434 |
+
device = self.device
|
| 435 |
+
out_beat = []
|
| 436 |
+
out_beat_timing = []
|
| 437 |
+
out_mask = []
|
| 438 |
+
for beat in beats:
|
| 439 |
+
tokenized_beats,tokenized_beats_timing, tokenized_beat_mask = self.beat_tokenizer(beat)
|
| 440 |
+
out_beat.append(tokenized_beats)
|
| 441 |
+
out_beat_timing.append(tokenized_beats_timing)
|
| 442 |
+
out_mask.append(tokenized_beat_mask)
|
| 443 |
+
out_beat, out_beat_timing, out_mask = torch.tensor(out_beat).to(device), torch.tensor(out_beat_timing).to(device), torch.tensor(out_mask).to(device) #batch, len_beat
|
| 444 |
+
embedded_beat = self.beat_embedding_layer(out_beat, out_beat_timing, device)
|
| 445 |
+
|
| 446 |
+
return embedded_beat, out_mask
|
| 447 |
+
|
| 448 |
+
def encode_chords(self, chords,chords_time):
|
| 449 |
+
device = self.device
|
| 450 |
+
out_chord_root = []
|
| 451 |
+
out_chord_type = []
|
| 452 |
+
out_chord_inv = []
|
| 453 |
+
out_chord_timing = []
|
| 454 |
+
out_mask = []
|
| 455 |
+
for chord, chord_time in zip(chords,chords_time): #batch loop
|
| 456 |
+
tokenized_chord_root, tokenized_chord_type, tokenized_chord_inv, tokenized_chord_time, tokenized_chord_mask = self.chord_tokenizer(chord, chord_time)
|
| 457 |
+
out_chord_root.append(tokenized_chord_root)
|
| 458 |
+
out_chord_type.append(tokenized_chord_type)
|
| 459 |
+
out_chord_inv.append(tokenized_chord_inv)
|
| 460 |
+
out_chord_timing.append(tokenized_chord_time)
|
| 461 |
+
out_mask.append(tokenized_chord_mask)
|
| 462 |
+
#chords: (B, LEN, 4)
|
| 463 |
+
out_chord_root, out_chord_type, out_chord_inv, out_chord_timing, out_mask = torch.tensor(out_chord_root).to(device), torch.tensor(out_chord_type).to(device), torch.tensor(out_chord_inv).to(device), torch.tensor(out_chord_timing).to(device), torch.tensor(out_mask).to(device)
|
| 464 |
+
embedded_chord = self.chord_embedding_layer(out_chord_root, out_chord_type, out_chord_inv, out_chord_timing, device)
|
| 465 |
+
return embedded_chord, out_mask
|
| 466 |
+
# return out_chord_root, out_mask
|
| 467 |
+
|
| 468 |
+
|
| 469 |
+
def forward(self, latents, prompt, beats, chords,chords_time, validation_mode=False):
|
| 470 |
+
device = self.text_encoder.device
|
| 471 |
+
num_train_timesteps = self.noise_scheduler.num_train_timesteps
|
| 472 |
+
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device)
|
| 473 |
+
|
| 474 |
+
encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt)
|
| 475 |
+
|
| 476 |
+
# with torch.no_grad():
|
| 477 |
+
encoded_beats, beat_mask = self.encode_beats(beats) #batch, len_beats, dim; batch, len_beats
|
| 478 |
+
encoded_chords, chord_mask = self.encode_chords(chords,chords_time)
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
if self.uncondition:
|
| 482 |
+
mask_indices = [k for k in range(len(prompt)) if random.random() < 0.1]
|
| 483 |
+
if len(mask_indices) > 0:
|
| 484 |
+
encoder_hidden_states[mask_indices] = 0
|
| 485 |
+
encoded_chords[mask_indices] = 0
|
| 486 |
+
encoded_beats[mask_indices] = 0
|
| 487 |
+
|
| 488 |
+
bsz = latents.shape[0]
|
| 489 |
+
|
| 490 |
+
if validation_mode:
|
| 491 |
+
timesteps = (self.noise_scheduler.num_train_timesteps//2) * torch.ones((bsz,), dtype=torch.int64, device=device)
|
| 492 |
+
else:
|
| 493 |
+
timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bsz,), device=device)
|
| 494 |
+
|
| 495 |
+
|
| 496 |
+
timesteps = timesteps.long()
|
| 497 |
+
|
| 498 |
+
noise = torch.randn_like(latents)
|
| 499 |
+
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)
|
| 500 |
+
|
| 501 |
+
# Get the target for loss depending on the prediction type
|
| 502 |
+
if self.noise_scheduler.config.prediction_type == "epsilon":
|
| 503 |
+
target = noise
|
| 504 |
+
elif self.noise_scheduler.config.prediction_type == "v_prediction":
|
| 505 |
+
target = self.noise_scheduler.get_velocity(latents, noise, timesteps)
|
| 506 |
+
else:
|
| 507 |
+
raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}")
|
| 508 |
+
|
| 509 |
+
if self.set_from == "random":
|
| 510 |
+
# model_pred = torch.zeros((bsz,8,256,16)).to(device)
|
| 511 |
+
model_pred = self.unet(
|
| 512 |
+
noisy_latents, timesteps, encoder_hidden_states, encoded_beats, encoded_chords,
|
| 513 |
+
encoder_attention_mask=boolean_encoder_mask, beat_attention_mask = beat_mask, chord_attention_mask = chord_mask
|
| 514 |
+
).sample
|
| 515 |
+
|
| 516 |
+
elif self.set_from == "pre-trained":
|
| 517 |
+
compressed_latents = self.group_in(noisy_latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
|
| 518 |
+
model_pred = self.unet(
|
| 519 |
+
compressed_latents, timesteps, encoder_hidden_states,
|
| 520 |
+
encoder_attention_mask=boolean_encoder_mask
|
| 521 |
+
).sample
|
| 522 |
+
model_pred = self.group_out(model_pred.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
|
| 523 |
+
|
| 524 |
+
if self.snr_gamma is None:
|
| 525 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
| 526 |
+
else:
|
| 527 |
+
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
|
| 528 |
+
# Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py
|
| 529 |
+
snr = self.compute_snr(timesteps)
|
| 530 |
+
mse_loss_weights = (
|
| 531 |
+
torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
|
| 532 |
+
)
|
| 533 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
|
| 534 |
+
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
|
| 535 |
+
loss = loss.mean()
|
| 536 |
+
|
| 537 |
+
return loss
|
| 538 |
+
|
| 539 |
+
@torch.no_grad()
|
| 540 |
+
def inference(self, prompt, beats, chords,chords_time, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1,
|
| 541 |
+
disable_progress=True):
|
| 542 |
+
device = self.text_encoder.device
|
| 543 |
+
classifier_free_guidance = guidance_scale > 1.0
|
| 544 |
+
batch_size = len(prompt) * num_samples_per_prompt
|
| 545 |
+
|
| 546 |
+
if classifier_free_guidance:
|
| 547 |
+
prompt_embeds, boolean_prompt_mask = self.encode_text_classifier_free(prompt, num_samples_per_prompt)
|
| 548 |
+
encoded_beats, beat_mask = self.encode_beats_classifier_free(beats, num_samples_per_prompt) #batch, len_beats, dim; batch, len_beats
|
| 549 |
+
encoded_chords, chord_mask = self.encode_chords_classifier_free(chords, chords_time, num_samples_per_prompt)
|
| 550 |
+
else:
|
| 551 |
+
prompt_embeds, boolean_prompt_mask = self.encode_text(prompt)
|
| 552 |
+
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
| 553 |
+
boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)
|
| 554 |
+
|
| 555 |
+
encoded_beats, beat_mask = self.encode_beats(beats) #batch, len_beats, dim; batch, len_beats
|
| 556 |
+
encoded_beats = encoded_beats.repeat_interleave(num_samples_per_prompt, 0)
|
| 557 |
+
beat_mask = beat_mask.repeat_interleave(num_samples_per_prompt, 0)
|
| 558 |
+
|
| 559 |
+
encoded_chords, chord_mask = self.encode_chords(chords,chords_time)
|
| 560 |
+
encoded_chords = encoded_chords.repeat_interleave(num_samples_per_prompt, 0)
|
| 561 |
+
chord_mask = chord_mask.repeat_interleave(num_samples_per_prompt, 0)
|
| 562 |
+
|
| 563 |
+
# print(f"encoded_chords:{encoded_chords.shape}, chord_mask:{chord_mask.shape}, prompt_embeds:{prompt_embeds.shape},boolean_prompt_mask:{boolean_prompt_mask.shape} ")
|
| 564 |
+
inference_scheduler.set_timesteps(num_steps, device=device)
|
| 565 |
+
timesteps = inference_scheduler.timesteps
|
| 566 |
+
|
| 567 |
+
num_channels_latents = self.unet.in_channels
|
| 568 |
+
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device)
|
| 569 |
+
|
| 570 |
+
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order
|
| 571 |
+
progress_bar = tqdm(range(num_steps), disable=disable_progress)
|
| 572 |
+
|
| 573 |
+
for i, t in enumerate(timesteps):
|
| 574 |
+
# expand the latents if we are doing classifier free guidance
|
| 575 |
+
latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
|
| 576 |
+
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t)
|
| 577 |
+
|
| 578 |
+
noise_pred = self.unet(
|
| 579 |
+
latent_model_input, t, encoder_hidden_states=prompt_embeds,
|
| 580 |
+
encoder_attention_mask=boolean_prompt_mask,
|
| 581 |
+
beat_features = encoded_beats, beat_attention_mask = beat_mask, chord_features = encoded_chords,chord_attention_mask = chord_mask
|
| 582 |
+
).sample
|
| 583 |
+
|
| 584 |
+
# perform guidance
|
| 585 |
+
if classifier_free_guidance: #should work for beats and chords too
|
| 586 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 587 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 588 |
+
|
| 589 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 590 |
+
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample
|
| 591 |
+
|
| 592 |
+
# call the callback, if provided
|
| 593 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0):
|
| 594 |
+
progress_bar.update(1)
|
| 595 |
+
|
| 596 |
+
if self.set_from == "pre-trained":
|
| 597 |
+
latents = self.group_out(latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
|
| 598 |
+
return latents
|
| 599 |
+
|
| 600 |
+
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device):
|
| 601 |
+
shape = (batch_size, num_channels_latents, 256, 16)
|
| 602 |
+
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
|
| 603 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 604 |
+
latents = latents * inference_scheduler.init_noise_sigma
|
| 605 |
+
return latents
|
| 606 |
+
|
| 607 |
+
def encode_text_classifier_free(self, prompt, num_samples_per_prompt):
|
| 608 |
+
device = self.text_encoder.device
|
| 609 |
+
batch = self.tokenizer(
|
| 610 |
+
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
|
| 611 |
+
)
|
| 612 |
+
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
|
| 613 |
+
|
| 614 |
+
with torch.no_grad():
|
| 615 |
+
prompt_embeds = self.text_encoder(
|
| 616 |
+
input_ids=input_ids, attention_mask=attention_mask
|
| 617 |
+
)[0]
|
| 618 |
+
|
| 619 |
+
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
| 620 |
+
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
|
| 621 |
+
|
| 622 |
+
# get unconditional embeddings for classifier free guidance
|
| 623 |
+
# print(len(prompt), 'this is prompt len')
|
| 624 |
+
uncond_tokens = [""] * len(prompt)
|
| 625 |
+
|
| 626 |
+
max_length = prompt_embeds.shape[1]
|
| 627 |
+
uncond_batch = self.tokenizer(
|
| 628 |
+
uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt",
|
| 629 |
+
)
|
| 630 |
+
uncond_input_ids = uncond_batch.input_ids.to(device)
|
| 631 |
+
uncond_attention_mask = uncond_batch.attention_mask.to(device)
|
| 632 |
+
|
| 633 |
+
with torch.no_grad():
|
| 634 |
+
negative_prompt_embeds = self.text_encoder(
|
| 635 |
+
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
|
| 636 |
+
)[0]
|
| 637 |
+
|
| 638 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
| 639 |
+
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
|
| 640 |
+
|
| 641 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 642 |
+
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
|
| 643 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
| 644 |
+
prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
|
| 645 |
+
boolean_prompt_mask = (prompt_mask == 1).to(device)
|
| 646 |
+
|
| 647 |
+
return prompt_embeds, boolean_prompt_mask
|
| 648 |
+
|
| 649 |
+
|
| 650 |
+
def encode_beats_classifier_free(self, beats, num_samples_per_prompt):
|
| 651 |
+
device = self.device
|
| 652 |
+
with torch.no_grad():
|
| 653 |
+
out_beat = []
|
| 654 |
+
out_beat_timing = []
|
| 655 |
+
out_mask = []
|
| 656 |
+
for beat in beats:
|
| 657 |
+
tokenized_beats,tokenized_beats_timing, tokenized_beat_mask = self.beat_tokenizer(beat)
|
| 658 |
+
out_beat.append(tokenized_beats)
|
| 659 |
+
out_beat_timing.append(tokenized_beats_timing)
|
| 660 |
+
out_mask.append(tokenized_beat_mask)
|
| 661 |
+
out_beat, out_beat_timing, out_mask = torch.tensor(out_beat).to(device), torch.tensor(out_beat_timing).to(device), torch.tensor(out_mask).to(device) #batch, len_beat
|
| 662 |
+
embedded_beat = self.beat_embedding_layer(out_beat, out_beat_timing, device)
|
| 663 |
+
|
| 664 |
+
embedded_beat = embedded_beat.repeat_interleave(num_samples_per_prompt, 0)
|
| 665 |
+
out_mask = out_mask.repeat_interleave(num_samples_per_prompt, 0)
|
| 666 |
+
|
| 667 |
+
uncond_beats = [[[],[]]] * len(beats)
|
| 668 |
+
|
| 669 |
+
max_length = embedded_beat.shape[1]
|
| 670 |
+
with torch.no_grad():
|
| 671 |
+
out_beat_unc = []
|
| 672 |
+
out_beat_timing_unc = []
|
| 673 |
+
out_mask_unc = []
|
| 674 |
+
for beat in uncond_beats:
|
| 675 |
+
tokenized_beats, tokenized_beats_timing, tokenized_beat_mask = self.beat_tokenizer(beat)
|
| 676 |
+
out_beat_unc.append(tokenized_beats)
|
| 677 |
+
out_beat_timing_unc.append(tokenized_beats_timing)
|
| 678 |
+
out_mask_unc.append(tokenized_beat_mask)
|
| 679 |
+
out_beat_unc, out_beat_timing_unc, out_mask_unc = torch.tensor(out_beat_unc).to(device), torch.tensor(out_beat_timing_unc).to(device), torch.tensor(out_mask_unc).to(device) #batch, len_beat
|
| 680 |
+
embedded_beat_unc = self.beat_embedding_layer(out_beat_unc, out_beat_timing_unc, device)
|
| 681 |
+
|
| 682 |
+
embedded_beat_unc = embedded_beat_unc.repeat_interleave(num_samples_per_prompt, 0)
|
| 683 |
+
out_mask_unc = out_mask_unc.repeat_interleave(num_samples_per_prompt, 0)
|
| 684 |
+
|
| 685 |
+
embedded_beat = torch.cat([embedded_beat_unc, embedded_beat])
|
| 686 |
+
out_mask = torch.cat([out_mask_unc, out_mask])
|
| 687 |
+
|
| 688 |
+
return embedded_beat, out_mask
|
| 689 |
+
|
| 690 |
+
|
| 691 |
+
def encode_chords_classifier_free(self, chords, chords_time, num_samples_per_prompt):
|
| 692 |
+
device = self.device
|
| 693 |
+
with torch.no_grad():
|
| 694 |
+
out_chord_root = []
|
| 695 |
+
out_chord_type = []
|
| 696 |
+
out_chord_inv = []
|
| 697 |
+
out_chord_timing = []
|
| 698 |
+
out_mask = []
|
| 699 |
+
for chord, chord_time in zip(chords,chords_time): #batch loop
|
| 700 |
+
tokenized_chord_root, tokenized_chord_type, tokenized_chord_inv, tokenized_chord_time, tokenized_chord_mask = self.chord_tokenizer(chord, chord_time)
|
| 701 |
+
out_chord_root.append(tokenized_chord_root)
|
| 702 |
+
out_chord_type.append(tokenized_chord_type)
|
| 703 |
+
out_chord_inv.append(tokenized_chord_inv)
|
| 704 |
+
out_chord_timing.append(tokenized_chord_time)
|
| 705 |
+
out_mask.append(tokenized_chord_mask)
|
| 706 |
+
out_chord_root, out_chord_type, out_chord_inv, out_chord_timing, out_mask = torch.tensor(out_chord_root).to(device), torch.tensor(out_chord_type).to(device), torch.tensor(out_chord_inv).to(device), torch.tensor(out_chord_timing).to(device), torch.tensor(out_mask).to(device)
|
| 707 |
+
embedded_chord = self.chord_embedding_layer(out_chord_root, out_chord_type, out_chord_inv, out_chord_timing, device)
|
| 708 |
+
|
| 709 |
+
embedded_chord = embedded_chord.repeat_interleave(num_samples_per_prompt, 0)
|
| 710 |
+
out_mask = out_mask.repeat_interleave(num_samples_per_prompt, 0)
|
| 711 |
+
|
| 712 |
+
chords_unc=[[]] * len(chords)
|
| 713 |
+
chords_time_unc=[[]] * len(chords_time)
|
| 714 |
+
|
| 715 |
+
max_length = embedded_chord.shape[1]
|
| 716 |
+
|
| 717 |
+
with torch.no_grad():
|
| 718 |
+
out_chord_root_unc = []
|
| 719 |
+
out_chord_type_unc = []
|
| 720 |
+
out_chord_inv_unc = []
|
| 721 |
+
out_chord_timing_unc = []
|
| 722 |
+
out_mask_unc = []
|
| 723 |
+
for chord, chord_time in zip(chords_unc,chords_time_unc): #batch loop
|
| 724 |
+
tokenized_chord_root, tokenized_chord_type, tokenized_chord_inv, tokenized_chord_time, tokenized_chord_mask = self.chord_tokenizer(chord, chord_time)
|
| 725 |
+
out_chord_root_unc.append(tokenized_chord_root)
|
| 726 |
+
out_chord_type_unc.append(tokenized_chord_type)
|
| 727 |
+
out_chord_inv_unc.append(tokenized_chord_inv)
|
| 728 |
+
out_chord_timing_unc.append(tokenized_chord_time)
|
| 729 |
+
out_mask_unc.append(tokenized_chord_mask)
|
| 730 |
+
out_chord_root_unc, out_chord_type_unc, out_chord_inv_unc, out_chord_timing_unc, out_mask_unc = torch.tensor(out_chord_root_unc).to(device), torch.tensor(out_chord_type_unc).to(device), torch.tensor(out_chord_inv_unc).to(device), torch.tensor(out_chord_timing_unc).to(device), torch.tensor(out_mask_unc).to(device)
|
| 731 |
+
embedded_chord_unc = self.chord_embedding_layer(out_chord_root_unc, out_chord_type_unc, out_chord_inv_unc, out_chord_timing_unc, device)
|
| 732 |
+
|
| 733 |
+
|
| 734 |
+
embedded_chord_unc = embedded_chord_unc.repeat_interleave(num_samples_per_prompt, 0)
|
| 735 |
+
out_mask_unc = out_mask_unc.repeat_interleave(num_samples_per_prompt, 0)
|
| 736 |
+
|
| 737 |
+
embedded_chord = torch.cat([embedded_chord_unc, embedded_chord])
|
| 738 |
+
out_mask = torch.cat([out_mask_unc, out_mask])
|
| 739 |
+
|
| 740 |
+
return embedded_chord, out_mask
|
.ipynb_checkpoints/requirements-checkpoint.txt
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
-
torch==
|
| 2 |
-
torchaudio==0.
|
| 3 |
-
torchvision==0.
|
| 4 |
-
transformers==4.
|
| 5 |
-
accelerate==0.
|
| 6 |
datasets==2.1.0
|
| 7 |
einops==0.6.1
|
| 8 |
h5py==3.8.0
|
| 9 |
-
huggingface_hub==0.
|
| 10 |
importlib_metadata==6.3.0
|
| 11 |
librosa==0.9.2
|
| 12 |
matplotlib==3.5.2
|
|
@@ -17,6 +17,7 @@ pandas==1.4.1
|
|
| 17 |
progressbar33==2.4
|
| 18 |
protobuf==3.20.*
|
| 19 |
resampy==0.4.2
|
|
|
|
| 20 |
sentencepiece==0.1.99
|
| 21 |
scikit_image==0.19.3
|
| 22 |
scikit_learn==1.2.2
|
|
|
|
| 1 |
+
torch==2.0.1
|
| 2 |
+
torchaudio==2.0.2
|
| 3 |
+
torchvision==0.15.2
|
| 4 |
+
transformers==4.31.0
|
| 5 |
+
accelerate==0.21.0
|
| 6 |
datasets==2.1.0
|
| 7 |
einops==0.6.1
|
| 8 |
h5py==3.8.0
|
| 9 |
+
huggingface_hub==0.19.4
|
| 10 |
importlib_metadata==6.3.0
|
| 11 |
librosa==0.9.2
|
| 12 |
matplotlib==3.5.2
|
|
|
|
| 17 |
progressbar33==2.4
|
| 18 |
protobuf==3.20.*
|
| 19 |
resampy==0.4.2
|
| 20 |
+
safetensors==0.3.2
|
| 21 |
sentencepiece==0.1.99
|
| 22 |
scikit_image==0.19.3
|
| 23 |
scikit_learn==1.2.2
|
__pycache__/modelling_deberta_v2.cpython-310.pyc
ADDED
|
Binary file (49.2 kB). View file
|
|
|
__pycache__/models.cpython-310.pyc
ADDED
|
Binary file (17.2 kB). View file
|
|
|
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import gradio as gr
|
|
| 2 |
import json
|
| 3 |
import torch
|
| 4 |
import wavio
|
|
|
|
| 5 |
from tqdm import tqdm
|
| 6 |
from huggingface_hub import snapshot_download
|
| 7 |
|
|
@@ -23,6 +24,7 @@ class MusicFeaturePredictor:
|
|
| 23 |
def __init__(self, path, device="cuda:0", cache_dir=None, local_files_only=False):
|
| 24 |
self.beats_tokenizer = AutoTokenizer.from_pretrained(
|
| 25 |
"microsoft/deberta-v3-large",
|
|
|
|
| 26 |
cache_dir=cache_dir,
|
| 27 |
local_files_only=local_files_only,
|
| 28 |
)
|
|
@@ -164,6 +166,7 @@ class Mustango:
|
|
| 164 |
main_config["scheduler_name"],
|
| 165 |
unet_model_config_path=f"{path}/configs/music_diffusion_model_config.json",
|
| 166 |
).to(device)
|
|
|
|
| 167 |
|
| 168 |
vae_weights = torch.load(
|
| 169 |
f"{path}/vae/pytorch_model_vae.bin", map_location=device
|
|
@@ -213,9 +216,11 @@ class Mustango:
|
|
| 213 |
|
| 214 |
# Initialize Mustango
|
| 215 |
if torch.cuda.is_available():
|
| 216 |
-
mustango = Mustango()
|
| 217 |
else:
|
| 218 |
mustango = Mustango(device="cpu")
|
|
|
|
|
|
|
| 219 |
|
| 220 |
def gradio_generate(prompt, steps, guidance):
|
| 221 |
output_wave = mustango.generate(prompt, steps, guidance)
|
|
@@ -225,6 +230,7 @@ def gradio_generate(prompt, steps, guidance):
|
|
| 225 |
|
| 226 |
return output_filename
|
| 227 |
|
|
|
|
| 228 |
# description_text = """
|
| 229 |
# <p><a href="https://huggingface.co/spaces/declare-lab/mustango/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
|
| 230 |
# Generate music using Mustango by providing a text prompt.
|
|
|
|
| 2 |
import json
|
| 3 |
import torch
|
| 4 |
import wavio
|
| 5 |
+
import numpy as np
|
| 6 |
from tqdm import tqdm
|
| 7 |
from huggingface_hub import snapshot_download
|
| 8 |
|
|
|
|
| 24 |
def __init__(self, path, device="cuda:0", cache_dir=None, local_files_only=False):
|
| 25 |
self.beats_tokenizer = AutoTokenizer.from_pretrained(
|
| 26 |
"microsoft/deberta-v3-large",
|
| 27 |
+
use_fast=False,
|
| 28 |
cache_dir=cache_dir,
|
| 29 |
local_files_only=local_files_only,
|
| 30 |
)
|
|
|
|
| 166 |
main_config["scheduler_name"],
|
| 167 |
unet_model_config_path=f"{path}/configs/music_diffusion_model_config.json",
|
| 168 |
).to(device)
|
| 169 |
+
self.model.device = device
|
| 170 |
|
| 171 |
vae_weights = torch.load(
|
| 172 |
f"{path}/vae/pytorch_model_vae.bin", map_location=device
|
|
|
|
| 216 |
|
| 217 |
# Initialize Mustango
|
| 218 |
if torch.cuda.is_available():
|
| 219 |
+
mustango = Mustango(device="cpu")
|
| 220 |
else:
|
| 221 |
mustango = Mustango(device="cpu")
|
| 222 |
+
|
| 223 |
+
output_wave = mustango.generate("This techno song features a synth lead playing the main melody.", 5, 3, disable_progress=False)
|
| 224 |
|
| 225 |
def gradio_generate(prompt, steps, guidance):
|
| 226 |
output_wave = mustango.generate(prompt, steps, guidance)
|
|
|
|
| 230 |
|
| 231 |
return output_filename
|
| 232 |
|
| 233 |
+
|
| 234 |
# description_text = """
|
| 235 |
# <p><a href="https://huggingface.co/spaces/declare-lab/mustango/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
|
| 236 |
# Generate music using Mustango by providing a text prompt.
|
audioldm/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (330 Bytes). View file
|
|
|
audioldm/__pycache__/ldm.cpython-310.pyc
ADDED
|
Binary file (16.1 kB). View file
|
|
|
audioldm/__pycache__/pipeline.cpython-310.pyc
ADDED
|
Binary file (6.65 kB). View file
|
|
|
audioldm/__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (8.02 kB). View file
|
|
|
audioldm/audio/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (268 Bytes). View file
|
|
|
audioldm/audio/__pycache__/audio_processing.cpython-310.pyc
ADDED
|
Binary file (2.79 kB). View file
|
|
|
audioldm/audio/__pycache__/stft.cpython-310.pyc
ADDED
|
Binary file (4.99 kB). View file
|
|
|
audioldm/audio/__pycache__/tools.cpython-310.pyc
ADDED
|
Binary file (2.2 kB). View file
|
|
|
audioldm/hifigan/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (584 Bytes). View file
|
|
|
audioldm/hifigan/__pycache__/models.cpython-310.pyc
ADDED
|
Binary file (3.75 kB). View file
|
|
|
audioldm/hifigan/__pycache__/utilities.cpython-310.pyc
ADDED
|
Binary file (2.5 kB). View file
|
|
|
audioldm/latent_diffusion/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (172 Bytes). View file
|
|
|
audioldm/latent_diffusion/__pycache__/attention.cpython-310.pyc
ADDED
|
Binary file (11.4 kB). View file
|
|
|
audioldm/latent_diffusion/__pycache__/ddim.cpython-310.pyc
ADDED
|
Binary file (7.22 kB). View file
|
|
|
audioldm/latent_diffusion/__pycache__/ddpm.cpython-310.pyc
ADDED
|
Binary file (11.1 kB). View file
|
|
|
audioldm/latent_diffusion/__pycache__/ema.cpython-310.pyc
ADDED
|
Binary file (3.03 kB). View file
|
|
|
audioldm/latent_diffusion/__pycache__/util.cpython-310.pyc
ADDED
|
Binary file (9.54 kB). View file
|
|
|
audioldm/variational_autoencoder/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (228 Bytes). View file
|
|
|
audioldm/variational_autoencoder/__pycache__/autoencoder.cpython-310.pyc
ADDED
|
Binary file (4.38 kB). View file
|
|
|
audioldm/variational_autoencoder/__pycache__/distributions.cpython-310.pyc
ADDED
|
Binary file (3.77 kB). View file
|
|
|
audioldm/variational_autoencoder/__pycache__/modules.cpython-310.pyc
ADDED
|
Binary file (21.5 kB). View file
|
|
|
diffusers/src/diffusers/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (6.33 kB). View file
|
|
|
diffusers/src/diffusers/__pycache__/configuration_utils.cpython-310.pyc
ADDED
|
Binary file (22.1 kB). View file
|
|
|
diffusers/src/diffusers/__pycache__/image_processor.cpython-310.pyc
ADDED
|
Binary file (6.4 kB). View file
|
|
|
diffusers/src/diffusers/__pycache__/loaders.cpython-310.pyc
ADDED
|
Binary file (20.5 kB). View file
|
|
|
diffusers/src/diffusers/__pycache__/optimization.cpython-310.pyc
ADDED
|
Binary file (10.7 kB). View file
|
|
|
diffusers/src/diffusers/__pycache__/pipeline_utils.cpython-310.pyc
ADDED
|
Binary file (257 Bytes). View file
|
|
|
diffusers/src/diffusers/__pycache__/training_utils.cpython-310.pyc
ADDED
|
Binary file (10.8 kB). View file
|
|
|
diffusers/src/diffusers/models/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (1.17 kB). View file
|
|
|
diffusers/src/diffusers/models/__pycache__/attention.cpython-310.pyc
ADDED
|
Binary file (15.7 kB). View file
|
|
|
diffusers/src/diffusers/models/__pycache__/attention_processor.cpython-310.pyc
ADDED
|
Binary file (16.5 kB). View file
|
|
|
diffusers/src/diffusers/models/__pycache__/autoencoder_kl.cpython-310.pyc
ADDED
|
Binary file (12.2 kB). View file
|
|
|
diffusers/src/diffusers/models/__pycache__/controlnet.cpython-310.pyc
ADDED
|
Binary file (15.5 kB). View file
|
|
|
diffusers/src/diffusers/models/__pycache__/dual_transformer_2d.cpython-310.pyc
ADDED
|
Binary file (5.73 kB). View file
|
|
|
diffusers/src/diffusers/models/__pycache__/embeddings.cpython-310.pyc
ADDED
|
Binary file (11.2 kB). View file
|
|
|
diffusers/src/diffusers/models/__pycache__/modeling_utils.cpython-310.pyc
ADDED
|
Binary file (27 kB). View file
|
|
|
diffusers/src/diffusers/models/__pycache__/prior_transformer.cpython-310.pyc
ADDED
|
Binary file (7.08 kB). View file
|
|
|
diffusers/src/diffusers/models/__pycache__/resnet.cpython-310.pyc
ADDED
|
Binary file (24.2 kB). View file
|
|
|
diffusers/src/diffusers/models/__pycache__/t5_film_transformer.cpython-310.pyc
ADDED
|
Binary file (9.29 kB). View file
|
|
|
diffusers/src/diffusers/models/__pycache__/transformer_2d.cpython-310.pyc
ADDED
|
Binary file (11.4 kB). View file
|
|
|
diffusers/src/diffusers/models/__pycache__/transformer_temporal.cpython-310.pyc
ADDED
|
Binary file (6.11 kB). View file
|
|
|
diffusers/src/diffusers/models/__pycache__/unet_1d.cpython-310.pyc
ADDED
|
Binary file (7.75 kB). View file
|
|
|
diffusers/src/diffusers/models/__pycache__/unet_1d_blocks.cpython-310.pyc
ADDED
|
Binary file (16.7 kB). View file
|
|
|