hungchiayu1
initial commit
ffead1e
raw
history blame
18.6 kB
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel
from diffusers.pipelines.semantic_stable_diffusion import SemanticStableDiffusionPipeline as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
torch.backends.cuda.matmul.allow_tf32 = False
class SafeDiffusionPipelineFastTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_cond_unet(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
def test_semantic_diffusion_ddim(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5644, 0.6018, 0.4799, 0.5267, 0.5585, 0.4641, 0.516, 0.4964, 0.4792])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_semantic_diffusion_pndm(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5095, 0.5674, 0.4668, 0.5126, 0.5697, 0.4675, 0.5278, 0.4964, 0.4945])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_semantic_diffusion_no_safety_checker(self):
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None
)
assert isinstance(pipe, StableDiffusionPipeline)
assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
assert pipe.safety_checker is None
image = pipe("example prompt", num_inference_steps=2).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe = StableDiffusionPipeline.from_pretrained(tmpdirname)
# sanity check that the pipeline still works
assert pipe.safety_checker is None
image = pipe("example prompt", num_inference_steps=2).images[0]
assert image is not None
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_semantic_diffusion_fp16(self):
"""Test that stable diffusion works with fp16"""
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# put models in fp16
unet = unet.half()
vae = vae.half()
bert = bert.half()
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
image = sd_pipe([prompt], num_inference_steps=2, output_type="np").images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class SemanticDiffusionPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_positive_guidance(self):
torch_device = "cuda"
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "a photo of a cat"
edit = {
"editing_prompt": ["sunglasses"],
"reverse_editing_direction": [False],
"edit_warmup_steps": 10,
"edit_guidance_scale": 6,
"edit_threshold": 0.95,
"edit_momentum_scale": 0.5,
"edit_mom_beta": 0.6,
}
seed = 3
guidance_scale = 7
# no sega enabled
generator = torch.Generator(torch_device)
generator.manual_seed(seed)
output = pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [
0.34673113,
0.38492733,
0.37597352,
0.34086335,
0.35650748,
0.35579205,
0.3384763,
0.34340236,
0.3573271,
]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# with sega enabled
# generator = torch.manual_seed(seed)
generator.manual_seed(seed)
output = pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
**edit,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [
0.41887826,
0.37728766,
0.30138272,
0.41416335,
0.41664985,
0.36283392,
0.36191246,
0.43364465,
0.43001732,
]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_negative_guidance(self):
torch_device = "cuda"
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "an image of a crowded boulevard, realistic, 4k"
edit = {
"editing_prompt": "crowd, crowded, people",
"reverse_editing_direction": True,
"edit_warmup_steps": 10,
"edit_guidance_scale": 8.3,
"edit_threshold": 0.9,
"edit_momentum_scale": 0.5,
"edit_mom_beta": 0.6,
}
seed = 9
guidance_scale = 7
# no sega enabled
generator = torch.Generator(torch_device)
generator.manual_seed(seed)
output = pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [
0.43497998,
0.91814065,
0.7540739,
0.55580205,
0.8467265,
0.5389691,
0.62574506,
0.58897763,
0.50926757,
]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# with sega enabled
# generator = torch.manual_seed(seed)
generator.manual_seed(seed)
output = pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
**edit,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [
0.3089719,
0.30500144,
0.29016042,
0.30630964,
0.325687,
0.29419225,
0.2908091,
0.28723598,
0.27696294,
]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_multi_cond_guidance(self):
torch_device = "cuda"
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "a castle next to a river"
edit = {
"editing_prompt": ["boat on a river, boat", "monet, impression, sunrise"],
"reverse_editing_direction": False,
"edit_warmup_steps": [15, 18],
"edit_guidance_scale": 6,
"edit_threshold": [0.9, 0.8],
"edit_momentum_scale": 0.5,
"edit_mom_beta": 0.6,
}
seed = 48
guidance_scale = 7
# no sega enabled
generator = torch.Generator(torch_device)
generator.manual_seed(seed)
output = pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [
0.75163555,
0.76037145,
0.61785,
0.9189673,
0.8627701,
0.85189694,
0.8512813,
0.87012076,
0.8312857,
]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# with sega enabled
# generator = torch.manual_seed(seed)
generator.manual_seed(seed)
output = pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
**edit,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [
0.73553365,
0.7537271,
0.74341905,
0.66480356,
0.6472925,
0.63039416,
0.64812905,
0.6749717,
0.6517102,
]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_guidance_fp16(self):
torch_device = "cuda"
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
prompt = "a photo of a cat"
edit = {
"editing_prompt": ["sunglasses"],
"reverse_editing_direction": [False],
"edit_warmup_steps": 10,
"edit_guidance_scale": 6,
"edit_threshold": 0.95,
"edit_momentum_scale": 0.5,
"edit_mom_beta": 0.6,
}
seed = 3
guidance_scale = 7
# no sega enabled
generator = torch.Generator(torch_device)
generator.manual_seed(seed)
output = pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [
0.34887695,
0.3876953,
0.375,
0.34423828,
0.3581543,
0.35717773,
0.3383789,
0.34570312,
0.359375,
]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# with sega enabled
# generator = torch.manual_seed(seed)
generator.manual_seed(seed)
output = pipe(
[prompt],
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=50,
output_type="np",
width=512,
height=512,
**edit,
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
expected_slice = [
0.42285156,
0.36914062,
0.29077148,
0.42041016,
0.41918945,
0.35498047,
0.3618164,
0.4423828,
0.43115234,
]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2