Spaces:
Runtime error
Runtime error
# Import the libraries | |
import gradio as gr | |
import joblib | |
import pandas as pd | |
# Run the training script placed in the same directory as app.py | |
# The training script will train and persist a linear regression | |
# model with the filename 'model.joblib' | |
# Load the freshly trained model from disk | |
model = joblib.load('model.joblib') | |
# Prepare the logging functionality | |
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json" | |
log_folder = log_file.parent | |
scheduler = CommitScheduler( | |
repo_id="-----------", # provide a name "insurance-charge-mlops-logs" for the repo_id | |
repo_type="dataset", | |
folder_path=log_folder, | |
path_in_repo="data", | |
every=2 | |
) | |
# Define the predict function which will take features, convert to dataframe and make predictions using the saved model | |
def predict_insu_charges(age, bmi, children, sex, smoker, region): | |
sample = { | |
'Age': age, | |
'bmi' : bmi, | |
'children' : children, | |
'sex' : sex, | |
'smoker' : smoker, | |
'region' : region | |
} | |
data_point = pd.DataFrame([sample]) | |
result = model.predict(data_point) | |
print(result) | |
return result | |
# the functions runs when 'Submit' is clicked or when a API request is made | |
# While the prediction is made, log both the inputs and outputs to a log file | |
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel | |
# access | |
with scheduler.lock: | |
with log_file.open("a") as f: | |
f.write(json.dumps( | |
{ | |
'age': age, | |
'bmi': bmi, | |
'children': children, | |
'sex': sex, | |
'smoker': smoker, | |
'region': region, | |
'prediction': prediction[0] | |
} | |
)) | |
f.write("\n") | |
return prediction[0] | |
# Set up UI components for input and output | |
age_input = gr.number(label="Age") | |
bmi_input = gr.number(label="BMI") | |
children_input = gr.number(label="Number of children") | |
sex_input = gr.Dropdown(['Female','Male'],label="Age") | |
smoker_input = gr.Dropdown(['Yes','No'],label="smoker?") | |
region_input = gr.Dropdown(['SouthWest','NorthWest','SouthEast','NorthEast'],label="Age") | |
model_output = gr.Label(label="charges") | |
# Create the gradio interface, make title "HealthyLife Insurance Charge Prediction" | |
demo = gr.Interface(fn=predict_insu_charges, | |
inputs = ['age_input', 'bmi_input','children_input','sex_input','smoker_input','region_input'], | |
outputs = model_output, | |
title = "HealthyLife Insurance Charge Prediction", | |
description = "For predicting insurance charges", | |
allow_flagging = "auto") | |
interface.launch(share=True) | |
# Launch with a load balancer | |
demo.queue() | |
demo.launch(share=False) | |