Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Utils for processing video dataset features.""" | |
from typing import Optional, Tuple | |
import tensorflow as tf, tf_keras | |
def _sample_or_pad_sequence_indices(sequence: tf.Tensor, num_steps: int, | |
stride: int, | |
offset: tf.Tensor) -> tf.Tensor: | |
"""Returns indices to take for sampling or padding sequences to fixed size.""" | |
sequence_length = tf.shape(sequence)[0] | |
sel_idx = tf.range(sequence_length) | |
# Repeats sequence until num_steps are available in total. | |
max_length = num_steps * stride + offset | |
num_repeats = tf.math.floordiv(max_length + sequence_length - 1, | |
sequence_length) | |
sel_idx = tf.tile(sel_idx, [num_repeats]) | |
steps = tf.range(offset, offset + num_steps * stride, stride) | |
return tf.gather(sel_idx, steps) | |
def sample_linspace_sequence(sequence: tf.Tensor, num_windows: int, | |
num_steps: int, stride: int) -> tf.Tensor: | |
"""Samples `num_windows` segments from sequence with linearly spaced offsets. | |
The samples are concatenated in a single `tf.Tensor` in order to have the same | |
format structure per timestep (e.g. a single frame). If `num_steps` * `stride` | |
is bigger than the number of timesteps, the sequence is repeated. This | |
function can be used in evaluation in order to extract enough segments to span | |
the entire sequence. | |
Args: | |
sequence: Any tensor where the first dimension is timesteps. | |
num_windows: Number of windows retrieved from the sequence. | |
num_steps: Number of steps (e.g. frames) to take. | |
stride: Distance to sample between timesteps. | |
Returns: | |
A single `tf.Tensor` with first dimension `num_windows` * `num_steps`. The | |
tensor contains the concatenated list of `num_windows` tensors which offsets | |
have been linearly spaced from input. | |
""" | |
sequence_length = tf.shape(sequence)[0] | |
max_offset = tf.maximum(0, sequence_length - num_steps * stride) | |
offsets = tf.linspace(0.0, tf.cast(max_offset, tf.float32), num_windows) | |
offsets = tf.cast(offsets, tf.int32) | |
all_indices = [] | |
for i in range(num_windows): | |
all_indices.append( | |
_sample_or_pad_sequence_indices( | |
sequence=sequence, | |
num_steps=num_steps, | |
stride=stride, | |
offset=offsets[i])) | |
indices = tf.concat(all_indices, axis=0) | |
indices.set_shape((num_windows * num_steps,)) | |
return tf.gather(sequence, indices) | |
def sample_sequence(sequence: tf.Tensor, | |
num_steps: int, | |
random: bool, | |
stride: int, | |
seed: Optional[int] = None) -> tf.Tensor: | |
"""Samples a single segment of size `num_steps` from a given sequence. | |
If `random` is not `True`, this function will simply sample the central window | |
of the sequence. Otherwise, a random offset will be chosen in a way that the | |
desired `num_steps` might be extracted from the sequence. | |
Args: | |
sequence: Any tensor where the first dimension is timesteps. | |
num_steps: Number of steps (e.g. frames) to take. | |
random: A boolean indicating whether to random sample the single window. If | |
`True`, the offset is randomized. If `False`, the middle frame minus half | |
of `num_steps` is the first frame. | |
stride: Distance to sample between timesteps. | |
seed: A deterministic seed to use when sampling. | |
Returns: | |
A single `tf.Tensor` with first dimension `num_steps` with the sampled | |
segment. | |
""" | |
sequence_length = tf.shape(sequence)[0] | |
if random: | |
sequence_length = tf.cast(sequence_length, tf.float32) | |
frame_stride = tf.cast(stride, tf.float32) | |
max_offset = tf.cond( | |
sequence_length > (num_steps - 1) * frame_stride, | |
lambda: sequence_length - (num_steps - 1) * frame_stride, | |
lambda: sequence_length) | |
offset = tf.random.uniform((), | |
maxval=tf.cast(max_offset, dtype=tf.int32), | |
dtype=tf.int32, | |
seed=seed) | |
else: | |
offset = (sequence_length - num_steps * stride) // 2 | |
offset = tf.maximum(0, offset) | |
indices = _sample_or_pad_sequence_indices( | |
sequence=sequence, num_steps=num_steps, stride=stride, offset=offset) | |
indices.set_shape((num_steps,)) | |
return tf.gather(sequence, indices) | |
def sample_segment_sequence(sequence: tf.Tensor, | |
num_frames: int, | |
is_training: bool, | |
seed: Optional[int] = None) -> tf.Tensor: | |
"""Samples a single segment of size `num_frames` from a given sequence. | |
This function follows the temporal segment network sampling style | |
(https://arxiv.org/abs/1608.00859). The video sequence would be divided into | |
`num_frames` non-overlapping segments with same length. If `is_training` is | |
`True`, we would randomly sampling one frame for each segment, and when | |
`is_training` is `False`, only the center frame of each segment is sampled. | |
Args: | |
sequence: Any tensor where the first dimension is timesteps. | |
num_frames: Number of frames to take. | |
is_training: A boolean indicating sampling in training or evaluation mode. | |
seed: A deterministic seed to use when sampling. | |
Returns: | |
A single `tf.Tensor` with first dimension `num_steps` with the sampled | |
segment. | |
""" | |
sequence_length = tf.shape(sequence)[0] | |
sequence_length = tf.cast(sequence_length, tf.float32) | |
segment_length = tf.cast(sequence_length // num_frames, tf.float32) | |
segment_indices = tf.linspace(0.0, sequence_length, num_frames + 1) | |
segment_indices = tf.cast(segment_indices, tf.int32) | |
if is_training: | |
segment_length = tf.cast(segment_length, tf.int32) | |
# pylint:disable=g-long-lambda | |
segment_offsets = tf.cond( | |
segment_length == 0, | |
lambda: tf.zeros(shape=(num_frames,), dtype=tf.int32), | |
lambda: tf.random.uniform( | |
shape=(num_frames,), | |
minval=0, | |
maxval=segment_length, | |
dtype=tf.int32, | |
seed=seed)) | |
# pylint:disable=g-long-lambda | |
else: | |
# Only sampling central frame during inference for being deterministic. | |
segment_offsets = tf.ones( | |
shape=(num_frames,), dtype=tf.int32) * tf.cast( | |
segment_length // 2, dtype=tf.int32) | |
indices = segment_indices[:-1] + segment_offsets | |
indices.set_shape((num_frames,)) | |
return tf.gather(sequence, indices) | |
def decode_jpeg(image_string: tf.Tensor, channels: int = 0) -> tf.Tensor: | |
"""Decodes JPEG raw bytes string into a RGB uint8 Tensor. | |
Args: | |
image_string: A `tf.Tensor` of type strings with the raw JPEG bytes where | |
the first dimension is timesteps. | |
channels: Number of channels of the JPEG image. Allowed values are 0, 1 and | |
3. If 0, the number of channels will be calculated at runtime and no | |
static shape is set. | |
Returns: | |
A Tensor of shape [T, H, W, C] of type uint8 with the decoded images. | |
""" | |
return tf.map_fn( | |
lambda x: tf.image.decode_jpeg(x, channels=channels), | |
image_string, | |
back_prop=False, | |
dtype=tf.uint8) | |
def decode_image(image_string: tf.Tensor, channels: int = 0) -> tf.Tensor: | |
"""Decodes PNG or JPEG raw bytes string into a RGB uint8 Tensor. | |
Args: | |
image_string: A `tf.Tensor` of type strings with the raw PNG or JPEG bytes | |
where the first dimension is timesteps. | |
channels: Number of channels of the PNG image. Allowed values are 0, 1 and | |
3. If 0, the number of channels will be calculated at runtime and no | |
static shape is set. | |
Returns: | |
A Tensor of shape [T, H, W, C] of type uint8 with the decoded images. | |
""" | |
return tf.map_fn( | |
lambda x: tf.image.decode_image( # pylint: disable=g-long-lambda | |
x, channels=channels, expand_animations=False), | |
image_string, | |
back_prop=False, | |
dtype=tf.uint8, | |
) | |
def crop_image( | |
frames: tf.Tensor, | |
target_height: int, | |
target_width: int, | |
random: bool = False, | |
num_crops: int = 1, | |
seed: Optional[int] = None, | |
) -> tf.Tensor: | |
"""Crops the image sequence of images. | |
If requested size is bigger than image size, image is padded with 0. If not | |
random cropping, a central crop is performed if num_crops is 1. | |
Args: | |
frames: A Tensor of dimension [timesteps, in_height, in_width, channels]. | |
target_height: Target cropped image height. | |
target_width: Target cropped image width. | |
random: A boolean indicating if crop should be randomized. | |
num_crops: Number of crops (support 1 for central crop and 3 for 3-crop). | |
seed: A deterministic seed to use when random cropping. | |
Returns: | |
A Tensor of shape [timesteps, out_height, out_width, channels] of type uint8 | |
with the cropped images. | |
""" | |
if random: | |
# Random spatial crop. | |
shape = tf.shape(frames) | |
# If a static_shape is available (e.g. when using this method from add_image | |
# method), it will be used to have an output tensor with static shape. | |
static_shape = frames.shape.as_list() | |
seq_len = shape[0] if static_shape[0] is None else static_shape[0] | |
channels = shape[3] if static_shape[3] is None else static_shape[3] | |
frames = tf.image.random_crop( | |
frames, (seq_len, target_height, target_width, channels), seed) | |
else: | |
if num_crops == 1: | |
# Central crop or pad. | |
frames = tf.image.resize_with_crop_or_pad(frames, target_height, | |
target_width) | |
elif num_crops == 3: | |
# Three-crop evaluation. | |
shape = tf.shape(frames) | |
static_shape = frames.shape.as_list() | |
seq_len = shape[0] if static_shape[0] is None else static_shape[0] | |
height = shape[1] if static_shape[1] is None else static_shape[1] | |
width = shape[2] if static_shape[2] is None else static_shape[2] | |
channels = shape[3] if static_shape[3] is None else static_shape[3] | |
size = tf.convert_to_tensor( | |
(seq_len, target_height, target_width, channels)) | |
offset_1 = tf.broadcast_to([0, 0, 0, 0], [4]) | |
# pylint:disable=g-long-lambda | |
offset_2 = tf.cond( | |
tf.greater_equal(height, width), | |
true_fn=lambda: tf.broadcast_to([ | |
0, tf.cast(height, tf.float32) / 2 - target_height // 2, 0, 0 | |
], [4]), | |
false_fn=lambda: tf.broadcast_to([ | |
0, 0, tf.cast(width, tf.float32) / 2 - target_width // 2, 0 | |
], [4])) | |
offset_3 = tf.cond( | |
tf.greater_equal(height, width), | |
true_fn=lambda: tf.broadcast_to( | |
[0, tf.cast(height, tf.float32) - target_height, 0, 0], [4]), | |
false_fn=lambda: tf.broadcast_to( | |
[0, 0, tf.cast(width, tf.float32) - target_width, 0], [4])) | |
# pylint:disable=g-long-lambda | |
crops = [] | |
for offset in [offset_1, offset_2, offset_3]: | |
offset = tf.cast(tf.math.round(offset), tf.int32) | |
crops.append(tf.slice(frames, offset, size)) | |
frames = tf.concat(crops, axis=0) | |
else: | |
raise NotImplementedError( | |
f"Only 1-crop and 3-crop are supported. Found {num_crops!r}.") | |
return frames | |
def resize_smallest(frames: tf.Tensor, min_resize: int) -> tf.Tensor: | |
"""Resizes frames so that min(`height`, `width`) is equal to `min_resize`. | |
This function will not do anything if the min(`height`, `width`) is already | |
equal to `min_resize`. This allows to save compute time. | |
Args: | |
frames: A Tensor of dimension [timesteps, input_h, input_w, channels]. | |
min_resize: Minimum size of the final image dimensions. | |
Returns: | |
A Tensor of shape [timesteps, output_h, output_w, channels] of type | |
frames.dtype where min(output_h, output_w) = min_resize. | |
""" | |
shape = tf.shape(frames) | |
input_h = shape[1] | |
input_w = shape[2] | |
output_h = tf.maximum(min_resize, (input_h * min_resize) // input_w) | |
output_w = tf.maximum(min_resize, (input_w * min_resize) // input_h) | |
def resize_fn(): | |
frames_resized = tf.image.resize(frames, (output_h, output_w)) | |
return tf.cast(frames_resized, frames.dtype) | |
should_resize = tf.math.logical_or( | |
tf.not_equal(input_w, output_w), tf.not_equal(input_h, output_h)) | |
frames = tf.cond(should_resize, resize_fn, lambda: frames) | |
return frames | |
def random_crop_resize(frames: tf.Tensor, output_h: int, output_w: int, | |
num_frames: int, num_channels: int, | |
aspect_ratio: Tuple[float, float], | |
area_range: Tuple[float, float]) -> tf.Tensor: | |
"""First crops clip with jittering and then resizes to (output_h, output_w). | |
Args: | |
frames: A Tensor of dimension [timesteps, input_h, input_w, channels]. | |
output_h: Resized image height. | |
output_w: Resized image width. | |
num_frames: Number of input frames per clip. | |
num_channels: Number of channels of the clip. | |
aspect_ratio: Float tuple with the aspect range for cropping. | |
area_range: Float tuple with the area range for cropping. | |
Returns: | |
A Tensor of shape [timesteps, output_h, output_w, channels] of type | |
frames.dtype. | |
""" | |
shape = tf.shape(frames) | |
seq_len, _, _, channels = shape[0], shape[1], shape[2], shape[3] | |
bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]) | |
factor = output_w / output_h | |
aspect_ratio = (aspect_ratio[0] * factor, aspect_ratio[1] * factor) | |
sample_distorted_bbox = tf.image.sample_distorted_bounding_box( | |
shape[1:], | |
bounding_boxes=bbox, | |
min_object_covered=0.1, | |
aspect_ratio_range=aspect_ratio, | |
area_range=area_range, | |
max_attempts=100, | |
use_image_if_no_bounding_boxes=True) | |
bbox_begin, bbox_size, _ = sample_distorted_bbox | |
offset_y, offset_x, _ = tf.unstack(bbox_begin) | |
target_height, target_width, _ = tf.unstack(bbox_size) | |
size = tf.convert_to_tensor((seq_len, target_height, target_width, channels)) | |
offset = tf.convert_to_tensor((0, offset_y, offset_x, 0)) | |
frames = tf.slice(frames, offset, size) | |
frames = tf.cast(tf.image.resize(frames, (output_h, output_w)), frames.dtype) | |
frames.set_shape((num_frames, output_h, output_w, num_channels)) | |
return frames | |
def random_flip_left_right(frames: tf.Tensor, | |
seed: Optional[int] = None) -> tf.Tensor: | |
"""Flips all the frames with a probability of 50%. | |
Args: | |
frames: A Tensor of shape [timesteps, input_h, input_w, channels]. | |
seed: A seed to use for the random sampling. | |
Returns: | |
A Tensor of shape [timesteps, output_h, output_w, channels] eventually | |
flipped left right. | |
""" | |
is_flipped = tf.random.uniform((), | |
minval=0, | |
maxval=2, | |
dtype=tf.int32, | |
seed=seed) | |
frames = tf.cond( | |
tf.equal(is_flipped, 1), | |
true_fn=lambda: tf.image.flip_left_right(frames), | |
false_fn=lambda: frames) | |
return frames | |
def normalize_image(frames: tf.Tensor, | |
zero_centering_image: bool, | |
dtype: tf.dtypes.DType = tf.float32) -> tf.Tensor: | |
"""Normalizes images. | |
Args: | |
frames: A Tensor of numbers. | |
zero_centering_image: If True, results are in [-1, 1], if False, results are | |
in [0, 1]. | |
dtype: Type of output Tensor. | |
Returns: | |
A Tensor of same shape as the input and of the given type. | |
""" | |
frames = tf.cast(frames, dtype) | |
if zero_centering_image: | |
return frames * (2.0 / 255.0) - 1.0 | |
else: | |
return frames / 255.0 | |