deanna-emery's picture
updates
93528c6
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utils for processing video dataset features."""
from typing import Optional, Tuple
import tensorflow as tf, tf_keras
def _sample_or_pad_sequence_indices(sequence: tf.Tensor, num_steps: int,
stride: int,
offset: tf.Tensor) -> tf.Tensor:
"""Returns indices to take for sampling or padding sequences to fixed size."""
sequence_length = tf.shape(sequence)[0]
sel_idx = tf.range(sequence_length)
# Repeats sequence until num_steps are available in total.
max_length = num_steps * stride + offset
num_repeats = tf.math.floordiv(max_length + sequence_length - 1,
sequence_length)
sel_idx = tf.tile(sel_idx, [num_repeats])
steps = tf.range(offset, offset + num_steps * stride, stride)
return tf.gather(sel_idx, steps)
def sample_linspace_sequence(sequence: tf.Tensor, num_windows: int,
num_steps: int, stride: int) -> tf.Tensor:
"""Samples `num_windows` segments from sequence with linearly spaced offsets.
The samples are concatenated in a single `tf.Tensor` in order to have the same
format structure per timestep (e.g. a single frame). If `num_steps` * `stride`
is bigger than the number of timesteps, the sequence is repeated. This
function can be used in evaluation in order to extract enough segments to span
the entire sequence.
Args:
sequence: Any tensor where the first dimension is timesteps.
num_windows: Number of windows retrieved from the sequence.
num_steps: Number of steps (e.g. frames) to take.
stride: Distance to sample between timesteps.
Returns:
A single `tf.Tensor` with first dimension `num_windows` * `num_steps`. The
tensor contains the concatenated list of `num_windows` tensors which offsets
have been linearly spaced from input.
"""
sequence_length = tf.shape(sequence)[0]
max_offset = tf.maximum(0, sequence_length - num_steps * stride)
offsets = tf.linspace(0.0, tf.cast(max_offset, tf.float32), num_windows)
offsets = tf.cast(offsets, tf.int32)
all_indices = []
for i in range(num_windows):
all_indices.append(
_sample_or_pad_sequence_indices(
sequence=sequence,
num_steps=num_steps,
stride=stride,
offset=offsets[i]))
indices = tf.concat(all_indices, axis=0)
indices.set_shape((num_windows * num_steps,))
return tf.gather(sequence, indices)
def sample_sequence(sequence: tf.Tensor,
num_steps: int,
random: bool,
stride: int,
seed: Optional[int] = None) -> tf.Tensor:
"""Samples a single segment of size `num_steps` from a given sequence.
If `random` is not `True`, this function will simply sample the central window
of the sequence. Otherwise, a random offset will be chosen in a way that the
desired `num_steps` might be extracted from the sequence.
Args:
sequence: Any tensor where the first dimension is timesteps.
num_steps: Number of steps (e.g. frames) to take.
random: A boolean indicating whether to random sample the single window. If
`True`, the offset is randomized. If `False`, the middle frame minus half
of `num_steps` is the first frame.
stride: Distance to sample between timesteps.
seed: A deterministic seed to use when sampling.
Returns:
A single `tf.Tensor` with first dimension `num_steps` with the sampled
segment.
"""
sequence_length = tf.shape(sequence)[0]
if random:
sequence_length = tf.cast(sequence_length, tf.float32)
frame_stride = tf.cast(stride, tf.float32)
max_offset = tf.cond(
sequence_length > (num_steps - 1) * frame_stride,
lambda: sequence_length - (num_steps - 1) * frame_stride,
lambda: sequence_length)
offset = tf.random.uniform((),
maxval=tf.cast(max_offset, dtype=tf.int32),
dtype=tf.int32,
seed=seed)
else:
offset = (sequence_length - num_steps * stride) // 2
offset = tf.maximum(0, offset)
indices = _sample_or_pad_sequence_indices(
sequence=sequence, num_steps=num_steps, stride=stride, offset=offset)
indices.set_shape((num_steps,))
return tf.gather(sequence, indices)
def sample_segment_sequence(sequence: tf.Tensor,
num_frames: int,
is_training: bool,
seed: Optional[int] = None) -> tf.Tensor:
"""Samples a single segment of size `num_frames` from a given sequence.
This function follows the temporal segment network sampling style
(https://arxiv.org/abs/1608.00859). The video sequence would be divided into
`num_frames` non-overlapping segments with same length. If `is_training` is
`True`, we would randomly sampling one frame for each segment, and when
`is_training` is `False`, only the center frame of each segment is sampled.
Args:
sequence: Any tensor where the first dimension is timesteps.
num_frames: Number of frames to take.
is_training: A boolean indicating sampling in training or evaluation mode.
seed: A deterministic seed to use when sampling.
Returns:
A single `tf.Tensor` with first dimension `num_steps` with the sampled
segment.
"""
sequence_length = tf.shape(sequence)[0]
sequence_length = tf.cast(sequence_length, tf.float32)
segment_length = tf.cast(sequence_length // num_frames, tf.float32)
segment_indices = tf.linspace(0.0, sequence_length, num_frames + 1)
segment_indices = tf.cast(segment_indices, tf.int32)
if is_training:
segment_length = tf.cast(segment_length, tf.int32)
# pylint:disable=g-long-lambda
segment_offsets = tf.cond(
segment_length == 0,
lambda: tf.zeros(shape=(num_frames,), dtype=tf.int32),
lambda: tf.random.uniform(
shape=(num_frames,),
minval=0,
maxval=segment_length,
dtype=tf.int32,
seed=seed))
# pylint:disable=g-long-lambda
else:
# Only sampling central frame during inference for being deterministic.
segment_offsets = tf.ones(
shape=(num_frames,), dtype=tf.int32) * tf.cast(
segment_length // 2, dtype=tf.int32)
indices = segment_indices[:-1] + segment_offsets
indices.set_shape((num_frames,))
return tf.gather(sequence, indices)
def decode_jpeg(image_string: tf.Tensor, channels: int = 0) -> tf.Tensor:
"""Decodes JPEG raw bytes string into a RGB uint8 Tensor.
Args:
image_string: A `tf.Tensor` of type strings with the raw JPEG bytes where
the first dimension is timesteps.
channels: Number of channels of the JPEG image. Allowed values are 0, 1 and
3. If 0, the number of channels will be calculated at runtime and no
static shape is set.
Returns:
A Tensor of shape [T, H, W, C] of type uint8 with the decoded images.
"""
return tf.map_fn(
lambda x: tf.image.decode_jpeg(x, channels=channels),
image_string,
back_prop=False,
dtype=tf.uint8)
def decode_image(image_string: tf.Tensor, channels: int = 0) -> tf.Tensor:
"""Decodes PNG or JPEG raw bytes string into a RGB uint8 Tensor.
Args:
image_string: A `tf.Tensor` of type strings with the raw PNG or JPEG bytes
where the first dimension is timesteps.
channels: Number of channels of the PNG image. Allowed values are 0, 1 and
3. If 0, the number of channels will be calculated at runtime and no
static shape is set.
Returns:
A Tensor of shape [T, H, W, C] of type uint8 with the decoded images.
"""
return tf.map_fn(
lambda x: tf.image.decode_image( # pylint: disable=g-long-lambda
x, channels=channels, expand_animations=False),
image_string,
back_prop=False,
dtype=tf.uint8,
)
def crop_image(
frames: tf.Tensor,
target_height: int,
target_width: int,
random: bool = False,
num_crops: int = 1,
seed: Optional[int] = None,
) -> tf.Tensor:
"""Crops the image sequence of images.
If requested size is bigger than image size, image is padded with 0. If not
random cropping, a central crop is performed if num_crops is 1.
Args:
frames: A Tensor of dimension [timesteps, in_height, in_width, channels].
target_height: Target cropped image height.
target_width: Target cropped image width.
random: A boolean indicating if crop should be randomized.
num_crops: Number of crops (support 1 for central crop and 3 for 3-crop).
seed: A deterministic seed to use when random cropping.
Returns:
A Tensor of shape [timesteps, out_height, out_width, channels] of type uint8
with the cropped images.
"""
if random:
# Random spatial crop.
shape = tf.shape(frames)
# If a static_shape is available (e.g. when using this method from add_image
# method), it will be used to have an output tensor with static shape.
static_shape = frames.shape.as_list()
seq_len = shape[0] if static_shape[0] is None else static_shape[0]
channels = shape[3] if static_shape[3] is None else static_shape[3]
frames = tf.image.random_crop(
frames, (seq_len, target_height, target_width, channels), seed)
else:
if num_crops == 1:
# Central crop or pad.
frames = tf.image.resize_with_crop_or_pad(frames, target_height,
target_width)
elif num_crops == 3:
# Three-crop evaluation.
shape = tf.shape(frames)
static_shape = frames.shape.as_list()
seq_len = shape[0] if static_shape[0] is None else static_shape[0]
height = shape[1] if static_shape[1] is None else static_shape[1]
width = shape[2] if static_shape[2] is None else static_shape[2]
channels = shape[3] if static_shape[3] is None else static_shape[3]
size = tf.convert_to_tensor(
(seq_len, target_height, target_width, channels))
offset_1 = tf.broadcast_to([0, 0, 0, 0], [4])
# pylint:disable=g-long-lambda
offset_2 = tf.cond(
tf.greater_equal(height, width),
true_fn=lambda: tf.broadcast_to([
0, tf.cast(height, tf.float32) / 2 - target_height // 2, 0, 0
], [4]),
false_fn=lambda: tf.broadcast_to([
0, 0, tf.cast(width, tf.float32) / 2 - target_width // 2, 0
], [4]))
offset_3 = tf.cond(
tf.greater_equal(height, width),
true_fn=lambda: tf.broadcast_to(
[0, tf.cast(height, tf.float32) - target_height, 0, 0], [4]),
false_fn=lambda: tf.broadcast_to(
[0, 0, tf.cast(width, tf.float32) - target_width, 0], [4]))
# pylint:disable=g-long-lambda
crops = []
for offset in [offset_1, offset_2, offset_3]:
offset = tf.cast(tf.math.round(offset), tf.int32)
crops.append(tf.slice(frames, offset, size))
frames = tf.concat(crops, axis=0)
else:
raise NotImplementedError(
f"Only 1-crop and 3-crop are supported. Found {num_crops!r}.")
return frames
def resize_smallest(frames: tf.Tensor, min_resize: int) -> tf.Tensor:
"""Resizes frames so that min(`height`, `width`) is equal to `min_resize`.
This function will not do anything if the min(`height`, `width`) is already
equal to `min_resize`. This allows to save compute time.
Args:
frames: A Tensor of dimension [timesteps, input_h, input_w, channels].
min_resize: Minimum size of the final image dimensions.
Returns:
A Tensor of shape [timesteps, output_h, output_w, channels] of type
frames.dtype where min(output_h, output_w) = min_resize.
"""
shape = tf.shape(frames)
input_h = shape[1]
input_w = shape[2]
output_h = tf.maximum(min_resize, (input_h * min_resize) // input_w)
output_w = tf.maximum(min_resize, (input_w * min_resize) // input_h)
def resize_fn():
frames_resized = tf.image.resize(frames, (output_h, output_w))
return tf.cast(frames_resized, frames.dtype)
should_resize = tf.math.logical_or(
tf.not_equal(input_w, output_w), tf.not_equal(input_h, output_h))
frames = tf.cond(should_resize, resize_fn, lambda: frames)
return frames
def random_crop_resize(frames: tf.Tensor, output_h: int, output_w: int,
num_frames: int, num_channels: int,
aspect_ratio: Tuple[float, float],
area_range: Tuple[float, float]) -> tf.Tensor:
"""First crops clip with jittering and then resizes to (output_h, output_w).
Args:
frames: A Tensor of dimension [timesteps, input_h, input_w, channels].
output_h: Resized image height.
output_w: Resized image width.
num_frames: Number of input frames per clip.
num_channels: Number of channels of the clip.
aspect_ratio: Float tuple with the aspect range for cropping.
area_range: Float tuple with the area range for cropping.
Returns:
A Tensor of shape [timesteps, output_h, output_w, channels] of type
frames.dtype.
"""
shape = tf.shape(frames)
seq_len, _, _, channels = shape[0], shape[1], shape[2], shape[3]
bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4])
factor = output_w / output_h
aspect_ratio = (aspect_ratio[0] * factor, aspect_ratio[1] * factor)
sample_distorted_bbox = tf.image.sample_distorted_bounding_box(
shape[1:],
bounding_boxes=bbox,
min_object_covered=0.1,
aspect_ratio_range=aspect_ratio,
area_range=area_range,
max_attempts=100,
use_image_if_no_bounding_boxes=True)
bbox_begin, bbox_size, _ = sample_distorted_bbox
offset_y, offset_x, _ = tf.unstack(bbox_begin)
target_height, target_width, _ = tf.unstack(bbox_size)
size = tf.convert_to_tensor((seq_len, target_height, target_width, channels))
offset = tf.convert_to_tensor((0, offset_y, offset_x, 0))
frames = tf.slice(frames, offset, size)
frames = tf.cast(tf.image.resize(frames, (output_h, output_w)), frames.dtype)
frames.set_shape((num_frames, output_h, output_w, num_channels))
return frames
def random_flip_left_right(frames: tf.Tensor,
seed: Optional[int] = None) -> tf.Tensor:
"""Flips all the frames with a probability of 50%.
Args:
frames: A Tensor of shape [timesteps, input_h, input_w, channels].
seed: A seed to use for the random sampling.
Returns:
A Tensor of shape [timesteps, output_h, output_w, channels] eventually
flipped left right.
"""
is_flipped = tf.random.uniform((),
minval=0,
maxval=2,
dtype=tf.int32,
seed=seed)
frames = tf.cond(
tf.equal(is_flipped, 1),
true_fn=lambda: tf.image.flip_left_right(frames),
false_fn=lambda: frames)
return frames
def normalize_image(frames: tf.Tensor,
zero_centering_image: bool,
dtype: tf.dtypes.DType = tf.float32) -> tf.Tensor:
"""Normalizes images.
Args:
frames: A Tensor of numbers.
zero_centering_image: If True, results are in [-1, 1], if False, results are
in [0, 1].
dtype: Type of output Tensor.
Returns:
A Tensor of same shape as the input and of the given type.
"""
frames = tf.cast(frames, dtype)
if zero_centering_image:
return frames * (2.0 / 255.0) - 1.0
else:
return frames / 255.0