Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Data parser and processing. | |
Parse image and ground truths in a dataset to training targets and package them | |
into (image, labels) tuple for ShapeMask. | |
Weicheng Kuo, Anelia Angelova, Jitendra Malik, Tsung-Yi Lin | |
ShapeMask: Learning to Segment Novel Objects by Refining Shape Priors. | |
arXiv:1904.03239. | |
""" | |
import tensorflow as tf, tf_keras | |
from official.legacy.detection.dataloader import anchor | |
from official.legacy.detection.dataloader import mode_keys as ModeKeys | |
from official.legacy.detection.dataloader import tf_example_decoder | |
from official.legacy.detection.utils import box_utils | |
from official.legacy.detection.utils import class_utils | |
from official.legacy.detection.utils import dataloader_utils | |
from official.legacy.detection.utils import input_utils | |
def pad_to_size(input_tensor, size): | |
"""Pads data with zeros to a given length at the first dimension if needed. | |
Args: | |
input_tensor: `Tensor` with any dimension. | |
size: `int` number for the first dimension of output Tensor. | |
Returns: | |
`Tensor` with the first dimension padded to `size` if the first diemsion | |
is less than `size`, otherwise no padding. | |
""" | |
input_shape = tf.shape(input_tensor) | |
padding_shape = [] | |
# Computes the padding length on the first dimension. | |
padding_length = tf.maximum(0, size - tf.shape(input_tensor)[0]) | |
assert_length = tf.Assert( | |
tf.greater_equal(padding_length, 0), [padding_length]) | |
with tf.control_dependencies([assert_length]): | |
padding_shape.append(padding_length) | |
# Copies shapes of the rest of input shape dimensions. | |
for i in range(1, len(input_shape)): | |
padding_shape.append(tf.shape(input=input_tensor)[i]) | |
# Pads input tensor to the fixed first dimension. | |
paddings = tf.cast(tf.zeros(padding_shape), input_tensor.dtype) | |
padded_tensor = tf.concat([input_tensor, paddings], axis=0) | |
return padded_tensor | |
class Parser(object): | |
"""ShapeMask Parser to parse an image and its annotations into a dictionary of tensors.""" | |
def __init__(self, | |
output_size, | |
min_level, | |
max_level, | |
num_scales, | |
aspect_ratios, | |
anchor_size, | |
use_category=True, | |
outer_box_scale=1.0, | |
box_jitter_scale=0.025, | |
num_sampled_masks=8, | |
mask_crop_size=32, | |
mask_min_level=3, | |
mask_max_level=5, | |
upsample_factor=4, | |
match_threshold=0.5, | |
unmatched_threshold=0.5, | |
aug_rand_hflip=False, | |
aug_scale_min=1.0, | |
aug_scale_max=1.0, | |
skip_crowd_during_training=True, | |
max_num_instances=100, | |
use_bfloat16=True, | |
mask_train_class='all', | |
mode=None): | |
"""Initializes parameters for parsing annotations in the dataset. | |
Args: | |
output_size: `Tensor` or `list` for [height, width] of output image. The | |
output_size should be divided by the largest feature stride 2^max_level. | |
min_level: `int` number of minimum level of the output feature pyramid. | |
max_level: `int` number of maximum level of the output feature pyramid. | |
num_scales: `int` number representing intermediate scales added | |
on each level. For instances, num_scales=2 adds one additional | |
intermediate anchor scales [2^0, 2^0.5] on each level. | |
aspect_ratios: `list` of float numbers representing the aspect raito | |
anchors added on each level. The number indicates the ratio of width to | |
height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors | |
on each scale level. | |
anchor_size: `float` number representing the scale of size of the base | |
anchor to the feature stride 2^level. | |
use_category: if `False`, treat all object in all classes in one | |
foreground category. | |
outer_box_scale: `float` number in a range of [1.0, inf) representing | |
the scale from object box to outer box. The mask branch predicts | |
instance mask enclosed in outer box. | |
box_jitter_scale: `float` number representing the noise magnitude to | |
jitter the training groundtruth boxes for mask branch. | |
num_sampled_masks: `int` number of sampled masks for training. | |
mask_crop_size: `list` for [height, width] of output training masks. | |
mask_min_level: `int` number indicating the minimum feature level to | |
obtain instance features. | |
mask_max_level: `int` number indicating the maximum feature level to | |
obtain instance features. | |
upsample_factor: `int` factor of upsampling the fine mask predictions. | |
match_threshold: `float` number between 0 and 1 representing the | |
lower-bound threshold to assign positive labels for anchors. An anchor | |
with a score over the threshold is labeled positive. | |
unmatched_threshold: `float` number between 0 and 1 representing the | |
upper-bound threshold to assign negative labels for anchors. An anchor | |
with a score below the threshold is labeled negative. | |
aug_rand_hflip: `bool`, if True, augment training with random | |
horizontal flip. | |
aug_scale_min: `float`, the minimum scale applied to `output_size` for | |
data augmentation during training. | |
aug_scale_max: `float`, the maximum scale applied to `output_size` for | |
data augmentation during training. | |
skip_crowd_during_training: `bool`, if True, skip annotations labeled with | |
`is_crowd` equals to 1. | |
max_num_instances: `int` number of maximum number of instances in an | |
image. The groundtruth data will be padded to `max_num_instances`. | |
use_bfloat16: `bool`, if True, cast output image to tf.bfloat16. | |
mask_train_class: a string of experiment mode: `all`, `voc` or `nonvoc`. | |
mode: a ModeKeys. Specifies if this is training, evaluation, prediction | |
or prediction with groundtruths in the outputs. | |
""" | |
self._mode = mode | |
self._mask_train_class = mask_train_class | |
self._max_num_instances = max_num_instances | |
self._skip_crowd_during_training = skip_crowd_during_training | |
self._is_training = (mode == ModeKeys.TRAIN) | |
self._example_decoder = tf_example_decoder.TfExampleDecoder( | |
include_mask=True) | |
# Anchor. | |
self._output_size = output_size | |
self._min_level = min_level | |
self._max_level = max_level | |
self._num_scales = num_scales | |
self._aspect_ratios = aspect_ratios | |
self._anchor_size = anchor_size | |
self._match_threshold = match_threshold | |
self._unmatched_threshold = unmatched_threshold | |
# Data augmentation. | |
self._aug_rand_hflip = aug_rand_hflip | |
self._aug_scale_min = aug_scale_min | |
self._aug_scale_max = aug_scale_max | |
# Device. | |
self._use_bfloat16 = use_bfloat16 | |
# ShapeMask specific. | |
# Control of which category to use. | |
self._use_category = use_category | |
self._num_sampled_masks = num_sampled_masks | |
self._mask_crop_size = mask_crop_size | |
self._mask_min_level = mask_min_level | |
self._mask_max_level = mask_max_level | |
self._outer_box_scale = outer_box_scale | |
self._box_jitter_scale = box_jitter_scale | |
self._up_sample_factor = upsample_factor | |
# Data is parsed depending on the model Modekey. | |
if mode == ModeKeys.TRAIN: | |
self._parse_fn = self._parse_train_data | |
elif mode == ModeKeys.EVAL: | |
self._parse_fn = self._parse_eval_data | |
elif mode == ModeKeys.PREDICT or mode == ModeKeys.PREDICT_WITH_GT: | |
self._parse_fn = self._parse_predict_data | |
else: | |
raise ValueError('mode is not defined.') | |
def __call__(self, value): | |
"""Parses data to an image and associated training labels. | |
Args: | |
value: a string tensor holding a serialized tf.Example proto. | |
Returns: | |
inputs: | |
image: image tensor that is preproessed to have normalized value and | |
dimension [output_size[0], output_size[1], 3] | |
mask_boxes: sampled boxes that tightly enclose the training masks. The | |
box is represented in [y1, x1, y2, x2] format. The tensor is sampled | |
to the fixed dimension [self._num_sampled_masks, 4]. | |
mask_outer_boxes: loose box that enclose sampled tight box. The | |
box is represented in [y1, x1, y2, x2] format. The tensor is sampled | |
to the fixed dimension [self._num_sampled_masks, 4]. | |
mask_classes: the class ids of sampled training masks. The tensor has | |
shape [self._num_sampled_masks]. | |
labels: | |
cls_targets: ordered dictionary with keys | |
[min_level, min_level+1, ..., max_level]. The values are tensor with | |
shape [height_l, width_l, anchors_per_location]. The height_l and | |
width_l represent the dimension of class logits at l-th level. | |
box_targets: ordered dictionary with keys | |
[min_level, min_level+1, ..., max_level]. The values are tensor with | |
shape [height_l, width_l, anchors_per_location * 4]. The height_l and | |
width_l represent the dimension of bounding box regression output at | |
l-th level. | |
num_positives: number of positive anchors in the image. | |
anchor_boxes: ordered dictionary with keys | |
[min_level, min_level+1, ..., max_level]. The values are tensor with | |
shape [height_l, width_l, 4] representing anchor boxes at each level. | |
image_scale: 2D float `Tensor` representing scale factors that apply | |
to [height, width] of input image. | |
mask_targets: training binary mask targets. The tensor has shape | |
[self._num_sampled_masks, self._mask_crop_size, self._mask_crop_size]. | |
mask_is_valid: the binary tensor to indicate if the sampled masks are | |
valide. The sampled masks are invalid when no mask annotations are | |
included in the image. The tensor has shape [1]. | |
groundtruths: | |
source_id: source image id. Default value -1 if the source id is empty | |
in the groundtruth annotation. | |
boxes: groundtruth bounding box annotations. The box is represented in | |
[y1, x1, y2, x2] format. The tensor is padded with -1 to the fixed | |
dimension [self._max_num_instances, 4]. | |
classes: groundtruth classes annotations. The tensor is padded with | |
-1 to the fixed dimension [self._max_num_instances]. | |
areas: groundtruth areas annotations. The tensor is padded with -1 | |
to the fixed dimension [self._max_num_instances]. | |
is_crowds: groundtruth annotations to indicate if an annotation | |
represents a group of instances by value {0, 1}. The tensor is | |
padded with 0 to the fixed dimension [self._max_num_instances]. | |
""" | |
with tf.name_scope('parser'): | |
data = self._example_decoder.decode(value) | |
return self._parse_fn(data) | |
def _parse_train_data(self, data): | |
"""Parse data for ShapeMask training.""" | |
classes = data['groundtruth_classes'] | |
boxes = data['groundtruth_boxes'] | |
masks = data['groundtruth_instance_masks'] | |
is_crowds = data['groundtruth_is_crowd'] | |
# Skips annotations with `is_crowd` = True. | |
if self._skip_crowd_during_training and self._is_training: | |
num_groundtrtuhs = tf.shape(classes)[0] | |
with tf.control_dependencies([num_groundtrtuhs, is_crowds]): | |
indices = tf.cond( | |
tf.greater(tf.size(is_crowds), 0), | |
lambda: tf.where(tf.logical_not(is_crowds))[:, 0], | |
lambda: tf.cast(tf.range(num_groundtrtuhs), tf.int64)) | |
classes = tf.gather(classes, indices) | |
boxes = tf.gather(boxes, indices) | |
masks = tf.gather(masks, indices) | |
# Gets original image and its size. | |
image = data['image'] | |
image_shape = tf.shape(image)[0:2] | |
# If not using category, makes all categories with id = 0. | |
if not self._use_category: | |
classes = tf.cast(tf.greater(classes, 0), dtype=tf.float32) | |
# Normalizes image with mean and std pixel values. | |
image = input_utils.normalize_image(image) | |
# Flips image randomly during training. | |
if self._aug_rand_hflip: | |
image, boxes, masks = input_utils.random_horizontal_flip( | |
image, boxes, masks) | |
# Converts boxes from normalized coordinates to pixel coordinates. | |
boxes = box_utils.denormalize_boxes(boxes, image_shape) | |
# Resizes and crops image. | |
image, image_info = input_utils.resize_and_crop_image( | |
image, | |
self._output_size, | |
self._output_size, | |
aug_scale_min=self._aug_scale_min, | |
aug_scale_max=self._aug_scale_max) | |
image_scale = image_info[2, :] | |
offset = image_info[3, :] | |
# Resizes and crops boxes and masks. | |
boxes = input_utils.resize_and_crop_boxes( | |
boxes, image_scale, image_info[1, :], offset) | |
# Filters out ground truth boxes that are all zeros. | |
indices = box_utils.get_non_empty_box_indices(boxes) | |
boxes = tf.gather(boxes, indices) | |
classes = tf.gather(classes, indices) | |
masks = tf.gather(masks, indices) | |
# Assigns anchors. | |
input_anchor = anchor.Anchor( | |
self._min_level, self._max_level, self._num_scales, | |
self._aspect_ratios, self._anchor_size, self._output_size) | |
anchor_labeler = anchor.AnchorLabeler( | |
input_anchor, self._match_threshold, self._unmatched_threshold) | |
(cls_targets, | |
box_targets, | |
num_positives) = anchor_labeler.label_anchors( | |
boxes, | |
tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) | |
# Sample groundtruth masks/boxes/classes for mask branch. | |
num_masks = tf.shape(masks)[0] | |
mask_shape = tf.shape(masks)[1:3] | |
# Pad sampled boxes/masks/classes to a constant batch size. | |
padded_boxes = pad_to_size(boxes, self._num_sampled_masks) | |
padded_classes = pad_to_size(classes, self._num_sampled_masks) | |
padded_masks = pad_to_size(masks, self._num_sampled_masks) | |
# Randomly sample groundtruth masks for mask branch training. For the image | |
# without groundtruth masks, it will sample the dummy padded tensors. | |
rand_indices = tf.random.shuffle( | |
tf.range(tf.maximum(num_masks, self._num_sampled_masks))) | |
rand_indices = tf.math.mod(rand_indices, tf.maximum(num_masks, 1)) | |
rand_indices = rand_indices[0:self._num_sampled_masks] | |
rand_indices = tf.reshape(rand_indices, [self._num_sampled_masks]) | |
sampled_boxes = tf.gather(padded_boxes, rand_indices) | |
sampled_classes = tf.gather(padded_classes, rand_indices) | |
sampled_masks = tf.gather(padded_masks, rand_indices) | |
# Jitter the sampled boxes to mimic the noisy detections. | |
sampled_boxes = box_utils.jitter_boxes( | |
sampled_boxes, noise_scale=self._box_jitter_scale) | |
sampled_boxes = box_utils.clip_boxes(sampled_boxes, self._output_size) | |
# Compute mask targets in feature crop. A feature crop fully contains a | |
# sampled box. | |
mask_outer_boxes = box_utils.compute_outer_boxes( | |
sampled_boxes, tf.shape(image)[0:2], scale=self._outer_box_scale) | |
mask_outer_boxes = box_utils.clip_boxes(mask_outer_boxes, self._output_size) | |
# Compensate the offset of mask_outer_boxes to map it back to original image | |
# scale. | |
mask_outer_boxes_ori = mask_outer_boxes | |
mask_outer_boxes_ori += tf.tile(tf.expand_dims(offset, axis=0), [1, 2]) | |
mask_outer_boxes_ori /= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2]) | |
norm_mask_outer_boxes_ori = box_utils.normalize_boxes( | |
mask_outer_boxes_ori, mask_shape) | |
# Set sampled_masks shape to [batch_size, height, width, 1]. | |
sampled_masks = tf.cast(tf.expand_dims(sampled_masks, axis=-1), tf.float32) | |
mask_targets = tf.image.crop_and_resize( | |
sampled_masks, | |
norm_mask_outer_boxes_ori, | |
box_indices=tf.range(self._num_sampled_masks), | |
crop_size=[self._mask_crop_size, self._mask_crop_size], | |
method='bilinear', | |
extrapolation_value=0, | |
name='train_mask_targets') | |
mask_targets = tf.where(tf.greater_equal(mask_targets, 0.5), | |
tf.ones_like(mask_targets), | |
tf.zeros_like(mask_targets)) | |
mask_targets = tf.squeeze(mask_targets, axis=-1) | |
if self._up_sample_factor > 1: | |
fine_mask_targets = tf.image.crop_and_resize( | |
sampled_masks, | |
norm_mask_outer_boxes_ori, | |
box_indices=tf.range(self._num_sampled_masks), | |
crop_size=[ | |
self._mask_crop_size * self._up_sample_factor, | |
self._mask_crop_size * self._up_sample_factor | |
], | |
method='bilinear', | |
extrapolation_value=0, | |
name='train_mask_targets') | |
fine_mask_targets = tf.where( | |
tf.greater_equal(fine_mask_targets, 0.5), | |
tf.ones_like(fine_mask_targets), tf.zeros_like(fine_mask_targets)) | |
fine_mask_targets = tf.squeeze(fine_mask_targets, axis=-1) | |
else: | |
fine_mask_targets = mask_targets | |
# If bfloat16 is used, casts input image to tf.bfloat16. | |
if self._use_bfloat16: | |
image = tf.cast(image, dtype=tf.bfloat16) | |
valid_image = tf.cast(tf.not_equal(num_masks, 0), tf.int32) | |
if self._mask_train_class == 'all': | |
mask_is_valid = valid_image * tf.ones_like(sampled_classes, tf.int32) | |
else: | |
# Get the intersection of sampled classes with training splits. | |
mask_valid_classes = tf.cast( | |
tf.expand_dims( | |
class_utils.coco_split_class_ids(self._mask_train_class), 1), | |
sampled_classes.dtype) | |
match = tf.reduce_any( | |
tf.equal(tf.expand_dims(sampled_classes, 0), mask_valid_classes), 0) | |
mask_is_valid = valid_image * tf.cast(match, tf.int32) | |
# Packs labels for model_fn outputs. | |
labels = { | |
'cls_targets': cls_targets, | |
'box_targets': box_targets, | |
'anchor_boxes': input_anchor.multilevel_boxes, | |
'num_positives': num_positives, | |
'image_info': image_info, | |
# For ShapeMask. | |
'mask_targets': mask_targets, | |
'fine_mask_targets': fine_mask_targets, | |
'mask_is_valid': mask_is_valid, | |
} | |
inputs = { | |
'image': image, | |
'image_info': image_info, | |
'mask_boxes': sampled_boxes, | |
'mask_outer_boxes': mask_outer_boxes, | |
'mask_classes': sampled_classes, | |
} | |
return inputs, labels | |
def _parse_predict_data(self, data): | |
"""Parse data for ShapeMask training.""" | |
classes = data['groundtruth_classes'] | |
boxes = data['groundtruth_boxes'] | |
masks = data['groundtruth_instance_masks'] | |
# Gets original image and its size. | |
image = data['image'] | |
image_shape = tf.shape(image)[0:2] | |
# If not using category, makes all categories with id = 0. | |
if not self._use_category: | |
classes = tf.cast(tf.greater(classes, 0), dtype=tf.float32) | |
# Normalizes image with mean and std pixel values. | |
image = input_utils.normalize_image(image) | |
# Converts boxes from normalized coordinates to pixel coordinates. | |
boxes = box_utils.denormalize_boxes(boxes, image_shape) | |
# Resizes and crops image. | |
image, image_info = input_utils.resize_and_crop_image( | |
image, | |
self._output_size, | |
self._output_size, | |
aug_scale_min=1.0, | |
aug_scale_max=1.0) | |
image_scale = image_info[2, :] | |
offset = image_info[3, :] | |
# Resizes and crops boxes and masks. | |
boxes = input_utils.resize_and_crop_boxes( | |
boxes, image_scale, image_info[1, :], offset) | |
masks = input_utils.resize_and_crop_masks( | |
tf.expand_dims(masks, axis=-1), image_scale, self._output_size, offset) | |
# Filters out ground truth boxes that are all zeros. | |
indices = box_utils.get_non_empty_box_indices(boxes) | |
boxes = tf.gather(boxes, indices) | |
classes = tf.gather(classes, indices) | |
# Assigns anchors. | |
input_anchor = anchor.Anchor( | |
self._min_level, self._max_level, self._num_scales, | |
self._aspect_ratios, self._anchor_size, self._output_size) | |
anchor_labeler = anchor.AnchorLabeler( | |
input_anchor, self._match_threshold, self._unmatched_threshold) | |
# If bfloat16 is used, casts input image to tf.bfloat16. | |
if self._use_bfloat16: | |
image = tf.cast(image, dtype=tf.bfloat16) | |
labels = { | |
'anchor_boxes': input_anchor.multilevel_boxes, | |
'image_info': image_info, | |
} | |
if self._mode == ModeKeys.PREDICT_WITH_GT: | |
# Converts boxes from normalized coordinates to pixel coordinates. | |
groundtruths = { | |
'source_id': data['source_id'], | |
'height': data['height'], | |
'width': data['width'], | |
'num_detections': tf.shape(data['groundtruth_classes']), | |
'boxes': box_utils.denormalize_boxes( | |
data['groundtruth_boxes'], image_shape), | |
'classes': data['groundtruth_classes'], | |
# 'masks': tf.squeeze(masks, axis=-1), | |
'areas': data['groundtruth_area'], | |
'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), | |
} | |
groundtruths['source_id'] = dataloader_utils.process_source_id( | |
groundtruths['source_id']) | |
groundtruths = dataloader_utils.pad_groundtruths_to_fixed_size( | |
groundtruths, self._max_num_instances) | |
# Computes training labels. | |
(cls_targets, | |
box_targets, | |
num_positives) = anchor_labeler.label_anchors( | |
boxes, | |
tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) | |
# Packs labels for model_fn outputs. | |
labels.update({ | |
'cls_targets': cls_targets, | |
'box_targets': box_targets, | |
'num_positives': num_positives, | |
'groundtruths': groundtruths, | |
}) | |
inputs = { | |
'image': image, | |
'image_info': image_info, | |
} | |
return inputs, labels | |