Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Dataclasses for optimization configs. | |
This file define the dataclass for optimization configs (OptimizationConfig). | |
It also has two helper functions get_optimizer_config, and get_lr_config from | |
an OptimizationConfig class. | |
""" | |
from typing import Optional | |
import dataclasses | |
from official.modeling.hyperparams import base_config | |
from official.modeling.hyperparams import oneof | |
from official.modeling.optimization.configs import learning_rate_config as lr_cfg | |
from official.modeling.optimization.configs import optimizer_config as opt_cfg | |
class OptimizerConfig(oneof.OneOfConfig): | |
"""Configuration for optimizer. | |
Attributes: | |
type: 'str', type of optimizer to be used, on the of fields below. | |
sgd: sgd optimizer config. | |
adam: adam optimizer config. | |
adamw: adam with weight decay. | |
lamb: lamb optimizer. | |
rmsprop: rmsprop optimizer. | |
lars: lars optimizer. | |
adagrad: adagrad optimizer. | |
slide: slide optimizer. | |
adafactor: adafactor optimizer. | |
adafactor_keras: adafactor optimizer. | |
""" | |
type: Optional[str] = None | |
sgd: opt_cfg.SGDConfig = dataclasses.field(default_factory=opt_cfg.SGDConfig) | |
sgd_experimental: opt_cfg.SGDExperimentalConfig = dataclasses.field( | |
default_factory=opt_cfg.SGDExperimentalConfig | |
) | |
adam: opt_cfg.AdamConfig = dataclasses.field( | |
default_factory=opt_cfg.AdamConfig | |
) | |
adam_experimental: opt_cfg.AdamExperimentalConfig = dataclasses.field( | |
default_factory=opt_cfg.AdamExperimentalConfig | |
) | |
adamw: opt_cfg.AdamWeightDecayConfig = dataclasses.field( | |
default_factory=opt_cfg.AdamWeightDecayConfig | |
) | |
adamw_experimental: opt_cfg.AdamWeightDecayExperimentalConfig = ( | |
dataclasses.field( | |
default_factory=opt_cfg.AdamWeightDecayExperimentalConfig | |
) | |
) | |
lamb: opt_cfg.LAMBConfig = dataclasses.field( | |
default_factory=opt_cfg.LAMBConfig | |
) | |
rmsprop: opt_cfg.RMSPropConfig = dataclasses.field( | |
default_factory=opt_cfg.RMSPropConfig | |
) | |
lars: opt_cfg.LARSConfig = dataclasses.field( | |
default_factory=opt_cfg.LARSConfig | |
) | |
adagrad: opt_cfg.AdagradConfig = dataclasses.field( | |
default_factory=opt_cfg.AdagradConfig | |
) | |
slide: opt_cfg.SLIDEConfig = dataclasses.field( | |
default_factory=opt_cfg.SLIDEConfig | |
) | |
adafactor: opt_cfg.AdafactorConfig = dataclasses.field( | |
default_factory=opt_cfg.AdafactorConfig | |
) | |
adafactor_keras: opt_cfg.AdafactorKerasConfig = dataclasses.field( | |
default_factory=opt_cfg.AdafactorKerasConfig | |
) | |
class LrConfig(oneof.OneOfConfig): | |
"""Configuration for lr schedule. | |
Attributes: | |
type: 'str', type of lr schedule to be used, one of the fields below. | |
constant: constant learning rate config. | |
stepwise: stepwise learning rate config. | |
exponential: exponential learning rate config. | |
polynomial: polynomial learning rate config. | |
cosine: cosine learning rate config. | |
power: step^power learning rate config. | |
power_linear: learning rate config of step^power followed by | |
step^power*linear. | |
power_with_offset: power decay with a step offset. | |
step_cosine_with_offset: Step cosine with a step offset. | |
""" | |
type: Optional[str] = None | |
constant: lr_cfg.ConstantLrConfig = dataclasses.field( | |
default_factory=lr_cfg.ConstantLrConfig | |
) | |
stepwise: lr_cfg.StepwiseLrConfig = dataclasses.field( | |
default_factory=lr_cfg.StepwiseLrConfig | |
) | |
exponential: lr_cfg.ExponentialLrConfig = dataclasses.field( | |
default_factory=lr_cfg.ExponentialLrConfig | |
) | |
polynomial: lr_cfg.PolynomialLrConfig = dataclasses.field( | |
default_factory=lr_cfg.PolynomialLrConfig | |
) | |
cosine: lr_cfg.CosineLrConfig = dataclasses.field( | |
default_factory=lr_cfg.CosineLrConfig | |
) | |
power: lr_cfg.DirectPowerLrConfig = dataclasses.field( | |
default_factory=lr_cfg.DirectPowerLrConfig | |
) | |
power_linear: lr_cfg.PowerAndLinearDecayLrConfig = dataclasses.field( | |
default_factory=lr_cfg.PowerAndLinearDecayLrConfig | |
) | |
power_with_offset: lr_cfg.PowerDecayWithOffsetLrConfig = dataclasses.field( | |
default_factory=lr_cfg.PowerDecayWithOffsetLrConfig | |
) | |
step_cosine_with_offset: lr_cfg.StepCosineLrConfig = dataclasses.field( | |
default_factory=lr_cfg.StepCosineLrConfig | |
) | |
class WarmupConfig(oneof.OneOfConfig): | |
"""Configuration for lr schedule. | |
Attributes: | |
type: 'str', type of warmup schedule to be used, one of the fields below. | |
linear: linear warmup config. | |
polynomial: polynomial warmup config. | |
""" | |
type: Optional[str] = None | |
linear: lr_cfg.LinearWarmupConfig = dataclasses.field( | |
default_factory=lr_cfg.LinearWarmupConfig | |
) | |
polynomial: lr_cfg.PolynomialWarmupConfig = dataclasses.field( | |
default_factory=lr_cfg.PolynomialWarmupConfig | |
) | |
class OptimizationConfig(base_config.Config): | |
"""Configuration for optimizer and learning rate schedule. | |
Attributes: | |
optimizer: optimizer oneof config. | |
ema: optional exponential moving average optimizer config, if specified, ema | |
optimizer will be used. | |
learning_rate: learning rate oneof config. | |
warmup: warmup oneof config. | |
""" | |
optimizer: OptimizerConfig = dataclasses.field( | |
default_factory=OptimizerConfig | |
) | |
ema: Optional[opt_cfg.EMAConfig] = None | |
learning_rate: LrConfig = dataclasses.field(default_factory=LrConfig) | |
warmup: WarmupConfig = dataclasses.field(default_factory=WarmupConfig) | |