iCD-image-editing / generation.py
dbaranchuk's picture
Main update
bf363c0 verified
raw
history blame contribute delete
No virus
25.5 kB
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
from tqdm import tqdm
from typing import Union
from IPython.display import display
import p2p
# Main function to run
# ----------------------------------------------------------------------
@torch.no_grad()
def runner(
model,
prompt,
controller,
solver,
is_cons_forward=False,
num_inference_steps=50,
guidance_scale=7.5,
generator=None,
latent=None,
uncond_embeddings=None,
start_time=50,
return_type='image',
dynamic_guidance=False,
tau1=0.4,
tau2=0.6,
w_embed_dim=0,
):
p2p.register_attention_control(model, controller)
height = width = 512
solver.init_prompt(prompt, None)
latent, latents = init_latent(latent, model, 512, 512, generator, len(prompt))
model.scheduler.set_timesteps(num_inference_steps)
dynamic_guidance = True if tau1 < 1.0 or tau1 < 1.0 else False
if not is_cons_forward:
latents = solver.ddim_loop(latents,
num_inference_steps,
is_forward=False,
guidance_scale=guidance_scale,
dynamic_guidance=dynamic_guidance,
tau1=tau1,
tau2=tau2,
w_embed_dim=w_embed_dim,
uncond_embeddings=uncond_embeddings if uncond_embeddings is not None else None,
controller=controller)
latents = latents[-1]
else:
latents = solver.cons_generation(
latents,
guidance_scale=guidance_scale,
w_embed_dim=w_embed_dim,
dynamic_guidance=dynamic_guidance,
tau1=tau1,
tau2=tau2,
controller=controller)
latents = latents[-1]
if return_type == 'image':
image = latent2image(model.vae, latents.to(model.vae.dtype))
else:
image = latents
return image, latent
# ----------------------------------------------------------------------
# Utils
# ----------------------------------------------------------------------
def linear_schedule_old(t, guidance_scale, tau1, tau2):
t = t / 1000
if t <= tau1:
gamma = 1.0
elif t >= tau2:
gamma = 0.0
else:
gamma = (tau2 - t) / (tau2 - tau1)
return gamma * guidance_scale
def linear_schedule(t, guidance_scale, tau1=0.4, tau2=0.8):
t = t / 1000
if t <= tau1:
return guidance_scale
if t >= tau2:
return 1.0
gamma = (tau2 - t) / (tau2 - tau1) * (guidance_scale - 1.0) + 1.0
return gamma
def guidance_scale_embedding(w, embedding_dim=512, dtype=torch.float32):
"""
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
Args:
timesteps (`torch.Tensor`):
generate embedding vectors at these timesteps
embedding_dim (`int`, *optional*, defaults to 512):
dimension of the embeddings to generate
dtype:
data type of the generated embeddings
Returns:
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
"""
assert len(w.shape) == 1
w = w * 1000.0
half_dim = embedding_dim // 2
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
emb = w.to(dtype)[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1))
assert emb.shape == (w.shape[0], embedding_dim)
return emb
# ----------------------------------------------------------------------
# Diffusion step with scheduler from diffusers and controller for editing
# ----------------------------------------------------------------------
def extract_into_tensor(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def predicted_origin(model_output, timesteps, boundary_timesteps, sample, prediction_type, alphas, sigmas):
sigmas_s = extract_into_tensor(sigmas, boundary_timesteps, sample.shape)
alphas_s = extract_into_tensor(alphas, boundary_timesteps, sample.shape)
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
alphas = extract_into_tensor(alphas, timesteps, sample.shape)
# Set hard boundaries to ensure equivalence with forward (direct) CD
alphas_s[boundary_timesteps == 0] = 1.0
sigmas_s[boundary_timesteps == 0] = 0.0
if prediction_type == "epsilon":
pred_x_0 = (sample - sigmas * model_output) / alphas # x0 prediction
pred_x_0 = alphas_s * pred_x_0 + sigmas_s * model_output # Euler step to the boundary step
elif prediction_type == "v_prediction":
assert boundary_timesteps == 0, "v_prediction does not support multiple endpoints at the moment"
pred_x_0 = alphas * sample - sigmas * model_output
else:
raise ValueError(f"Prediction type {prediction_type} currently not supported.")
return pred_x_0
def guided_step(noise_prediction_text,
noise_pred_uncond,
t,
guidance_scale,
dynamic_guidance=False,
tau1=0.4,
tau2=0.6):
if dynamic_guidance:
if not isinstance(t, int):
t = t.item()
new_guidance_scale = linear_schedule(t, guidance_scale, tau1=tau1, tau2=tau2)
else:
new_guidance_scale = guidance_scale
noise_pred = noise_pred_uncond + new_guidance_scale * (noise_prediction_text - noise_pred_uncond)
return noise_pred
# ----------------------------------------------------------------------
# DDIM scheduler with inversion
# ----------------------------------------------------------------------
class Generator:
def prev_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
sample: Union[torch.FloatTensor, np.ndarray]):
prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = self.scheduler.alphas_cumprod[
prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
pred_sample_direction = (1 - alpha_prod_t_prev) ** 0.5 * model_output
prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
return prev_sample
def next_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
sample: Union[torch.FloatTensor, np.ndarray]):
timestep, next_timestep = min(
timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999), timestep
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep]
beta_prod_t = 1 - alpha_prod_t
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
return next_sample
def get_noise_pred_single(self, latents, t, context):
noise_pred = self.model.unet(latents, t, encoder_hidden_states=context)["sample"]
return noise_pred
def get_noise_pred(self,
model,
latent,
t,
guidance_scale=1,
context=None,
w_embed_dim=0,
dynamic_guidance=False,
tau1=0.4,
tau2=0.6):
latents_input = torch.cat([latent] * 2)
if context is None:
context = self.context
# w embed
# --------------------------------------
if w_embed_dim > 0:
if dynamic_guidance:
if not isinstance(t, int):
t_item = t.item()
guidance_scale = linear_schedule_old(t_item, guidance_scale, tau1=tau1, tau2=tau2) # TODO UPDATE
if len(latents_input) == 4:
guidance_scale_tensor = torch.tensor([0.0, 0.0, 0.0, guidance_scale])
else:
guidance_scale_tensor = torch.tensor([guidance_scale] * len(latents_input))
w_embedding = guidance_scale_embedding(guidance_scale_tensor, embedding_dim=w_embed_dim)
w_embedding = w_embedding.to(device=latent.device, dtype=latent.dtype)
else:
w_embedding = None
# --------------------------------------
noise_pred = model.unet(latents_input.to(dtype=model.unet.dtype),
t,
timestep_cond=w_embedding.to(dtype=model.unet.dtype) if w_embed_dim > 0 else None,
encoder_hidden_states=context)["sample"]
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
if guidance_scale > 1 and w_embedding is None:
noise_pred = guided_step(noise_prediction_text, noise_pred_uncond, t, guidance_scale, dynamic_guidance,
tau1, tau2)
else:
noise_pred = noise_prediction_text
return noise_pred
@torch.no_grad()
def latent2image(self, latents, return_type='np'):
latents = 1 / 0.18215 * latents.detach()
image = self.model.vae.decode(latents.to(dtype=self.model.dtype))['sample']
if return_type == 'np':
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
image = (image * 255).astype(np.uint8)
return image
@torch.no_grad()
def image2latent(self, image):
with torch.no_grad():
if type(image) is Image:
image = np.array(image)
if type(image) is torch.Tensor and image.dim() == 4:
latents = image
elif type(image) is list:
image = [np.array(i).reshape(1, 512, 512, 3) for i in image]
image = np.concatenate(image)
image = torch.from_numpy(image).float() / 127.5 - 1
image = image.permute(0, 3, 1, 2).to(self.model.device, dtype=self.model.vae.dtype)
latents = self.model.vae.encode(image)['latent_dist'].mean
latents = latents * 0.18215
else:
image = torch.from_numpy(image).float() / 127.5 - 1
image = image.permute(2, 0, 1).unsqueeze(0).to(self.model.device, dtype=self.model.dtype)
latents = self.model.vae.encode(image)['latent_dist'].mean
latents = latents * 0.18215
return latents
@torch.no_grad()
def init_prompt(self, prompt, uncond_embeddings=None):
if uncond_embeddings is None:
uncond_input = self.model.tokenizer(
[""], padding="max_length", max_length=self.model.tokenizer.model_max_length,
return_tensors="pt"
)
uncond_embeddings = self.model.text_encoder(uncond_input.input_ids.to(self.model.device))[0]
text_input = self.model.tokenizer(
prompt,
padding="max_length",
max_length=self.model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = self.model.text_encoder(text_input.input_ids.to(self.model.device))[0]
self.context = torch.cat([uncond_embeddings.expand(*text_embeddings.shape), text_embeddings])
self.prompt = prompt
@torch.no_grad()
def ddim_loop(self,
latent,
n_steps,
is_forward=True,
guidance_scale=1,
dynamic_guidance=False,
tau1=0.4,
tau2=0.6,
w_embed_dim=0,
uncond_embeddings=None,
controller=None):
all_latent = [latent]
latent = latent.clone().detach()
for i in tqdm(range(n_steps)):
if uncond_embeddings is not None:
self.init_prompt(self.prompt, uncond_embeddings[i])
if is_forward:
t = self.model.scheduler.timesteps[len(self.model.scheduler.timesteps) - i - 1]
else:
t = self.model.scheduler.timesteps[i]
noise_pred = self.get_noise_pred(
model=self.model,
latent=latent,
t=t,
context=None,
guidance_scale=guidance_scale,
dynamic_guidance=dynamic_guidance,
w_embed_dim=w_embed_dim,
tau1=tau1,
tau2=tau2)
if is_forward:
latent = self.next_step(noise_pred, t, latent)
else:
latent = self.prev_step(noise_pred, t, latent)
if controller is not None:
latent = controller.step_callback(latent)
all_latent.append(latent)
return all_latent
@property
def scheduler(self):
return self.model.scheduler
@torch.no_grad()
def ddim_inversion(self,
image,
n_steps=None,
guidance_scale=1,
dynamic_guidance=False,
tau1=0.4,
tau2=0.6,
w_embed_dim=0):
if n_steps is None:
n_steps = self.n_steps
latent = self.image2latent(image)
image_rec = self.latent2image(latent)
ddim_latents = self.ddim_loop(latent,
is_forward=True,
guidance_scale=guidance_scale,
n_steps=n_steps,
dynamic_guidance=dynamic_guidance,
tau1=tau1,
tau2=tau2,
w_embed_dim=w_embed_dim)
return image_rec, ddim_latents
@torch.no_grad()
def cons_generation(self,
latent,
guidance_scale=1,
dynamic_guidance=False,
tau1=0.4,
tau2=0.6,
w_embed_dim=0,
controller=None, ):
all_latent = [latent]
latent = latent.clone().detach()
alpha_schedule = torch.sqrt(self.model.scheduler.alphas_cumprod).to(self.model.device)
sigma_schedule = torch.sqrt(1 - self.model.scheduler.alphas_cumprod).to(self.model.device)
for i, (t, s) in enumerate(tqdm(zip(self.reverse_timesteps, self.reverse_boundary_timesteps))):
noise_pred = self.get_noise_pred(
model=self.reverse_cons_model,
latent=latent,
t=t.to(self.model.device),
context=None,
tau1=tau1, tau2=tau2,
w_embed_dim=w_embed_dim,
guidance_scale=guidance_scale,
dynamic_guidance=dynamic_guidance)
latent = predicted_origin(
noise_pred,
torch.tensor([t] * len(latent), device=self.model.device),
torch.tensor([s] * len(latent), device=self.model.device),
latent,
self.model.scheduler.config.prediction_type,
alpha_schedule,
sigma_schedule,
)
if controller is not None:
latent = controller.step_callback(latent)
all_latent.append(latent)
return all_latent
@torch.no_grad()
def cons_inversion(self,
image,
guidance_scale=0.0,
w_embed_dim=0,
seed=0):
alpha_schedule = torch.sqrt(self.model.scheduler.alphas_cumprod).to(self.model.device)
sigma_schedule = torch.sqrt(1 - self.model.scheduler.alphas_cumprod).to(self.model.device)
# 5. Prepare latent variables
latent = self.image2latent(image)
generator = torch.Generator().manual_seed(seed)
noise = torch.randn(latent.shape, generator=generator).to(latent.device)
latent = self.noise_scheduler.add_noise(latent, noise, torch.tensor([self.start_timestep]))
image_rec = self.latent2image(latent)
for i, (t, s) in enumerate(tqdm(zip(self.forward_timesteps, self.forward_boundary_timesteps))):
# predict the noise residual
noise_pred = self.get_noise_pred(
model=self.forward_cons_model,
latent=latent,
t=t.to(self.model.device),
context=None,
guidance_scale=guidance_scale,
w_embed_dim=w_embed_dim,
dynamic_guidance=False)
latent = predicted_origin(
noise_pred,
torch.tensor([t] * len(latent), device=self.model.device),
torch.tensor([s] * len(latent), device=self.model.device),
latent,
self.model.scheduler.config.prediction_type,
alpha_schedule,
sigma_schedule,
)
return image_rec, [latent]
def _create_forward_inverse_timesteps(self,
num_endpoints,
n_steps,
max_inverse_timestep_index):
timestep_interval = n_steps // num_endpoints + int(n_steps % num_endpoints > 0)
endpoint_idxs = torch.arange(timestep_interval, n_steps, timestep_interval) - 1
inverse_endpoint_idxs = torch.arange(timestep_interval, n_steps, timestep_interval) - 1
inverse_endpoint_idxs = torch.tensor(inverse_endpoint_idxs.tolist() + [max_inverse_timestep_index])
endpoints = torch.tensor([0] + self.ddim_timesteps[endpoint_idxs].tolist())
inverse_endpoints = self.ddim_timesteps[inverse_endpoint_idxs]
return endpoints, inverse_endpoints
def __init__(self,
model,
n_steps,
noise_scheduler,
forward_cons_model=None,
reverse_cons_model=None,
num_endpoints=1,
num_forward_endpoints=1,
reverse_timesteps=None,
forward_timesteps=None,
max_forward_timestep_index=49,
start_timestep=19):
self.model = model
self.forward_cons_model = forward_cons_model
self.reverse_cons_model = reverse_cons_model
self.noise_scheduler = noise_scheduler
self.n_steps = n_steps
self.tokenizer = self.model.tokenizer
self.model.scheduler.set_timesteps(n_steps)
self.prompt = None
self.context = None
step_ratio = 1000 // n_steps
self.ddim_timesteps = (np.arange(1, n_steps + 1) * step_ratio).round().astype(np.int64) - 1
self.ddim_timesteps = torch.from_numpy(self.ddim_timesteps).long()
self.start_timestep = start_timestep
# Set endpoints for direct CTM
if reverse_timesteps is None or forward_timesteps is None:
endpoints, inverse_endpoints = self._create_forward_inverse_timesteps(num_endpoints, n_steps,
max_forward_timestep_index)
self.reverse_timesteps, self.reverse_boundary_timesteps = inverse_endpoints.flip(0), endpoints.flip(0)
# Set endpoints for forward CTM
endpoints, inverse_endpoints = self._create_forward_inverse_timesteps(num_forward_endpoints, n_steps,
max_forward_timestep_index)
self.forward_timesteps, self.forward_boundary_timesteps = endpoints, inverse_endpoints
self.forward_timesteps[0] = self.start_timestep
else:
self.reverse_timesteps, self.reverse_boundary_timesteps = reverse_timesteps, reverse_timesteps
self.reverse_timesteps.reverse()
self.reverse_boundary_timesteps = self.reverse_boundary_timesteps[1:] + [self.reverse_boundary_timesteps[0]]
self.reverse_boundary_timesteps[-1] = 0
self.reverse_timesteps, self.reverse_boundary_timesteps = torch.tensor(reverse_timesteps), torch.tensor(
self.reverse_boundary_timesteps)
self.forward_timesteps, self.forward_boundary_timesteps = forward_timesteps, forward_timesteps
self.forward_boundary_timesteps = self.forward_boundary_timesteps[1:] + [self.forward_boundary_timesteps[0]]
self.forward_boundary_timesteps[-1] = 999
self.forward_timesteps, self.forward_boundary_timesteps = torch.tensor(
self.forward_timesteps), torch.tensor(self.forward_boundary_timesteps)
print(f"Endpoints reverse CTM: {self.reverse_timesteps}, {self.reverse_boundary_timesteps}")
print(f"Endpoints forward CTM: {self.forward_timesteps}, {self.forward_boundary_timesteps}")
# ----------------------------------------------------------------------
# 3rd party utils
# ----------------------------------------------------------------------
def latent2image(vae, latents):
latents = 1 / 0.18215 * latents
image = vae.decode(latents)['sample']
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
image = (image * 255).astype(np.uint8)
return image
def init_latent(latent, model, height, width, generator, batch_size):
if latent is None:
latent = torch.randn(
(1, model.unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latent.expand(batch_size, model.unet.in_channels, height // 8, width // 8).to(model.device)
return latent, latents
def load_512(image_path, left=0, right=0, top=0, bottom=0):
# if type(image_path) is str:
# image = np.array(Image.open(image_path))[:, :, :3]
# else:
# image = image_path
# h, w, c = image.shape
# left = min(left, w - 1)
# right = min(right, w - left - 1)
# top = min(top, h - left - 1)
# bottom = min(bottom, h - top - 1)
# image = image[top:h - bottom, left:w - right]
# h, w, c = image.shape
# if h < w:
# offset = (w - h) // 2
# image = image[:, offset:offset + h]
# elif w < h:
# offset = (h - w) // 2
# image = image[offset:offset + w]
image = np.array(Image.open(image_path).convert('RGB'))[:, :, :3]
image = np.array(Image.fromarray(image).resize((512, 512)))
return image
def to_pil_images(images, num_rows=1, offset_ratio=0.02):
if type(images) is list:
num_empty = len(images) % num_rows
elif images.ndim == 4:
num_empty = images.shape[0] % num_rows
else:
images = [images]
num_empty = 0
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
num_items = len(images)
h, w, c = images[0].shape
offset = int(h * offset_ratio)
num_cols = num_items // num_rows
image_ = np.ones((h * num_rows + offset * (num_rows - 1),
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
for i in range(num_rows):
for j in range(num_cols):
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
i * num_cols + j]
pil_img = Image.fromarray(image_)
return pil_img
def view_images(images, num_rows=1, offset_ratio=0.02):
if type(images) is list:
num_empty = len(images) % num_rows
elif images.ndim == 4:
num_empty = images.shape[0] % num_rows
else:
images = [images]
num_empty = 0
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
num_items = len(images)
h, w, c = images[0].shape
offset = int(h * offset_ratio)
num_cols = num_items // num_rows
image_ = np.ones((h * num_rows + offset * (num_rows - 1),
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
for i in range(num_rows):
for j in range(num_cols):
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
i * num_cols + j]
pil_img = Image.fromarray(image_)
display(pil_img)
# ----------------------------------------------------------------------