dbaranchuk's picture
Update app.py
8f34354 verified
raw
history blame
15.9 kB
import spaces
import gradio as gr
import numpy as np
import random
import torch
from diffusers import DDPMScheduler, StableDiffusionPipeline, DDIMScheduler, UNet2DConditionModel
import p2p, generation, inversion
model_id = 'runwayml/stable-diffusion-v1-5'
dtype=torch.float16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Reverse
# -----------------------------
pipe_reverse = StableDiffusionPipeline.from_pretrained(model_id,
scheduler=DDIMScheduler.from_pretrained(model_id,
subfolder="scheduler"),
).to(device=device, dtype=dtype)
unet = UNet2DConditionModel.from_pretrained("dbaranchuk/sd15-cfg-distill-unet").to(device)
pipe_reverse.unet = unet
pipe_reverse.load_lora_weights("dbaranchuk/icd-lora-sd15",
weight_name='reverse-259-519-779-999.safetensors')
pipe_reverse.fuse_lora()
pipe_reverse.to(device)
# -----------------------------
# Forward
# -----------------------------
pipe_forward = StableDiffusionPipeline.from_pretrained(model_id,
scheduler=DDIMScheduler.from_pretrained(model_id,
subfolder="scheduler"),
).to(device=device, dtype=dtype)
unet = UNet2DConditionModel.from_pretrained("dbaranchuk/sd15-cfg-distill-unet").to(device)
pipe_forward.unet = unet
pipe_forward.load_lora_weights("dbaranchuk/icd-lora-sd15",
weight_name='forward-19-259-519-779.safetensors')
pipe_forward.fuse_lora()
pipe_forward.to(device)
# -----------------------------
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=30)
def infer(image_path, input_prompt, edited_prompt, guidance, tau,
crs, srs, amplify_factor, amplify_word,
blend_orig, blend_edited, is_replacement):
tokenizer = pipe_forward.tokenizer
noise_scheduler = DDPMScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5", subfolder="scheduler", )
NUM_REVERSE_CONS_STEPS = 4
REVERSE_TIMESTEPS = [259, 519, 779, 999]
NUM_FORWARD_CONS_STEPS = 4
FORWARD_TIMESTEPS = [19, 259, 519, 779]
NUM_DDIM_STEPS = 50
solver = generation.Generator(
model=pipe_forward,
noise_scheduler=noise_scheduler,
n_steps=NUM_DDIM_STEPS,
forward_cons_model=pipe_forward,
forward_timesteps=FORWARD_TIMESTEPS,
reverse_cons_model=pipe_reverse,
reverse_timesteps=REVERSE_TIMESTEPS,
num_endpoints=NUM_REVERSE_CONS_STEPS,
num_forward_endpoints=NUM_FORWARD_CONS_STEPS,
max_forward_timestep_index=49,
start_timestep=19)
p2p.NUM_DDIM_STEPS = NUM_DDIM_STEPS
p2p.tokenizer = tokenizer
p2p.device = 'cuda'
prompt = [input_prompt]
(image_gt, image_rec), ddim_latent, uncond_embeddings = inversion.invert(
# Playing params
image_path=image_path,
prompt=prompt,
# Fixed params
is_cons_inversion=True,
w_embed_dim=512,
inv_guidance_scale=0.0,
stop_step=50,
solver=solver,
seed=10500)
p2p.NUM_DDIM_STEPS = 4
p2p.tokenizer = tokenizer
p2p.device = 'cuda'
prompts = [input_prompt,
edited_prompt
]
# Playing params
cross_replace_steps = {'default_': crs, }
self_replace_steps = srs
blend_word = (((blend_orig,), (blend_edited,)))
eq_params = {"words": (amplify_word,), "values": (amplify_factor,)}
controller = p2p.make_controller(prompts,
is_replacement, # (is_replacement) True if only one word is changed
cross_replace_steps,
self_replace_steps,
blend_word,
eq_params)
tau = tau
image, _ = generation.runner(
# Playing params
guidance_scale=guidance-1,
tau1=tau, # Dynamic guidance if tau < 1.0
tau2=tau,
# Fixed params
model=pipe_reverse,
is_cons_forward=True,
w_embed_dim=512,
solver=solver,
prompt=prompts,
controller=controller,
num_inference_steps=50,
generator=None,
latent=ddim_latent,
uncond_embeddings=uncond_embeddings,
return_type='image')
image = generation.to_pil_images(image[1, :, :, :])
return image
css="""
#col-container {
margin: 0 auto;
max-width: 1024px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
f"""
# ⚡ Invertible Consistency Distillation ⚡
# ⚡ Text-guided image editing with 8-step iCD-SD1.5 ⚡
This is a demo for [Invertible Consistency Distillation](https://yandex-research.github.io/invertible-cd/),
a diffusion distillation method proposed in [Invertible Consistency Distillation for Text-Guided Image Editing in Around 7 Steps](https://arxiv.org/abs/2406.14539)
by [Yandex Research](https://github.com/yandex-research).
Currently running on {power_device}
"""
)
gr.Markdown(
"**Please** check the examples to catch the intuition behind the hyperparameters, which are quite important for successful editing. A short description: <br />1. *Dynamic guidance tau*. Controls the interval where guidance is applied: if t < tau, then guidance is turned on for t < tau."
" Lower tau values provide better reference preservation. We commonly use tau=0.6 and tau=0.8. <br />"
"2. *Cross replace steps (crs)* and *self replace steps (srs)*. Controls the time step interval "
"where the cross- and self-attention maps are replaced. Higher values lead to better preservation of the reference image. "
"The optimal values depend on the particular image. "
"Mostly, we use crs and srs from 0.2 to 0.6. <br />"
"3. *Amplify word* and *Amplify factor*. Define the word that needs to be enhanced in the edited image. <br />"
"4. *Blended word*. Specifies the object used for making local edits. That is, edit only selected objects. <br />"
"5. *Is replacement*. You can set True, if you replace only one word in the original prompt. But False also works in these cases."
)
gr.Markdown(
"Feel free to check out our [image generation demo](https://huggingface.co/spaces/dbaranchuk/iCD-image-generation) as well."
)
gr.Markdown(
"If you enjoy the space, feel free to give a ⭐ to the <a href='https://github.com/yandex-research/invertible-cd' target='_blank'>Github Repo</a>. [![GitHub Stars](https://img.shields.io/github/stars/yandex-research/invertible-cd?style=social)](https://github.com/yandex-research/invertible-cd)"
)
with gr.Row():
input_prompt = gr.Text(
label="Origial prompt",
max_lines=1,
placeholder="Enter your prompt",
)
prompt = gr.Text(
label="Edited prompt",
max_lines=1,
placeholder="Enter your prompt",
)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input image", height=512, width=512, show_label=False)
with gr.Column():
result = gr.Image(label="Result", height=512, width=512, show_label=False)
with gr.Accordion("Advanced Settings", open=True):
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1.0,
maximum=20.0,
step=1.0,
value=20.0,
)
tau = gr.Slider(
label="Dynamic guidance tau",
minimum=0.0,
maximum=1.0,
step=0.2,
value=0.8,
)
with gr.Row():
crs = gr.Slider(
label="Cross replace steps",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.4
)
srs = gr.Slider(
label="Self replace steps",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.4,
)
with gr.Row():
amplify_word = gr.Text(
label="Amplify word",
max_lines=1,
placeholder="Enter your word",
)
amplify_factor = gr.Slider(
label="Amplify factor",
minimum=0.0,
maximum=30,
step=1.0,
value=1,
)
with gr.Row():
blend_orig = gr.Text(
label="Blended word 1",
max_lines=1,
placeholder="Enter your word",)
blend_edited = gr.Text(
label="Blended word 2",
max_lines=1,
placeholder="Enter your word",)
with gr.Row():
is_replacement = gr.Checkbox(label="Is replacement?", value=False)
with gr.Row():
run_button = gr.Button("Edit", scale=0)
with gr.Row():
examples = [
[
"examples/orig_3.jpg", #input_image
"a photo of a basket of apples", #src_prompt
"a photo of a basket of oranges", #tgt_prompt
20, #guidance_scale
0.6, #tau
0.4, #crs
0.6, #srs
1, #amplify factor
'oranges', # amplify word
'', #orig blend
'oranges', #edited blend
False #replacement
],
[
"examples/orig_3.jpg", #input_image
"a photo of a basket of apples", #src_prompt
"a photo of a basket of puppies", #tgt_prompt
20, #guidance_scale
0.6, #tau
0.4, #crs
0.1, #srs
2, #amplify factor
'puppies', # amplify word
'', #orig blend
'puppies', #edited blend
True #replacement
],
[
"examples/orig_3.jpg", #input_image
"a photo of a basket of apples", #src_prompt
"a photo of a basket of apples under snowfall", #tgt_prompt
20, #guidance_scale
0.6, #tau
0.4, #crs
0.4, #srs
30, #amplify factor
'snowfall', # amplify word
'', #orig blend
'snowfall', #edited blend
False #replacement
],
[
"examples/orig_1.jpg", #input_image
"a photo of an owl", #src_prompt
"a photo of an yellow owl", #tgt_prompt
20, #guidance_scale
0.6, #tau
0.9, #crs
0.9, #srs
20, #amplify factor
'yellow', # amplify word
'owl', #orig blend
'yellow', #edited blend
False #replacement
],
[
"examples/orig_1.jpg", #input_image
"a photo of an owl", #src_prompt
"an anime-style painting of an owl", #tgt_prompt
20, #guidance_scale
0.8, #tau
0.6, #crs
0.3, #srs
10, #amplify factor
'anime-style', # amplify word
'painting', #orig blend
'anime-style', #edited blend
False #replacement
],
[
"examples/orig_1.jpg", #input_image
"a photo of an owl", #src_prompt
"a photo of an owl underwater with many fishes nearby", #tgt_prompt
20, #guidance_scale
0.8, #tau
0.4, #crs
0.4, #srs
18, #amplify factor
'fishes', # amplify word
'', #orig blend
'fishes', #edited blend
False #replacement
],
[
"examples/orig_2.jpg", #input_image
"a photograph of a teddy bear sitting on a wall", #src_prompt
"a photograph of a teddy bear sitting on a wall surrounded by roses", #tgt_prompt
20, #guidance_scale
0.6, #tau
0.4, #crs
0.1, #srs
25, #amplify factor
'roses', # amplify word
'', #orig blend
'roses', #edited blend
False #replacement
],
[
"examples/orig_2.jpg", #input_image
"a photograph of a teddy bear sitting on a wall", #src_prompt
"a photograph of a wooden bear sitting on a wall", #tgt_prompt
20, #guidance_scale
0.8, #tau
0.5, #crs
0.5, #srs
14, #amplify factor
'wooden', # amplify word
'', #orig blend
'wooden', #edited blend
True #replacement
],
[
"examples/orig_2.jpg", #input_image
"a photograph of a teddy bear sitting on a wall", #src_prompt
"a photograph of a teddy rabbit sitting on a wall", #tgt_prompt
20, #guidance_scale
0.8, #tau
0.4, #crs
0.4, #srs
3, #amplify factor
'rabbit', # amplify word
'', #orig blend
'rabbit', #edited blend
True #replacement
],
]
gr.Examples(
examples = examples,
inputs =[input_image, input_prompt, prompt,
guidance_scale, tau, crs, srs, amplify_factor, amplify_word,
blend_orig, blend_edited, is_replacement],
outputs=[
result
],
fn=infer, cache_examples=True
)
run_button.click(
fn = infer,
inputs=[input_image, input_prompt, prompt,
guidance_scale, tau, crs, srs, amplify_factor, amplify_word,
blend_orig, blend_edited, is_replacement],
outputs = [result]
)
demo.queue().launch()