Spaces:
Runtime error
Runtime error
import spaces | |
import gradio as gr | |
import numpy as np | |
import random | |
import torch | |
from diffusers import DDPMScheduler, StableDiffusionPipeline, DDIMScheduler, UNet2DConditionModel | |
import p2p, generation, inversion | |
model_id = 'runwayml/stable-diffusion-v1-5' | |
dtype=torch.float16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Reverse | |
# ----------------------------- | |
pipe_reverse = StableDiffusionPipeline.from_pretrained(model_id, | |
scheduler=DDIMScheduler.from_pretrained(model_id, | |
subfolder="scheduler"), | |
).to(device=device, dtype=dtype) | |
unet = UNet2DConditionModel.from_pretrained("dbaranchuk/sd15-cfg-distill-unet").to(device) | |
pipe_reverse.unet = unet | |
pipe_reverse.load_lora_weights("dbaranchuk/icd-lora-sd15", | |
weight_name='reverse-259-519-779-999.safetensors') | |
pipe_reverse.fuse_lora() | |
pipe_reverse.to(device) | |
# ----------------------------- | |
# Forward | |
# ----------------------------- | |
pipe_forward = StableDiffusionPipeline.from_pretrained(model_id, | |
scheduler=DDIMScheduler.from_pretrained(model_id, | |
subfolder="scheduler"), | |
).to(device=device, dtype=dtype) | |
unet = UNet2DConditionModel.from_pretrained("dbaranchuk/sd15-cfg-distill-unet").to(device) | |
pipe_forward.unet = unet | |
pipe_forward.load_lora_weights("dbaranchuk/icd-lora-sd15", | |
weight_name='forward-19-259-519-779.safetensors') | |
pipe_forward.fuse_lora() | |
pipe_forward.to(device) | |
# ----------------------------- | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer(image_path, input_prompt, edited_prompt, guidance, tau, | |
crs, srs, amplify_factor, amplify_word, | |
blend_orig, blend_edited, is_replacement): | |
tokenizer = pipe_forward.tokenizer | |
noise_scheduler = DDPMScheduler.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", subfolder="scheduler", ) | |
NUM_REVERSE_CONS_STEPS = 4 | |
REVERSE_TIMESTEPS = [259, 519, 779, 999] | |
NUM_FORWARD_CONS_STEPS = 4 | |
FORWARD_TIMESTEPS = [19, 259, 519, 779] | |
NUM_DDIM_STEPS = 50 | |
solver = generation.Generator( | |
model=pipe_forward, | |
noise_scheduler=noise_scheduler, | |
n_steps=NUM_DDIM_STEPS, | |
forward_cons_model=pipe_forward, | |
forward_timesteps=FORWARD_TIMESTEPS, | |
reverse_cons_model=pipe_reverse, | |
reverse_timesteps=REVERSE_TIMESTEPS, | |
num_endpoints=NUM_REVERSE_CONS_STEPS, | |
num_forward_endpoints=NUM_FORWARD_CONS_STEPS, | |
max_forward_timestep_index=49, | |
start_timestep=19) | |
p2p.NUM_DDIM_STEPS = NUM_DDIM_STEPS | |
p2p.tokenizer = tokenizer | |
p2p.device = 'cuda' | |
prompt = [input_prompt] | |
(image_gt, image_rec), ddim_latent, uncond_embeddings = inversion.invert( | |
# Playing params | |
image_path=image_path, | |
prompt=prompt, | |
# Fixed params | |
is_cons_inversion=True, | |
w_embed_dim=512, | |
inv_guidance_scale=0.0, | |
stop_step=50, | |
solver=solver, | |
seed=10500) | |
p2p.NUM_DDIM_STEPS = 4 | |
p2p.tokenizer = tokenizer | |
p2p.device = 'cuda' | |
prompts = [input_prompt, | |
edited_prompt | |
] | |
# Playing params | |
cross_replace_steps = {'default_': crs, } | |
self_replace_steps = srs | |
blend_word = (((blend_orig,), (blend_edited,))) | |
eq_params = {"words": (amplify_word,), "values": (amplify_factor,)} | |
controller = p2p.make_controller(prompts, | |
is_replacement, # (is_replacement) True if only one word is changed | |
cross_replace_steps, | |
self_replace_steps, | |
blend_word, | |
eq_params) | |
tau = tau | |
image, _ = generation.runner( | |
# Playing params | |
guidance_scale=guidance-1, | |
tau1=tau, # Dynamic guidance if tau < 1.0 | |
tau2=tau, | |
# Fixed params | |
model=pipe_reverse, | |
is_cons_forward=True, | |
w_embed_dim=512, | |
solver=solver, | |
prompt=prompts, | |
controller=controller, | |
num_inference_steps=50, | |
generator=None, | |
latent=ddim_latent, | |
uncond_embeddings=uncond_embeddings, | |
return_type='image') | |
image = generation.to_pil_images(image[1, :, :, :]) | |
return image | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 1024px; | |
} | |
""" | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown( | |
f""" | |
# ⚡ Invertible Consistency Distillation ⚡ | |
# ⚡ Text-guided image editing with 8-step iCD-SD1.5 ⚡ | |
This is a demo for [Invertible Consistency Distillation](https://yandex-research.github.io/invertible-cd/), | |
a diffusion distillation method proposed in [Invertible Consistency Distillation for Text-Guided Image Editing in Around 7 Steps](https://arxiv.org/abs/2406.14539) | |
by [Yandex Research](https://github.com/yandex-research). | |
Currently running on {power_device} | |
""" | |
) | |
gr.Markdown( | |
"**Please** check the examples to catch the intuition behind the hyperparameters, which are quite important for successful editing. A short description: <br />1. *Dynamic guidance tau*. Controls the interval where guidance is applied: if t < tau, then guidance is turned on for t < tau." | |
" Lower tau values provide better reference preservation. We commonly use tau=0.6 and tau=0.8. <br />" | |
"2. *Cross replace steps (crs)* and *self replace steps (srs)*. Controls the time step interval " | |
"where the cross- and self-attention maps are replaced. Higher values lead to better preservation of the reference image. " | |
"The optimal values depend on the particular image. " | |
"Mostly, we use crs and srs from 0.2 to 0.6. <br />" | |
"3. *Amplify word* and *Amplify factor*. Define the word that needs to be enhanced in the edited image. <br />" | |
"4. *Blended word*. Specifies the object used for making local edits. That is, edit only selected objects. <br />" | |
"5. *Is replacement*. You can set True, if you replace only one word in the original prompt. But False also works in these cases." | |
) | |
gr.Markdown( | |
"Feel free to check out our [image generation demo](https://huggingface.co/spaces/dbaranchuk/iCD-image-generation) as well." | |
) | |
gr.Markdown( | |
"If you enjoy the space, feel free to give a ⭐ to the <a href='https://github.com/yandex-research/invertible-cd' target='_blank'>Github Repo</a>. [![GitHub Stars](https://img.shields.io/github/stars/yandex-research/invertible-cd?style=social)](https://github.com/yandex-research/invertible-cd)" | |
) | |
with gr.Row(): | |
input_prompt = gr.Text( | |
label="Origial prompt", | |
max_lines=1, | |
placeholder="Enter your prompt", | |
) | |
prompt = gr.Text( | |
label="Edited prompt", | |
max_lines=1, | |
placeholder="Enter your prompt", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label="Input image", height=512, width=512, show_label=False) | |
with gr.Column(): | |
result = gr.Image(label="Result", height=512, width=512, show_label=False) | |
with gr.Accordion("Advanced Settings", open=True): | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=1.0, | |
maximum=20.0, | |
step=1.0, | |
value=20.0, | |
) | |
tau = gr.Slider( | |
label="Dynamic guidance tau", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.2, | |
value=0.8, | |
) | |
with gr.Row(): | |
crs = gr.Slider( | |
label="Cross replace steps", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.4 | |
) | |
srs = gr.Slider( | |
label="Self replace steps", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.4, | |
) | |
with gr.Row(): | |
amplify_word = gr.Text( | |
label="Amplify word", | |
max_lines=1, | |
placeholder="Enter your word", | |
) | |
amplify_factor = gr.Slider( | |
label="Amplify factor", | |
minimum=0.0, | |
maximum=30, | |
step=1.0, | |
value=1, | |
) | |
with gr.Row(): | |
blend_orig = gr.Text( | |
label="Blended word 1", | |
max_lines=1, | |
placeholder="Enter your word",) | |
blend_edited = gr.Text( | |
label="Blended word 2", | |
max_lines=1, | |
placeholder="Enter your word",) | |
with gr.Row(): | |
is_replacement = gr.Checkbox(label="Is replacement?", value=False) | |
with gr.Row(): | |
run_button = gr.Button("Edit", scale=0) | |
with gr.Row(): | |
examples = [ | |
[ | |
"examples/orig_3.jpg", #input_image | |
"a photo of a basket of apples", #src_prompt | |
"a photo of a basket of oranges", #tgt_prompt | |
20, #guidance_scale | |
0.6, #tau | |
0.4, #crs | |
0.6, #srs | |
1, #amplify factor | |
'oranges', # amplify word | |
'', #orig blend | |
'oranges', #edited blend | |
False #replacement | |
], | |
[ | |
"examples/orig_3.jpg", #input_image | |
"a photo of a basket of apples", #src_prompt | |
"a photo of a basket of puppies", #tgt_prompt | |
20, #guidance_scale | |
0.6, #tau | |
0.4, #crs | |
0.1, #srs | |
2, #amplify factor | |
'puppies', # amplify word | |
'', #orig blend | |
'puppies', #edited blend | |
True #replacement | |
], | |
[ | |
"examples/orig_3.jpg", #input_image | |
"a photo of a basket of apples", #src_prompt | |
"a photo of a basket of apples under snowfall", #tgt_prompt | |
20, #guidance_scale | |
0.6, #tau | |
0.4, #crs | |
0.4, #srs | |
30, #amplify factor | |
'snowfall', # amplify word | |
'', #orig blend | |
'snowfall', #edited blend | |
False #replacement | |
], | |
[ | |
"examples/orig_1.jpg", #input_image | |
"a photo of an owl", #src_prompt | |
"a photo of an yellow owl", #tgt_prompt | |
20, #guidance_scale | |
0.6, #tau | |
0.9, #crs | |
0.9, #srs | |
20, #amplify factor | |
'yellow', # amplify word | |
'owl', #orig blend | |
'yellow', #edited blend | |
False #replacement | |
], | |
[ | |
"examples/orig_1.jpg", #input_image | |
"a photo of an owl", #src_prompt | |
"an anime-style painting of an owl", #tgt_prompt | |
20, #guidance_scale | |
0.8, #tau | |
0.6, #crs | |
0.3, #srs | |
10, #amplify factor | |
'anime-style', # amplify word | |
'painting', #orig blend | |
'anime-style', #edited blend | |
False #replacement | |
], | |
[ | |
"examples/orig_1.jpg", #input_image | |
"a photo of an owl", #src_prompt | |
"a photo of an owl underwater with many fishes nearby", #tgt_prompt | |
20, #guidance_scale | |
0.8, #tau | |
0.4, #crs | |
0.4, #srs | |
18, #amplify factor | |
'fishes', # amplify word | |
'', #orig blend | |
'fishes', #edited blend | |
False #replacement | |
], | |
[ | |
"examples/orig_2.jpg", #input_image | |
"a photograph of a teddy bear sitting on a wall", #src_prompt | |
"a photograph of a teddy bear sitting on a wall surrounded by roses", #tgt_prompt | |
20, #guidance_scale | |
0.6, #tau | |
0.4, #crs | |
0.1, #srs | |
25, #amplify factor | |
'roses', # amplify word | |
'', #orig blend | |
'roses', #edited blend | |
False #replacement | |
], | |
[ | |
"examples/orig_2.jpg", #input_image | |
"a photograph of a teddy bear sitting on a wall", #src_prompt | |
"a photograph of a wooden bear sitting on a wall", #tgt_prompt | |
20, #guidance_scale | |
0.8, #tau | |
0.5, #crs | |
0.5, #srs | |
14, #amplify factor | |
'wooden', # amplify word | |
'', #orig blend | |
'wooden', #edited blend | |
True #replacement | |
], | |
[ | |
"examples/orig_2.jpg", #input_image | |
"a photograph of a teddy bear sitting on a wall", #src_prompt | |
"a photograph of a teddy rabbit sitting on a wall", #tgt_prompt | |
20, #guidance_scale | |
0.8, #tau | |
0.4, #crs | |
0.4, #srs | |
3, #amplify factor | |
'rabbit', # amplify word | |
'', #orig blend | |
'rabbit', #edited blend | |
True #replacement | |
], | |
] | |
gr.Examples( | |
examples = examples, | |
inputs =[input_image, input_prompt, prompt, | |
guidance_scale, tau, crs, srs, amplify_factor, amplify_word, | |
blend_orig, blend_edited, is_replacement], | |
outputs=[ | |
result | |
], | |
fn=infer, cache_examples=True | |
) | |
run_button.click( | |
fn = infer, | |
inputs=[input_image, input_prompt, prompt, | |
guidance_scale, tau, crs, srs, amplify_factor, amplify_word, | |
blend_orig, blend_edited, is_replacement], | |
outputs = [result] | |
) | |
demo.queue().launch() | |