Switti / models /basic_vae.py
realantonvoronov
init commit
55ca09f
import torch
import torch.nn as nn
import torch.nn.functional as F
# this file only provides the 2 modules used in VQVAE
__all__ = [ "Encoder", "Decoder"]
"""
References: https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/modules/diffusionmodules/model.py
"""
# swish
def nonlinearity(x):
return x * torch.sigmoid(x)
def Normalize(in_channels, num_groups=32):
return torch.nn.GroupNorm(
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
)
class Upsample2x(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=3, stride=1, padding=1
)
def forward(self, x):
return self.conv(F.interpolate(x, scale_factor=2, mode="nearest"))
class Downsample2x(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=3, stride=2, padding=0
)
def forward(self, x):
return self.conv(F.pad(x, pad=(0, 1, 0, 1), mode="constant", value=0))
class ResnetBlock(nn.Module):
def __init__(
self, *, in_channels, out_channels=None, dropout
): # conv_shortcut=False, # conv_shortcut: always False in VAE
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.norm1 = Normalize(in_channels)
self.conv1 = torch.nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=1, padding=1
)
self.norm2 = Normalize(out_channels)
self.dropout = torch.nn.Dropout(dropout) if dropout > 1e-6 else nn.Identity()
self.conv2 = torch.nn.Conv2d(
out_channels, out_channels, kernel_size=3, stride=1, padding=1
)
if self.in_channels != self.out_channels:
self.nin_shortcut = torch.nn.Conv2d(
in_channels, out_channels, kernel_size=1, stride=1, padding=0
)
else:
self.nin_shortcut = nn.Identity()
def forward(self, x):
h = self.conv1(F.silu(self.norm1(x), inplace=True))
h = self.conv2(self.dropout(F.silu(self.norm2(h), inplace=True)))
return self.nin_shortcut(x) + h
class AttnBlock(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.C = in_channels
self.norm = Normalize(in_channels)
self.qkv = torch.nn.Conv2d(
in_channels, 3 * in_channels, kernel_size=1, stride=1, padding=0
)
self.w_ratio = int(in_channels) ** (-0.5)
self.proj_out = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
def forward(self, x):
qkv = self.qkv(self.norm(x))
B, _, H, W = qkv.shape # should be B,3C,H,W
C = self.C
q, k, v = qkv.reshape(B, 3, C, H, W).unbind(1)
# compute attention
q = q.view(B, C, H * W).contiguous()
q = q.permute(0, 2, 1).contiguous() # B,HW,C
k = k.view(B, C, H * W).contiguous() # B,C,HW
w = torch.bmm(q, k).mul_(self.w_ratio) # B,HW,HW
# w[B,i,j]=sum_c q[B,i,C]k[B,C,j]
w = F.softmax(w, dim=2)
# attend to values
v = v.view(B, C, H * W).contiguous()
w = w.permute(0, 2, 1).contiguous() # B,HW,HW (first HW of k, second of q)
h = torch.bmm(v, w) # B, C,HW (HW of q) h[B,C,j] = sum_i v[B,C,i] w[B,i,j]
h = h.view(B, C, H, W).contiguous()
return x + self.proj_out(h)
def make_attn(in_channels, using_sa=True):
return AttnBlock(in_channels) if using_sa else nn.Identity()
class Encoder(nn.Module):
def __init__(
self,
*,
ch=128,
ch_mult=(1, 2, 4, 8),
num_res_blocks=2,
dropout=0.0,
in_channels=3,
z_channels,
double_z=False,
using_sa=True,
using_mid_sa=True,
):
super().__init__()
self.ch = ch
self.num_resolutions = len(ch_mult)
self.downsample_ratio = 2 ** (self.num_resolutions - 1)
self.num_res_blocks = num_res_blocks
self.in_channels = in_channels
# downsampling
self.conv_in = torch.nn.Conv2d(
in_channels, self.ch, kernel_size=3, stride=1, padding=1
)
in_ch_mult = (1,) + tuple(ch_mult)
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(
ResnetBlock(
in_channels=block_in, out_channels=block_out, dropout=dropout
)
)
block_in = block_out
if i_level == self.num_resolutions - 1 and using_sa:
attn.append(make_attn(block_in, using_sa=True))
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample2x(block_in)
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(
in_channels=block_in, out_channels=block_in, dropout=dropout
)
self.mid.attn_1 = make_attn(block_in, using_sa=using_mid_sa)
self.mid.block_2 = ResnetBlock(
in_channels=block_in, out_channels=block_in, dropout=dropout
)
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(
block_in,
(2 * z_channels if double_z else z_channels),
kernel_size=3,
stride=1,
padding=1,
)
def forward(self, x):
# downsampling
h = self.conv_in(x)
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](h)
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
if i_level != self.num_resolutions - 1:
h = self.down[i_level].downsample(h)
# middle
h = self.mid.block_2(self.mid.attn_1(self.mid.block_1(h)))
# end
h = self.conv_out(F.silu(self.norm_out(h), inplace=True))
return h
class Decoder(nn.Module):
def __init__(
self,
*,
ch=128,
ch_mult=(1, 2, 4, 8),
num_res_blocks=2,
dropout=0.0,
in_channels=3, # in_channels: raw img channels
z_channels,
using_sa=True,
using_mid_sa=True,
):
super().__init__()
self.ch = ch
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.in_channels = in_channels
# compute in_ch_mult, block_in and curr_res at lowest res
in_ch_mult = (1,) + tuple(ch_mult)
block_in = ch * ch_mult[self.num_resolutions - 1]
# z to block_in
self.conv_in = torch.nn.Conv2d(
z_channels, block_in, kernel_size=3, stride=1, padding=1
)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(
in_channels=block_in, out_channels=block_in, dropout=dropout
)
self.mid.attn_1 = make_attn(block_in, using_sa=using_mid_sa)
self.mid.block_2 = ResnetBlock(
in_channels=block_in, out_channels=block_in, dropout=dropout
)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(
ResnetBlock(
in_channels=block_in, out_channels=block_out, dropout=dropout
)
)
block_in = block_out
if i_level == self.num_resolutions - 1 and using_sa:
attn.append(make_attn(block_in, using_sa=True))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample2x(block_in)
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(
block_in, in_channels, kernel_size=3, stride=1, padding=1
)
def forward(self, z):
# z to block_in
# middle
h = self.mid.block_2(self.mid.attn_1(self.mid.block_1(self.conv_in(z))))
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
h = self.conv_out(F.silu(self.norm_out(h), inplace=True))
return h