eval_results / data_access.py
davidr70's picture
changes for new version
ea4284c
import asyncio
import os
from contextlib import asynccontextmanager
from typing import Optional
import asyncpg
import psycopg2
from cachetools import TTLCache, cached
from dotenv import load_dotenv
import pandas as pd
# Global connection pool
load_dotenv()
@asynccontextmanager
async def get_async_connection(schema="talmudexplore", auto_commit=True):
"""
Get a connection for the current request.
Args:
schema: Database schema to use
auto_commit: If True (default), each statement auto-commits.
If False, requires explicit commit.
"""
conn = None
tx = None
try:
# Create a single connection without relying on a shared pool
conn = await asyncpg.connect(
database=os.getenv("pg_dbname"),
user=os.getenv("pg_user"),
password=os.getenv("pg_password"),
host=os.getenv("pg_host"),
port=os.getenv("pg_port")
)
await conn.execute(f'SET search_path TO {schema}')
if not auto_commit:
# Start a transaction that requires explicit commit
tx = conn.transaction()
await tx.start()
yield conn
if not auto_commit and tx:
await tx.commit()
finally:
if conn:
await conn.close()
async def get_questions(conn: asyncpg.Connection, source_finder_run_id: int, baseline_source_finder_run_id: int):
questions = await conn.fetch("""
select distinct q.id, question_text from talmudexplore.questions q
join (select question_id from talmudexplore.source_finder_run_question_metadata where source_finder_run_id = $1) sfrqm1
on sfrqm1.question_id = q.id
join (select question_id from talmudexplore.source_finder_run_question_metadata where source_finder_run_id = $2) sfrqm2
on sfrqm2.question_id = q.id;
""", source_finder_run_id, baseline_source_finder_run_id)
return [{"id": q["id"], "text": q["question_text"]} for q in questions]
@cached(cache=TTLCache(ttl=1800, maxsize=1024))
async def get_metadata(conn: asyncpg.Connection, question_id: int, source_finder_id_run_id: int):
metadata = await conn.fetchrow('''
SELECT metadata
FROM source_finder_run_question_metadata sfrqm
WHERE sfrqm.question_id = $1 and sfrqm.source_finder_run_id = $2;
''', question_id, source_finder_id_run_id)
if metadata is None:
return ""
return metadata.get('metadata')
# Get distinct source finders
async def get_source_finders(conn: asyncpg.Connection):
finders = await conn.fetch("""
SELECT distinct sf.id, sf.source_finder_type as name from talmudexplore.source_finder_runs sfr
join talmudexplore.source_finders sf on sf.id = sfr.source_finder_id
WHERE EXISTS (
SELECT 1
FROM talmudexplore.source_run_results srr
WHERE srr.source_finder_run_id = sfr.id
)
ORDER BY sf.id
"""
)
return [{"id": f["id"], "name": f["name"]} for f in finders]
# Get distinct run IDs for a question
@cached(cache=TTLCache(ttl=1800, maxsize=1024))
async def get_run_ids(conn: asyncpg.Connection, source_finder_id: int, question_id: int = None):
query = """
select distinct sfr.description, srs.source_finder_run_id as run_id
from source_run_results srs
join source_finder_runs sfr on srs.source_finder_run_id = sfr.id
join source_finders sf on sfr.source_finder_id = sf.id
where sfr.source_finder_id = $1
"""
if question_id is not None:
query += " and srs.question_id = $2"
params = (source_finder_id, question_id)
else:
params = (source_finder_id,)
query += " order by run_id DESC;"
run_ids = await conn.fetch(query, *params)
return {r["description"]:r["run_id"] for r in run_ids}
async def get_baseline_rankers(conn: asyncpg.Connection):
query = """
SELECT sfr.id, sf.source_finder_type, sfr.description from source_finder_runs sfr
join source_finders sf on sf.id = sfr.source_finder_id
WHERE EXISTS (
SELECT 1
FROM source_run_results srr
WHERE srr.source_finder_run_id = sfr.id
)
ORDER BY sf.id DESC
"""
rankers = await conn.fetch(query)
return [{"id": r["id"], "name": f"{r['source_finder_type']} : {r['description']}"} for r in rankers]
async def calculate_baseline_vs_source_stats_for_question(conn: asyncpg.Connection, baseline_sources , source_runs_sources):
# for a given question_id and source_finder_id and run_id calculate the baseline vs source stats
# e.g. overlap, high ranked overlap, etc.
actual_sources_set = {s["id"] for s in source_runs_sources}
baseline_sources_set = {s["id"] for s in baseline_sources}
# Calculate overlap
overlap = actual_sources_set.intersection(baseline_sources_set)
# only_in_1 = actual_sources_set - baseline_sources_set
# only_in_2 = baseline_sources_set - actual_sources_set
# Calculate high-ranked overlap (rank >= 4)
actual_high_ranked = {s["id"] for s in source_runs_sources if int(s["source_rank"]) >= 4}
baseline_high_ranked = {s["id"] for s in baseline_sources if int(s["baseline_rank"]) >= 4}
high_ranked_overlap = actual_high_ranked.intersection(baseline_high_ranked)
results = {
"total_baseline_sources": len(baseline_sources),
"total_found_sources": len(source_runs_sources),
"overlap_count": len(overlap),
"overlap_percentage": round(len(overlap) * 100 / max(len(actual_sources_set), len(baseline_sources_set)),
2) if max(len(actual_sources_set), len(baseline_sources_set)) > 0 else 0,
"num_high_ranked_baseline_sources": len(baseline_high_ranked),
"num_high_ranked_found_sources": len(actual_high_ranked),
"high_ranked_overlap_count": len(high_ranked_overlap),
"high_ranked_overlap_percentage": round(len(high_ranked_overlap) * 100 / max(len(actual_high_ranked), len(baseline_high_ranked)), 2) if max(len(actual_high_ranked), len(baseline_high_ranked)) > 0 else 0
}
#convert results.csv to dataframe
results_df = pd.DataFrame([results])
return results_df
async def calculate_cumulative_statistics_for_all_questions(conn: asyncpg.Connection, question_ids, source_finder_run_id: int, ranker_id: int):
"""
Calculate cumulative statistics across all questions for a specific source finder, run, and ranker.
Args:
conn (asyncpg.Connection): Database connection
question_ids (list): List of question IDs to analyze
source_finder_run_id (int): ID of the source finder and run as appears in source runs
ranker_id (int): ID of the baseline ranker
Returns:
pd.DataFrame: DataFrame containing aggregated statistics
"""
# Initialize aggregates
total_baseline_sources = 0
total_found_sources = 0
total_overlap = 0
total_high_ranked_baseline = 0
total_high_ranked_found = 0
total_high_ranked_overlap = 0
# Process each question
valid_questions = 0
for question_id in question_ids:
try:
# Get unified sources for this question
sources, stats = await get_unified_sources(conn, question_id, source_finder_run_id, ranker_id)
if sources and len(sources) > 0:
valid_questions += 1
stats_dict = stats.iloc[0].to_dict()
# Add to running totals
total_baseline_sources += stats_dict.get('total_baseline_sources', 0)
total_found_sources += stats_dict.get('total_found_sources', 0)
total_overlap += stats_dict.get('overlap_count', 0)
total_high_ranked_baseline += stats_dict.get('num_high_ranked_baseline_sources', 0)
total_high_ranked_found += stats_dict.get('num_high_ranked_found_sources', 0)
total_high_ranked_overlap += stats_dict.get('high_ranked_overlap_count', 0)
except Exception as e:
# Skip questions with errors
continue
# Calculate overall percentages
overlap_percentage = round(total_overlap * 100 / max(total_baseline_sources, total_found_sources), 2) \
if max(total_baseline_sources, total_found_sources) > 0 else 0
high_ranked_overlap_percentage = round(
total_high_ranked_overlap * 100 / max(total_high_ranked_baseline, total_high_ranked_found), 2) \
if max(total_high_ranked_baseline, total_high_ranked_found) > 0 else 0
# Compile results.csv
cumulative_stats = {
"total_questions_analyzed": valid_questions,
"total_baseline_sources": total_baseline_sources,
"total_found_sources": total_found_sources,
"total_overlap_count": total_overlap,
"overall_overlap_percentage": overlap_percentage,
"total_high_ranked_baseline_sources": total_high_ranked_baseline,
"total_high_ranked_found_sources": total_high_ranked_found,
"total_high_ranked_overlap_count": total_high_ranked_overlap,
"overall_high_ranked_overlap_percentage": high_ranked_overlap_percentage,
"avg_baseline_sources_per_question": round(total_baseline_sources / valid_questions,
2) if valid_questions > 0 else 0,
"avg_found_sources_per_question": round(total_found_sources / valid_questions,
2) if valid_questions > 0 else 0
}
return pd.DataFrame([cumulative_stats])
async def get_unified_sources(conn: asyncpg.Connection, question_id: int, source_finder_run_id: int, ranker_id: int):
"""
Create unified view of sources from both baseline_sources and source_runs
with indicators of where each source appears and their respective ranks.
"""
query_runs = """
SELECT tb.tractate_chunk_id as id,
sr.rank as source_rank,
sr.tractate,
sr.folio,
sr.reason as source_reason
FROM source_run_results sr
join talmud_bavli tb on sr.sugya_id = tb.xml_id
WHERE sr.question_id = $1
AND sr.source_finder_run_id = $2
"""
source_runs = await conn.fetch(query_runs, question_id, source_finder_run_id)
# Get sources from baseline_sources
baseline_query = query_runs.replace("source_rank", "baseline_rank")
baseline_sources = await conn.fetch(baseline_query, question_id, ranker_id)
stats_df = await calculate_baseline_vs_source_stats_for_question(conn, baseline_sources, source_runs)
# Convert to dictionaries for easier lookup
source_runs_dict = {s["id"]: dict(s) for s in source_runs}
baseline_dict = {s["id"]: dict(s) for s in baseline_sources}
# Get all unique sugya_ids
all_sugya_ids = set(source_runs_dict.keys()) | set(baseline_dict.keys())
# Build unified results.csv
unified_results = []
for sugya_id in all_sugya_ids:
in_source_run = sugya_id in source_runs_dict
in_baseline = sugya_id in baseline_dict
if in_baseline:
info = baseline_dict[sugya_id]
else:
info = source_runs_dict[sugya_id]
result = {
"id": sugya_id,
"tractate": info.get("tractate"),
"folio": info.get("folio"),
"in_baseline": "Yes" if in_baseline else "No",
"baseline_rank": baseline_dict.get(sugya_id, {}).get("baseline_rank", "N/A"),
"in_source_run": "Yes" if in_source_run else "No",
"source_run_rank": source_runs_dict.get(sugya_id, {}).get("source_rank", "N/A"),
"source_reason": source_runs_dict.get(sugya_id, {}).get("reason", "N/A"),
"metadata": source_runs_dict.get(sugya_id, {}).get("metadata", "")
}
unified_results.append(result)
return unified_results, stats_df
@cached(cache=TTLCache(ttl=1800, maxsize=1024))
async def get_source_text(conn: asyncpg.Connection, tractate_chunk_id: int):
"""
Retrieves the text content for a given tractate chunk ID.
"""
query = """
SELECT tb.text as text
FROM talmud_bavli tb
WHERE tb.tractate_chunk_id = $1
"""
result = await conn.fetchrow(query, tractate_chunk_id)
return result["text"] if result else "Source text not found"
def get_pg_sync_connection(schema="talmudexplore"):
conn = psycopg2.connect(dbname=os.getenv("pg_dbname"),
user=os.getenv("pg_user"),
password=os.getenv("pg_password"),
host=os.getenv("pg_host"),
port=os.getenv("pg_port"),
options=f"-c search_path={schema}")
return conn