Spaces:
Running
Running
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load model and tokenizer | |
model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM2-135M") | |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM2-135M") | |
def get_next_token_probs(text): | |
# Handle empty input | |
if not text.strip(): | |
return ["No input text"] * 20 | |
# Tokenize input | |
input_ids = tokenizer.encode(text, return_tensors="pt") | |
# Get predictions | |
with torch.no_grad(): | |
outputs = model(input_ids) | |
logits = outputs.logits | |
# Get probabilities for next token | |
next_token_logits = logits[0, -1, :] | |
next_token_probs = torch.softmax(next_token_logits, dim=0) | |
# Get top-20 tokens and their probabilities | |
topk_probs, topk_indices = torch.topk(next_token_probs, 20) | |
topk_tokens = [tokenizer.decode([idx]) for idx in topk_indices] | |
# Format the results as strings | |
formatted_results = [] | |
for i, (token, prob) in enumerate(zip(topk_tokens, topk_probs)): | |
# Format probability as percentage with 1 decimal place | |
prob_percent = f"{prob.item()*100:.1f}%" | |
# Clean up token display (replace space with visible space symbol) | |
display_token = token.replace(" ", "␣") | |
# Format the output string | |
formatted_results.append(f"{i+1}. \"{display_token}\" ({prob_percent})") | |
return formatted_results | |
# Create minimal interface with simpler components | |
with gr.Blocks(css="footer {display: none}") as demo: | |
gr.Markdown("### SmolLM2 Next Token Predictor") | |
# Input textbox | |
input_text = gr.Textbox( | |
label="Text Input", | |
placeholder="Type here and watch predictions update...", | |
value="The weather tomorrow will be" | |
) | |
# Simple header for results | |
gr.Markdown("##### Most likely next tokens:") | |
# Create 20 individual output markdown components | |
token_outputs = [gr.Markdown() for _ in range(20)] | |
# Set up the live update | |
input_text.change( | |
fn=get_next_token_probs, | |
inputs=input_text, | |
outputs=token_outputs | |
) | |
# Initialize with default text | |
demo.load( | |
fn=get_next_token_probs, | |
inputs=input_text, | |
outputs=token_outputs | |
) | |
# Launch the app | |
demo.launch() |