Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import
|
4 |
|
5 |
# Load model and tokenizer
|
6 |
-
model =
|
7 |
-
tokenizer =
|
8 |
|
9 |
def get_next_token_probs(text):
|
10 |
# Handle empty input
|
11 |
if not text.strip():
|
12 |
-
return ["No input text"] *
|
13 |
|
14 |
# Tokenize input
|
15 |
input_ids = tokenizer.encode(text, return_tensors="pt")
|
@@ -23,8 +23,8 @@ def get_next_token_probs(text):
|
|
23 |
next_token_logits = logits[0, -1, :]
|
24 |
next_token_probs = torch.softmax(next_token_logits, dim=0)
|
25 |
|
26 |
-
# Get top-
|
27 |
-
topk_probs, topk_indices = torch.topk(next_token_probs,
|
28 |
topk_tokens = [tokenizer.decode([idx]) for idx in topk_indices]
|
29 |
|
30 |
# Format the results as strings
|
@@ -41,7 +41,7 @@ def get_next_token_probs(text):
|
|
41 |
|
42 |
# Create minimal interface with simpler components
|
43 |
with gr.Blocks(css="footer {display: none}") as demo:
|
44 |
-
gr.Markdown("###
|
45 |
|
46 |
# Input textbox
|
47 |
input_text = gr.Textbox(
|
@@ -53,14 +53,8 @@ with gr.Blocks(css="footer {display: none}") as demo:
|
|
53 |
# Simple header for results
|
54 |
gr.Markdown("##### Most likely next tokens:")
|
55 |
|
56 |
-
#
|
57 |
-
|
58 |
-
token2 = gr.Markdown()
|
59 |
-
token3 = gr.Markdown()
|
60 |
-
token4 = gr.Markdown()
|
61 |
-
token5 = gr.Markdown()
|
62 |
-
|
63 |
-
token_outputs = [token1, token2, token3, token4, token5]
|
64 |
|
65 |
# Set up the live update
|
66 |
input_text.change(
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
5 |
# Load model and tokenizer
|
6 |
+
model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM2-135M")
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM2-135M")
|
8 |
|
9 |
def get_next_token_probs(text):
|
10 |
# Handle empty input
|
11 |
if not text.strip():
|
12 |
+
return ["No input text"] * 20
|
13 |
|
14 |
# Tokenize input
|
15 |
input_ids = tokenizer.encode(text, return_tensors="pt")
|
|
|
23 |
next_token_logits = logits[0, -1, :]
|
24 |
next_token_probs = torch.softmax(next_token_logits, dim=0)
|
25 |
|
26 |
+
# Get top-20 tokens and their probabilities
|
27 |
+
topk_probs, topk_indices = torch.topk(next_token_probs, 20)
|
28 |
topk_tokens = [tokenizer.decode([idx]) for idx in topk_indices]
|
29 |
|
30 |
# Format the results as strings
|
|
|
41 |
|
42 |
# Create minimal interface with simpler components
|
43 |
with gr.Blocks(css="footer {display: none}") as demo:
|
44 |
+
gr.Markdown("### SmolLM2 Next Token Predictor")
|
45 |
|
46 |
# Input textbox
|
47 |
input_text = gr.Textbox(
|
|
|
53 |
# Simple header for results
|
54 |
gr.Markdown("##### Most likely next tokens:")
|
55 |
|
56 |
+
# Create 20 individual output markdown components
|
57 |
+
token_outputs = [gr.Markdown() for _ in range(20)]
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
# Set up the live update
|
60 |
input_text.change(
|