Update core/rag_system.py
Browse files- core/rag_system.py +84 -36
core/rag_system.py
CHANGED
|
@@ -70,68 +70,116 @@ class EnhancedRAGSystem:
|
|
| 70 |
self.add_documents(english_data, english_metadatas)
|
| 71 |
|
| 72 |
def add_documents(self, documents: List[str], metadatas: List[Dict] = None):
|
| 73 |
-
"""Thêm documents vào database
|
|
|
|
|
|
|
| 74 |
if not documents:
|
|
|
|
| 75 |
return
|
| 76 |
|
| 77 |
# Ensure metadatas has the same length as documents
|
| 78 |
if metadatas is None:
|
| 79 |
metadatas = [{} for _ in documents]
|
|
|
|
| 80 |
elif len(metadatas) != len(documents):
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
-
#
|
| 88 |
-
new_embeddings_list = []
|
| 89 |
valid_documents = []
|
| 90 |
valid_metadatas = []
|
| 91 |
|
| 92 |
for i, doc in enumerate(documents):
|
| 93 |
-
if
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
if embedding_model is not None:
|
| 100 |
-
try:
|
| 101 |
-
# Create embedding for this document
|
| 102 |
-
doc_embedding = embedding_model.encode([doc])
|
| 103 |
-
new_embeddings_list.append(doc_embedding[0])
|
| 104 |
-
valid_documents.append(doc)
|
| 105 |
-
valid_metadatas.append(metadatas[i])
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
| 111 |
return
|
| 112 |
|
| 113 |
-
# Convert
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
-
# Handle
|
| 117 |
-
|
| 118 |
-
print(f"⚠️ Phát hiện dimension mismatch ({self.embeddings.shape[1]} vs {new_embeddings.shape[1]}), tạo index mới...")
|
| 119 |
-
self.embeddings = None
|
| 120 |
-
self.index = None
|
| 121 |
|
| 122 |
-
# Update embeddings
|
| 123 |
if self.embeddings is None:
|
|
|
|
| 124 |
self.embeddings = new_embeddings
|
| 125 |
-
self.
|
|
|
|
|
|
|
| 126 |
else:
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
# Update FAISS index
|
| 130 |
self._update_faiss_index()
|
| 131 |
|
| 132 |
-
self.documents
|
| 133 |
-
|
| 134 |
-
print(f"
|
| 135 |
|
| 136 |
def _update_faiss_index(self):
|
| 137 |
"""Cập nhật FAISS index với embeddings hiện tại"""
|
|
|
|
| 70 |
self.add_documents(english_data, english_metadatas)
|
| 71 |
|
| 72 |
def add_documents(self, documents: List[str], metadatas: List[Dict] = None):
|
| 73 |
+
"""Thêm documents vào database - ĐÃ SỬA LỖI"""
|
| 74 |
+
print(f"🔄 RAG System: Bắt đầu thêm {len(documents)} documents...")
|
| 75 |
+
|
| 76 |
if not documents:
|
| 77 |
+
print("❌ RAG System: Không có documents để thêm")
|
| 78 |
return
|
| 79 |
|
| 80 |
# Ensure metadatas has the same length as documents
|
| 81 |
if metadatas is None:
|
| 82 |
metadatas = [{} for _ in documents]
|
| 83 |
+
print("📝 Tạo metadata mặc định")
|
| 84 |
elif len(metadatas) != len(documents):
|
| 85 |
+
print(f"⚠️ Metadata length mismatch: {len(metadatas)} vs {len(documents)}")
|
| 86 |
+
# Fix metadata length
|
| 87 |
+
new_metadatas = []
|
| 88 |
+
for i in range(len(documents)):
|
| 89 |
+
if i < len(metadatas):
|
| 90 |
+
new_metadatas.append(metadatas[i])
|
| 91 |
+
else:
|
| 92 |
+
new_metadatas.append({"source": "upload", "language": "vi"})
|
| 93 |
+
metadatas = new_metadatas
|
| 94 |
|
| 95 |
+
# Filter valid documents
|
|
|
|
| 96 |
valid_documents = []
|
| 97 |
valid_metadatas = []
|
| 98 |
|
| 99 |
for i, doc in enumerate(documents):
|
| 100 |
+
if doc and isinstance(doc, str) and len(doc.strip()) > 5: # At least 5 characters
|
| 101 |
+
valid_documents.append(doc.strip())
|
| 102 |
+
valid_metadatas.append(metadatas[i] if i < len(metadatas) else {})
|
| 103 |
+
else:
|
| 104 |
+
print(f"⚠️ Bỏ qua document {i}: không hợp lệ")
|
| 105 |
+
|
| 106 |
+
print(f"📊 Documents hợp lệ: {len(valid_documents)}/{len(documents)}")
|
| 107 |
+
|
| 108 |
+
if not valid_documents:
|
| 109 |
+
print("❌ Không có documents hợp lệ để thêm")
|
| 110 |
+
return
|
| 111 |
+
|
| 112 |
+
# Create embeddings
|
| 113 |
+
new_embeddings_list = []
|
| 114 |
+
successful_embeddings = 0
|
| 115 |
+
|
| 116 |
+
for i, doc in enumerate(valid_documents):
|
| 117 |
+
try:
|
| 118 |
+
language = valid_metadatas[i].get('language', 'vi')
|
| 119 |
+
embedding_model = self.multilingual_manager.get_embedding_model(language)
|
| 120 |
|
| 121 |
+
if embedding_model is None:
|
| 122 |
+
print(f"⚠️ Không có embedding model cho document {i}")
|
| 123 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
+
# Create embedding
|
| 126 |
+
doc_embedding = embedding_model.encode([doc])
|
| 127 |
+
new_embeddings_list.append(doc_embedding[0])
|
| 128 |
+
successful_embeddings += 1
|
| 129 |
+
|
| 130 |
+
except Exception as e:
|
| 131 |
+
print(f"❌ Lỗi embedding document {i}: {e}")
|
| 132 |
|
| 133 |
+
print(f"📊 Embeddings thành công: {successful_embeddings}/{len(valid_documents)}")
|
| 134 |
+
|
| 135 |
+
if not new_embeddings_list:
|
| 136 |
+
print("❌ Không tạo được embeddings nào")
|
| 137 |
return
|
| 138 |
|
| 139 |
+
# Convert to numpy array
|
| 140 |
+
try:
|
| 141 |
+
new_embeddings = np.array(new_embeddings_list)
|
| 142 |
+
print(f"✅ Embedding matrix shape: {new_embeddings.shape}")
|
| 143 |
+
except Exception as e:
|
| 144 |
+
print(f"❌ Lỗi tạo embedding matrix: {e}")
|
| 145 |
+
return
|
| 146 |
|
| 147 |
+
# Handle existing embeddings
|
| 148 |
+
old_doc_count = len(self.documents)
|
|
|
|
|
|
|
|
|
|
| 149 |
|
|
|
|
| 150 |
if self.embeddings is None:
|
| 151 |
+
# First time initialization
|
| 152 |
self.embeddings = new_embeddings
|
| 153 |
+
self.documents = valid_documents
|
| 154 |
+
self.metadatas = valid_metadatas
|
| 155 |
+
print("✅ Khởi tạo RAG system lần đầu")
|
| 156 |
else:
|
| 157 |
+
# Append to existing
|
| 158 |
+
try:
|
| 159 |
+
# Check dimension compatibility
|
| 160 |
+
if self.embeddings.shape[1] != new_embeddings.shape[1]:
|
| 161 |
+
print(f"⚠️ Dimension mismatch: {self.embeddings.shape[1]} vs {new_embeddings.shape[1]}")
|
| 162 |
+
print("🔄 Tạo system mới do dimension không khớp")
|
| 163 |
+
self.embeddings = new_embeddings
|
| 164 |
+
self.documents = valid_documents
|
| 165 |
+
self.metadatas = valid_metadatas
|
| 166 |
+
else:
|
| 167 |
+
# Compatible dimensions, append
|
| 168 |
+
self.embeddings = np.vstack([self.embeddings, new_embeddings])
|
| 169 |
+
self.documents.extend(valid_documents)
|
| 170 |
+
self.metadatas.extend(valid_metadatas)
|
| 171 |
+
print("✅ Đã thêm vào system hiện có")
|
| 172 |
+
|
| 173 |
+
except Exception as e:
|
| 174 |
+
print(f"❌ Lỗi khi thêm vào system: {e}")
|
| 175 |
+
return
|
| 176 |
|
| 177 |
# Update FAISS index
|
| 178 |
self._update_faiss_index()
|
| 179 |
|
| 180 |
+
new_doc_count = len(self.documents)
|
| 181 |
+
print(f"🎉 THÀNH CÔNG: Đã thêm {new_doc_count - old_doc_count} documents mới")
|
| 182 |
+
print(f"📊 Tổng documents: {new_doc_count}")
|
| 183 |
|
| 184 |
def _update_faiss_index(self):
|
| 185 |
"""Cập nhật FAISS index với embeddings hiện tại"""
|