voicebot / services /stream_object_detection_service.py
datbkpro's picture
Update services/stream_object_detection_service.py
281882b verified
from PIL import ImageDraw, ImageFont, Image
import cv2
import torch
import numpy as np
import uuid
import spaces
from transformers import RTDetrForObjectDetection, RTDetrImageProcessor
# === Load model (chỉ load 1 lần khi khởi động Space) ===
image_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd")
model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd").to("cuda" if torch.cuda.is_available() else "cpu")
SUBSAMPLE = 2 # giảm FPS để tiết kiệm tài nguyên
class StreamObjectDetection:
@staticmethod
def draw_bounding_boxes(image, boxes, model, conf_threshold):
draw = ImageDraw.Draw(image)
font = ImageFont.load_default()
for score, label, box in zip(boxes["scores"], boxes["labels"], boxes["boxes"]):
if score < conf_threshold:
continue
x0, y0, x1, y1 = box
label_text = f"{model.config.id2label[label.item()]}: {score:.2f}"
draw.rectangle([x0, y0, x1, y1], outline="red", width=3)
draw.text((x0 + 3, y0 + 3), label_text, fill="white", font=font)
return image
@staticmethod
@spaces.GPU # Dùng GPU nếu có (ZeroGPU, GPU Cluster, v.v.)
def stream_object_detection(video, conf_threshold=0.3):
cap = cv2.VideoCapture(video)
video_codec = cv2.VideoWriter_fourcc(*"mp4v")
fps = int(cap.get(cv2.CAP_PROP_FPS)) or 24
desired_fps = max(1, fps // SUBSAMPLE)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2
iterating, frame = cap.read()
n_frames = 0
output_video_name = f"output_{uuid.uuid4()}.mp4"
output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height))
batch = []
while iterating:
frame = cv2.resize(frame, (0, 0), fx=0.5, fy=0.5)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if n_frames % SUBSAMPLE == 0:
batch.append(frame)
# Mỗi 2 giây xử lý một lần
if len(batch) == 2 * desired_fps:
inputs = image_processor(images=batch, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model(**inputs)
boxes = image_processor.post_process_object_detection(
outputs,
target_sizes=torch.tensor([(height, width)] * len(batch)).to(model.device),
threshold=conf_threshold,
)
for img, box in zip(batch, boxes):
pil_image = StreamObjectDetection.draw_bounding_boxes(Image.fromarray(img), box, model, conf_threshold)
frame_bgr = np.array(pil_image)[:, :, ::-1]
output_video.write(frame_bgr)
batch = []
output_video.release()
yield output_video_name # Gửi video xử lý từng phần cho Gradio
output_video_name = f"output_{uuid.uuid4()}.mp4"
output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height))
iterating, frame = cap.read()
n_frames += 1
cap.release()
output_video.release()