DataViz-Agent / app.py
Mustehson
Logs to Langsmith
332cf4d
import os
import duckdb
import gradio as gr
import matplotlib.pyplot as plt
from transformers import HfEngine, ReactCodeAgent
from transformers.agents import Tool
from langsmith import traceable
from langchain import hub
# Height of the Tabs Text Area
TAB_LINES = 8
#----------CONNECT TO DATABASE----------
md_token = os.getenv('MD_TOKEN')
conn = duckdb.connect(f"md:my_db?motherduck_token={md_token}", read_only=True)
#---------------------------------------
#-------LOAD HUGGINGFACE MODEL-------
models = ["Qwen/Qwen2.5-72B-Instruct","meta-llama/Meta-Llama-3-70B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct"]
model_loaded = False
for model in models:
try:
llm_engine = HfEngine(model=model)
info = llm_engine.client.get_endpoint_info()
model_loaded = True
break
except Exception as e:
print(f"Error for model {model}: {e}")
continue
if not model_loaded:
gr.Warning(f"❌ None of the model form {models} are available. {e}")
#---------------------------------------
#-----LOAD PROMPT FROM LANCHAIN HUB-----
prompt = hub.pull("viz-prompt")
#-------------------------------------
#--------------ALL UTILS----------------
def get_schemas():
schemas = conn.execute("""
SELECT DISTINCT schema_name
FROM information_schema.schemata
WHERE schema_name NOT IN ('information_schema', 'pg_catalog')
""").fetchall()
return [item[0] for item in schemas]
# Get Tables
def get_tables(schema_name):
tables = conn.execute(f"SELECT table_name FROM information_schema.tables WHERE table_schema = '{schema_name}'").fetchall()
return [table[0] for table in tables]
# Update Tables
def update_tables(schema_name):
tables = get_tables(schema_name)
return gr.update(choices=tables)
# Get Schema
def get_table_schema(table):
result = conn.sql(f"SELECT sql, database_name, schema_name FROM duckdb_tables() where table_name ='{table}';").df()
ddl_create = result.iloc[0,0]
parent_database = result.iloc[0,1]
schema_name = result.iloc[0,2]
full_path = f"{parent_database}.{schema_name}.{table}"
if schema_name != "main":
old_path = f"{schema_name}.{table}"
else:
old_path = table
ddl_create = ddl_create.replace(old_path, full_path)
return ddl_create, full_path
class SQLExecutorTool(Tool):
name = "sql_engine"
inputs = {
"query": {
"type": "text",
"description": f"The query to perform. This should be correct DuckDB SQL.",
}
}
description = """Allows you to perform SQL queries on the table. Returns a pandas dataframe representation of the result."""
output_type = "pandas.core.frame.DataFrame"
def forward(self, query: str) -> str:
output_df = conn.sql(query).df()
return output_df
tool = SQLExecutorTool()
def process_outputs(output) :
return {
'sql': output.get('sql', None),
'code': output.get('code', None)
}
@traceable(process_outputs=process_outputs)
def get_visualization(question, schema, table_name):
agent = ReactCodeAgent(tools=[tool], llm_engine=llm_engine, add_base_tools=True,
additional_authorized_imports=['matplotlib.pyplot',
'pandas', 'plotly.express',
'seaborn'], max_iterations=10)
results = agent.run(
task= prompt.format(question=question, schema=schema, table_name=table_name)
)
return results
#---------------------------------------
def main(table, text_query):
# Empty Fig
fig, ax = plt.subplots()
ax.set_axis_off()
schema, table_name = get_table_schema(table)
try:
output = get_visualization(question=text_query, schema=schema, table_name=table_name)
fig = output.get('fig', None)
generated_sql = output.get('sql', None)
data = output.get('data', None)
except Exception as e:
gr.Warning(f"❌ Unable to generate the visualization. {e}")
return fig, generated_sql, data
custom_css = """
.gradio-container {
background-color: #f0f4f8;
}
.logo {
max-width: 200px;
margin: 20px auto;
display: block;
}
.gr-button {
background-color: #4a90e2 !important;
}
.gr-button:hover {
background-color: #3a7bc8 !important;
}
"""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"), css=custom_css) as demo:
gr.Image("logo.png", label=None, show_label=False, container=False, height=100)
gr.Markdown("""
<div style='text-align: center;'>
<strong style='font-size: 36px;'>DataViz Agent</strong>
<br>
<span style='font-size: 20px;'>Visualize SQL queries based on a given text for the dataset.</span>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
schema_dropdown = gr.Dropdown(choices=get_schemas(), label="Select Schema", interactive=True)
tables_dropdown = gr.Dropdown(choices=[], label="Available Tables", value=None)
with gr.Column(scale=2):
query_input = gr.Textbox(lines=3, label="Text Query", placeholder="Enter your text query here...")
with gr.Row():
with gr.Column(scale=7):
pass
with gr.Column(scale=1):
generate_query_button = gr.Button("Run Query", variant="primary")
with gr.Tabs():
with gr.Tab("Plot"):
result_plot = gr.Plot()
with gr.Tab("SQL"):
generated_sql = gr.Textbox(lines=TAB_LINES, label="Generated SQL", value="", interactive=False,
autoscroll=False)
with gr.Tab("Data"):
data = gr.Dataframe(label="Data", interactive=False)
schema_dropdown.change(update_tables, inputs=schema_dropdown, outputs=tables_dropdown)
generate_query_button.click(main, inputs=[tables_dropdown, query_input], outputs=[result_plot, generated_sql, data])
if __name__ == "__main__":
demo.launch(debug=True)