|
import os |
|
import openai |
|
from openai import OpenAI |
|
import gradio as gr |
|
import requests |
|
import pandas as pd |
|
from smolagents import DuckDuckGoSearchTool, tool |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
openai_api_key = os.getenv("OPENAI_API_KEY") |
|
if not openai_api_key: |
|
raise RuntimeError("Set OPENAI_API_KEY in your Space secrets or env!") |
|
|
|
openai.api_key = openai_api_key |
|
client = OpenAI() |
|
|
|
|
|
|
|
@tool |
|
def summarize_query(query: str) -> str: |
|
""" |
|
Provides a structured summary to reframe a query if search results are unclear or poor. |
|
|
|
Args: |
|
query (str): The search query that needs summarization. |
|
Returns: |
|
str: A concise summary of key facts about the given query. |
|
""" |
|
return f"Summarize and reframe: {query}" |
|
|
|
search_tool = DuckDuckGoSearchTool() |
|
|
|
|
|
|
|
instruction_prompt = """ |
|
|
|
You are a high-precision AI agent. Internally, you may follow the ReACT pattern—thinking step-by-step, invoking tools, observing results, retrying if needed—but you must NOT show any of that. Instead, after you finish reasoning privately, output **exactly** one line: |
|
|
|
FINAL ANSWER: [your concise answer] |
|
|
|
Rules for the final answer: |
|
- If it’s a number, output only the digits (no commas, units, or extra text). |
|
- If it’s a list, output a comma-separated list with no extra punctuation or articles. |
|
- If it’s a string, output only the words, no “um,” “the,” or other fillers. |
|
|
|
""" |
|
|
|
|
|
|
|
class BasicAgent: |
|
def __init__(self): |
|
print("SmolAgent (GPT-4.1) with ReACT, Scratchpad & Retry initialized.") |
|
|
|
def __call__(self, question: str) -> str: |
|
|
|
prompt = instruction_prompt.strip() + "\n\nQUESTION: " + question.strip() |
|
print(f"Agent prompt (first 150 chars): {prompt[:150]}…") |
|
|
|
try: |
|
response = client.responses.create( |
|
model="gpt-4.1", |
|
input=prompt |
|
) |
|
return response.output_text |
|
except Exception as e: |
|
return f"AGENT ERROR: {e}" |
|
|
|
|
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
if not profile: |
|
return "Please log in to Hugging Face using the login button above.", None |
|
|
|
username = profile.username |
|
space_id = os.getenv("SPACE_ID", "") |
|
agent = BasicAgent() |
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
|
|
|
|
try: |
|
resp = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15) |
|
resp.raise_for_status() |
|
questions = resp.json() or [] |
|
except Exception as e: |
|
return f"Error fetching questions: {e}", None |
|
|
|
|
|
logs, payload = [], [] |
|
for item in questions: |
|
tid = item.get("task_id") |
|
q = item.get("question") |
|
if not tid or q is None: |
|
continue |
|
ans = agent(q) |
|
logs.append({"Task ID": tid, "Question": q, "Submitted Answer": ans}) |
|
payload.append({"task_id": tid, "submitted_answer": ans}) |
|
|
|
if not payload: |
|
return "Agent did not produce any answers.", pd.DataFrame(logs) |
|
|
|
|
|
submission = {"username": username, "agent_code": agent_code, "answers": payload} |
|
try: |
|
post = requests.post(f"{DEFAULT_API_URL}/submit", json=submission, timeout=60) |
|
post.raise_for_status() |
|
res = post.json() |
|
status = ( |
|
f"Submission Successful!\n" |
|
f"User: {res.get('username')}\n" |
|
f"Overall Score: {res.get('score', 'N/A')}% " |
|
f"({res.get('correct_count', '?')}/{res.get('total_attempted', '?')})\n" |
|
f"Message: {res.get('message', '')}" |
|
) |
|
return status, pd.DataFrame(logs) |
|
except Exception as e: |
|
return f"Submission Failed: {e}", pd.DataFrame(logs) |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# SmolAgent GAIA Runner (GPT-4.1) 🚀") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
1. Clone this space. |
|
2. In Settings → Secrets add `OPENAI_API_KEY`. |
|
3. Log in to Hugging Face. |
|
4. Click **Run Evaluation & Submit All Answers**. |
|
**Note:** Evaluation may take several minutes. |
|
""" |
|
) |
|
gr.LoginButton() |
|
run_btn = gr.Button("Run Evaluation & Submit All Answers") |
|
status_out = gr.Textbox(label="Status", lines=5, interactive=False) |
|
table_out = gr.DataFrame(label="Questions & Answers", wrap=True) |
|
|
|
run_btn.click(fn=run_and_submit_all, outputs=[status_out, table_out]) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(debug=True, share=False) |
|
|