Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
import torch | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
import librosa | |
import numpy as np | |
from datetime import timedelta | |
import gradio as gr | |
import os | |
def format_time(seconds): | |
td = timedelta(seconds=seconds) | |
hours, remainder = divmod(td.seconds, 3600) | |
minutes, seconds = divmod(remainder, 60) | |
milliseconds = td.microseconds // 1000 | |
return f"{hours:02d}:{minutes:02d}:{seconds:02d},{milliseconds:03d}" | |
def estimate_word_timings(transcription, total_duration): | |
words = transcription.split() | |
total_chars = sum(len(word) for word in words) | |
char_duration = total_duration / total_chars | |
word_timings = [] | |
current_time = 0 | |
for word in words: | |
word_duration = len(word) * char_duration | |
start_time = current_time | |
end_time = current_time + word_duration | |
word_timings.append((word, start_time, end_time)) | |
current_time = end_time | |
return word_timings | |
model_name = "Akashpb13/xlsr_kurmanji_kurdish" | |
model = Wav2Vec2ForCTC.from_pretrained(model_name) | |
processor = Wav2Vec2Processor.from_pretrained(model_name) | |
def transcribe_audio(file): | |
speech, rate = librosa.load(file, sr=16000) | |
input_values = processor(speech, return_tensors="pt", sampling_rate=rate).input_values | |
with torch.no_grad(): | |
logits = model(input_values).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.batch_decode(predicted_ids)[0] | |
total_duration = len(speech) / rate | |
word_timings = estimate_word_timings(transcription, total_duration) | |
srt_content = "" | |
for i, (word, start_time, end_time) in enumerate(word_timings, start=1): | |
start_time_str = format_time(start_time) | |
end_time_str = format_time(end_time) | |
srt_content += f"{i}\n{start_time_str} --> {end_time_str}\n{word}\n\n" | |
output_filename = "output_word_by_word.srt" | |
with open(output_filename, "w", encoding="utf-8") as f: | |
f.write(srt_content) | |
return transcription, output_filename | |
interface = gr.Interface( | |
fn=transcribe_audio, | |
inputs=gr.Audio(type="filepath"), | |
outputs=[gr.Textbox(label="Transcription"), gr.File(label="Download SRT File")], | |
title="Deng --- Nivîsandin ::: Kurdî-Kurmancî", | |
description="Dengê xwe ji me re rêke û li Submit bixe ... û bila bêhna te fireh be .", | |
article="By Derax Elî" | |
) | |
if __name__ == "__main__": | |
interface.launch() | |