Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import torch
|
3 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
4 |
+
import librosa
|
5 |
+
import numpy as np
|
6 |
+
from datetime import timedelta
|
7 |
import gradio as gr
|
8 |
+
import os
|
9 |
|
10 |
+
def format_time(seconds):
|
11 |
+
td = timedelta(seconds=seconds)
|
12 |
+
hours, remainder = divmod(td.seconds, 3600)
|
13 |
+
minutes, seconds = divmod(remainder, 60)
|
14 |
+
milliseconds = td.microseconds // 1000
|
15 |
+
return f"{hours:02d}:{minutes:02d}:{seconds:02d},{milliseconds:03d}"
|
16 |
+
|
17 |
+
def estimate_word_timings(transcription, total_duration):
|
18 |
+
words = transcription.split()
|
19 |
+
total_chars = sum(len(word) for word in words)
|
20 |
+
char_duration = total_duration / total_chars
|
21 |
+
|
22 |
+
word_timings = []
|
23 |
+
current_time = 0
|
24 |
+
|
25 |
+
for word in words:
|
26 |
+
word_duration = len(word) * char_duration
|
27 |
+
start_time = current_time
|
28 |
+
end_time = current_time + word_duration
|
29 |
+
word_timings.append((word, start_time, end_time))
|
30 |
+
current_time = end_time
|
31 |
+
|
32 |
+
return word_timings
|
33 |
+
|
34 |
+
model_name = "Akashpb13/xlsr_kurmanji_kurdish"
|
35 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
36 |
+
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
37 |
+
|
38 |
+
def transcribe_audio(file):
|
39 |
+
speech, rate = librosa.load(file, sr=16000)
|
40 |
+
input_values = processor(speech, return_tensors="pt", sampling_rate=rate).input_values
|
41 |
+
|
42 |
+
with torch.no_grad():
|
43 |
+
logits = model(input_values).logits
|
44 |
+
|
45 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
46 |
+
transcription = processor.batch_decode(predicted_ids)[0]
|
47 |
+
total_duration = len(speech) / rate
|
48 |
+
word_timings = estimate_word_timings(transcription, total_duration)
|
49 |
+
|
50 |
+
srt_content = ""
|
51 |
+
for i, (word, start_time, end_time) in enumerate(word_timings, start=1):
|
52 |
+
start_time_str = format_time(start_time)
|
53 |
+
end_time_str = format_time(end_time)
|
54 |
+
srt_content += f"{i}\n{start_time_str} --> {end_time_str}\n{word}\n\n"
|
55 |
+
|
56 |
+
output_filename = "output_word_by_word.srt"
|
57 |
+
with open(output_filename, "w", encoding="utf-8") as f:
|
58 |
+
f.write(srt_content)
|
59 |
+
|
60 |
+
return transcription, output_filename
|
61 |
+
|
62 |
+
interface = gr.Interface(
|
63 |
+
fn=transcribe_audio,
|
64 |
+
inputs=gr.Audio(type="filepath"),
|
65 |
+
outputs=[gr.Textbox(label="Transcription"), gr.File(label="Download SRT File")],
|
66 |
+
title="Deng --- Nivîsandin ::: Kurdî-Kurmancî",
|
67 |
+
description="Dengê xwe ji me re rêke û li Submit bixe ... û bila bêhna te fireh be .",
|
68 |
+
article="By Derax Elî"
|
69 |
+
)
|
70 |
+
|
71 |
+
if __name__ == "__main__":
|
72 |
+
interface.launch()
|