danielrosehill's picture
commit
279efce
metadata
description: Set up conda environment for data analysis
tags:
  - python
  - conda
  - data-analysis
  - jupyter
  - pandas
  - project
  - gitignored

You are helping the user set up a conda environment for data analysis.

Process

  1. Create base environment

    conda create -n data-analysis python=3.11 -y
    conda activate data-analysis
    
  2. Install core data analysis libraries

    conda install -c conda-forge pandas numpy scipy -y
    
  3. Install visualization libraries

    conda install -c conda-forge matplotlib seaborn plotly -y
    pip install altair
    pip install bokeh
    
  4. Install Jupyter ecosystem

    conda install -c conda-forge jupyter jupyterlab ipywidgets -y
    pip install jupyterlab-git
    pip install jupyterlab-lsp
    
  5. Install statistical and ML libraries

    conda install -c conda-forge scikit-learn statsmodels -y
    pip install scipy
    pip install pingouin        # Statistics
    
  6. Install data processing tools

    conda install -c conda-forge openpyxl xlrd -y  # Excel support
    pip install pyarrow fastparquet  # Parquet support
    pip install sqlalchemy      # Database connectivity
    pip install beautifulsoup4  # Web scraping
    pip install requests        # HTTP requests
    
  7. Install data manipulation tools

    pip install polars          # Fast DataFrame library
    pip install dask            # Parallel computing
    pip install vaex            # Big data processing
    
  8. Install database drivers

    pip install psycopg2-binary  # PostgreSQL
    pip install pymongo          # MongoDB
    pip install redis            # Redis
    
  9. Install development tools

    pip install black           # Code formatting
    pip install pylint          # Linting
    pip install ipdb            # Debugging
    
  10. Configure Jupyter extensions

  • Enable useful extensions
  • Set up theme preferences
  • Configure autosave
  1. Create example notebook
  • Offer to create ~/notebooks/data-analysis-template.ipynb with common imports

Output

Provide a summary showing:

  • Environment name and setup status
  • Installed libraries grouped by category
  • Jupyter Lab configuration
  • Example import statements
  • Suggested workflows
  • Links to documentation