danhtran2mind commited on
Commit
e450ebf
·
verified ·
1 Parent(s): 2cb7204

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -7
app.py CHANGED
@@ -55,9 +55,9 @@ def gradio_generate_text(prompt, max_length=100, num_return_sequences=1, top_p=0
55
  generated_text = generate_text(tokenizer, model, device, prompt, max_length, num_return_sequences, top_p, temperature)
56
  return generated_text
57
 
58
- def gradio_generate_text(prompt, max_length, num_sequences, top_p, temperature):
59
- # Placeholder for your text generation logic
60
- return f"Generated text based on: {prompt}"
61
 
62
  # Ensure the models directory exists
63
  if not os.path.exists('models'):
@@ -68,10 +68,8 @@ if not os.path.exists('models/vi-medical-t5-finetune-qa'):
68
  run_shell_command('cd models && git clone https://huggingface.co/danhtran2mind/vi-medical-t5-finetune-qa && cd ..')
69
 
70
  # Load the trained model and tokenizer
71
- print('dqwdqqqqqqqqqqqqqqqqq')
72
  model_path = "models/vi-medical-t5-finetune-qa"
73
  tokenizer, model, device = load_model_and_tokenizer(model_path)
74
- print('dqwdqqqqqqqqqqqqqqqqq_2')
75
  # Create Gradio interface
76
 
77
 
@@ -80,8 +78,8 @@ iface = gr.Interface(
80
  fn=gradio_generate_text,
81
  inputs=[
82
  gr.Textbox(lines=5, label="Input Prompt"),
83
- gr.Slider(minimum=10, maximum=500, value=100, label="Max Length"),
84
- gr.Slider(minimum=1, maximum=10, value=1, label="Number of Sequences"),
85
  gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p Sampling"),
86
  gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature")
87
  ],
 
55
  generated_text = generate_text(tokenizer, model, device, prompt, max_length, num_return_sequences, top_p, temperature)
56
  return generated_text
57
 
58
+ # def gradio_generate_text(prompt, max_length, num_sequences, top_p, temperature):
59
+ # # Placeholder for your text generation logic
60
+ # return f"Generated text based on: {prompt}"
61
 
62
  # Ensure the models directory exists
63
  if not os.path.exists('models'):
 
68
  run_shell_command('cd models && git clone https://huggingface.co/danhtran2mind/vi-medical-t5-finetune-qa && cd ..')
69
 
70
  # Load the trained model and tokenizer
 
71
  model_path = "models/vi-medical-t5-finetune-qa"
72
  tokenizer, model, device = load_model_and_tokenizer(model_path)
 
73
  # Create Gradio interface
74
 
75
 
 
78
  fn=gradio_generate_text,
79
  inputs=[
80
  gr.Textbox(lines=5, label="Input Prompt"),
81
+ gr.Slider(minimum=10, maximum=768, value=32, label="Max Length"),
82
+ gr.Slider(minimum=1, maximum=5, value=1, label="Number of Sequences"),
83
  gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p Sampling"),
84
  gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature")
85
  ],