danhtran2mind commited on
Commit
2cb7204
·
verified ·
1 Parent(s): f098e4c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -8
app.py CHANGED
@@ -55,6 +55,10 @@ def gradio_generate_text(prompt, max_length=100, num_return_sequences=1, top_p=0
55
  generated_text = generate_text(tokenizer, model, device, prompt, max_length, num_return_sequences, top_p, temperature)
56
  return generated_text
57
 
 
 
 
 
58
  # Ensure the models directory exists
59
  if not os.path.exists('models'):
60
  os.makedirs('models')
@@ -69,19 +73,17 @@ model_path = "models/vi-medical-t5-finetune-qa"
69
  tokenizer, model, device = load_model_and_tokenizer(model_path)
70
  print('dqwdqqqqqqqqqqqqqqqqq_2')
71
  # Create Gradio interface
72
- def gradio_generate_text(prompt, max_length, num_sequences, top_p, temperature):
73
- # Placeholder for your text generation logic
74
- return f"Generated text based on: {prompt}"
75
 
76
  # Create the Gradio interface
77
  iface = gr.Interface(
78
  fn=gradio_generate_text,
79
  inputs=[
80
  gr.Textbox(lines=5, label="Input Prompt"),
81
- gr.Slider(minimum=10, maximum=500, default=100, label="Max Length"),
82
- gr.Slider(minimum=1, maximum=10, default=1, label="Number of Sequences"),
83
- gr.Slider(minimum=0.1, maximum=1.0, default=0.95, label="Top-p Sampling"),
84
- gr.Slider(minimum=0.1, maximum=1.0, default=0.7, label="Temperature")
85
  ],
86
  outputs=gr.Textbox(label="Generated Text"),
87
  title="Vietnamese Medical T5 Fine-Tuned Model",
@@ -89,4 +91,4 @@ iface = gr.Interface(
89
  )
90
 
91
  # Launch the Gradio interface
92
- iface.launch()
 
55
  generated_text = generate_text(tokenizer, model, device, prompt, max_length, num_return_sequences, top_p, temperature)
56
  return generated_text
57
 
58
+ def gradio_generate_text(prompt, max_length, num_sequences, top_p, temperature):
59
+ # Placeholder for your text generation logic
60
+ return f"Generated text based on: {prompt}"
61
+
62
  # Ensure the models directory exists
63
  if not os.path.exists('models'):
64
  os.makedirs('models')
 
73
  tokenizer, model, device = load_model_and_tokenizer(model_path)
74
  print('dqwdqqqqqqqqqqqqqqqqq_2')
75
  # Create Gradio interface
76
+
 
 
77
 
78
  # Create the Gradio interface
79
  iface = gr.Interface(
80
  fn=gradio_generate_text,
81
  inputs=[
82
  gr.Textbox(lines=5, label="Input Prompt"),
83
+ gr.Slider(minimum=10, maximum=500, value=100, label="Max Length"),
84
+ gr.Slider(minimum=1, maximum=10, value=1, label="Number of Sequences"),
85
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p Sampling"),
86
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature")
87
  ],
88
  outputs=gr.Textbox(label="Generated Text"),
89
  title="Vietnamese Medical T5 Fine-Tuned Model",
 
91
  )
92
 
93
  # Launch the Gradio interface
94
+ iface.launch()