JadenFK commited on
Commit
6e7b528
1 Parent(s): 640a27b

stable diffusion

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. stable_diffusion/ldm/data/__init__.py +0 -0
  2. stable_diffusion/ldm/data/base.py +40 -0
  3. stable_diffusion/ldm/data/coco.py +253 -0
  4. stable_diffusion/ldm/data/dummy.py +34 -0
  5. stable_diffusion/ldm/data/imagenet.py +394 -0
  6. stable_diffusion/ldm/data/inpainting/__init__.py +0 -0
  7. stable_diffusion/ldm/data/inpainting/synthetic_mask.py +166 -0
  8. stable_diffusion/ldm/data/laion.py +537 -0
  9. stable_diffusion/ldm/data/lsun.py +92 -0
  10. stable_diffusion/ldm/data/simple.py +180 -0
  11. stable_diffusion/ldm/extras.py +77 -0
  12. stable_diffusion/ldm/guidance.py +96 -0
  13. stable_diffusion/ldm/lr_scheduler.py +98 -0
  14. stable_diffusion/ldm/models/autoencoder.py +443 -0
  15. stable_diffusion/ldm/models/diffusion/__init__.py +0 -0
  16. stable_diffusion/ldm/models/diffusion/classifier.py +267 -0
  17. stable_diffusion/ldm/models/diffusion/ddim.py +344 -0
  18. stable_diffusion/ldm/models/diffusion/ddpm.py +1934 -0
  19. stable_diffusion/ldm/models/diffusion/dpm_solver/__init__.py +1 -0
  20. stable_diffusion/ldm/models/diffusion/dpm_solver/dpm_solver.py +1184 -0
  21. stable_diffusion/ldm/models/diffusion/dpm_solver/sampler.py +82 -0
  22. stable_diffusion/ldm/models/diffusion/plms.py +259 -0
  23. stable_diffusion/ldm/models/diffusion/sampling_util.py +50 -0
  24. stable_diffusion/ldm/modules/attention.py +269 -0
  25. stable_diffusion/ldm/modules/diffusionmodules/__init__.py +0 -0
  26. stable_diffusion/ldm/modules/diffusionmodules/model.py +835 -0
  27. stable_diffusion/ldm/modules/diffusionmodules/openaimodel.py +1001 -0
  28. stable_diffusion/ldm/modules/diffusionmodules/util.py +267 -0
  29. stable_diffusion/ldm/modules/distributions/__init__.py +0 -0
  30. stable_diffusion/ldm/modules/distributions/distributions.py +92 -0
  31. stable_diffusion/ldm/modules/ema.py +76 -0
  32. stable_diffusion/ldm/modules/encoders/__init__.py +0 -0
  33. stable_diffusion/ldm/modules/encoders/modules.py +425 -0
  34. stable_diffusion/ldm/modules/evaluate/adm_evaluator.py +676 -0
  35. stable_diffusion/ldm/modules/evaluate/evaluate_perceptualsim.py +630 -0
  36. stable_diffusion/ldm/modules/evaluate/frechet_video_distance.py +147 -0
  37. stable_diffusion/ldm/modules/evaluate/ssim.py +124 -0
  38. stable_diffusion/ldm/modules/evaluate/torch_frechet_video_distance.py +294 -0
  39. stable_diffusion/ldm/modules/image_degradation/__init__.py +2 -0
  40. stable_diffusion/ldm/modules/image_degradation/bsrgan.py +730 -0
  41. stable_diffusion/ldm/modules/image_degradation/bsrgan_light.py +650 -0
  42. stable_diffusion/ldm/modules/image_degradation/utils/test.png +0 -0
  43. stable_diffusion/ldm/modules/image_degradation/utils_image.py +916 -0
  44. stable_diffusion/ldm/modules/losses/__init__.py +1 -0
  45. stable_diffusion/ldm/modules/losses/contperceptual.py +111 -0
  46. stable_diffusion/ldm/modules/losses/vqperceptual.py +167 -0
  47. stable_diffusion/ldm/modules/x_transformer.py +641 -0
  48. stable_diffusion/ldm/thirdp/psp/helpers.py +121 -0
  49. stable_diffusion/ldm/thirdp/psp/id_loss.py +23 -0
  50. stable_diffusion/ldm/thirdp/psp/model_irse.py +86 -0
stable_diffusion/ldm/data/__init__.py ADDED
File without changes
stable_diffusion/ldm/data/base.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ from abc import abstractmethod
4
+ from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset
5
+
6
+
7
+ class Txt2ImgIterableBaseDataset(IterableDataset):
8
+ '''
9
+ Define an interface to make the IterableDatasets for text2img data chainable
10
+ '''
11
+ def __init__(self, num_records=0, valid_ids=None, size=256):
12
+ super().__init__()
13
+ self.num_records = num_records
14
+ self.valid_ids = valid_ids
15
+ self.sample_ids = valid_ids
16
+ self.size = size
17
+
18
+ print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
19
+
20
+ def __len__(self):
21
+ return self.num_records
22
+
23
+ @abstractmethod
24
+ def __iter__(self):
25
+ pass
26
+
27
+
28
+ class PRNGMixin(object):
29
+ """
30
+ Adds a prng property which is a numpy RandomState which gets
31
+ reinitialized whenever the pid changes to avoid synchronized sampling
32
+ behavior when used in conjunction with multiprocessing.
33
+ """
34
+ @property
35
+ def prng(self):
36
+ currentpid = os.getpid()
37
+ if getattr(self, "_initpid", None) != currentpid:
38
+ self._initpid = currentpid
39
+ self._prng = np.random.RandomState()
40
+ return self._prng
stable_diffusion/ldm/data/coco.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import albumentations
4
+ import numpy as np
5
+ from PIL import Image
6
+ from tqdm import tqdm
7
+ from torch.utils.data import Dataset
8
+ from abc import abstractmethod
9
+
10
+
11
+ class CocoBase(Dataset):
12
+ """needed for (image, caption, segmentation) pairs"""
13
+ def __init__(self, size=None, dataroot="", datajson="", onehot_segmentation=False, use_stuffthing=False,
14
+ crop_size=None, force_no_crop=False, given_files=None, use_segmentation=True,crop_type=None):
15
+ self.split = self.get_split()
16
+ self.size = size
17
+ if crop_size is None:
18
+ self.crop_size = size
19
+ else:
20
+ self.crop_size = crop_size
21
+
22
+ assert crop_type in [None, 'random', 'center']
23
+ self.crop_type = crop_type
24
+ self.use_segmenation = use_segmentation
25
+ self.onehot = onehot_segmentation # return segmentation as rgb or one hot
26
+ self.stuffthing = use_stuffthing # include thing in segmentation
27
+ if self.onehot and not self.stuffthing:
28
+ raise NotImplemented("One hot mode is only supported for the "
29
+ "stuffthings version because labels are stored "
30
+ "a bit different.")
31
+
32
+ data_json = datajson
33
+ with open(data_json) as json_file:
34
+ self.json_data = json.load(json_file)
35
+ self.img_id_to_captions = dict()
36
+ self.img_id_to_filepath = dict()
37
+ self.img_id_to_segmentation_filepath = dict()
38
+
39
+ assert data_json.split("/")[-1] in [f"captions_train{self.year()}.json",
40
+ f"captions_val{self.year()}.json"]
41
+ # TODO currently hardcoded paths, would be better to follow logic in
42
+ # cocstuff pixelmaps
43
+ if self.use_segmenation:
44
+ if self.stuffthing:
45
+ self.segmentation_prefix = (
46
+ f"data/cocostuffthings/val{self.year()}" if
47
+ data_json.endswith(f"captions_val{self.year()}.json") else
48
+ f"data/cocostuffthings/train{self.year()}")
49
+ else:
50
+ self.segmentation_prefix = (
51
+ f"data/coco/annotations/stuff_val{self.year()}_pixelmaps" if
52
+ data_json.endswith(f"captions_val{self.year()}.json") else
53
+ f"data/coco/annotations/stuff_train{self.year()}_pixelmaps")
54
+
55
+ imagedirs = self.json_data["images"]
56
+ self.labels = {"image_ids": list()}
57
+ for imgdir in tqdm(imagedirs, desc="ImgToPath"):
58
+ self.img_id_to_filepath[imgdir["id"]] = os.path.join(dataroot, imgdir["file_name"])
59
+ self.img_id_to_captions[imgdir["id"]] = list()
60
+ pngfilename = imgdir["file_name"].replace("jpg", "png")
61
+ if self.use_segmenation:
62
+ self.img_id_to_segmentation_filepath[imgdir["id"]] = os.path.join(
63
+ self.segmentation_prefix, pngfilename)
64
+ if given_files is not None:
65
+ if pngfilename in given_files:
66
+ self.labels["image_ids"].append(imgdir["id"])
67
+ else:
68
+ self.labels["image_ids"].append(imgdir["id"])
69
+
70
+ capdirs = self.json_data["annotations"]
71
+ for capdir in tqdm(capdirs, desc="ImgToCaptions"):
72
+ # there are in average 5 captions per image
73
+ #self.img_id_to_captions[capdir["image_id"]].append(np.array([capdir["caption"]]))
74
+ self.img_id_to_captions[capdir["image_id"]].append(capdir["caption"])
75
+
76
+ self.rescaler = albumentations.SmallestMaxSize(max_size=self.size)
77
+ if self.split=="validation":
78
+ self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
79
+ else:
80
+ # default option for train is random crop
81
+ if self.crop_type in [None, 'random']:
82
+ self.cropper = albumentations.RandomCrop(height=self.crop_size, width=self.crop_size)
83
+ else:
84
+ self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
85
+ self.preprocessor = albumentations.Compose(
86
+ [self.rescaler, self.cropper],
87
+ additional_targets={"segmentation": "image"})
88
+ if force_no_crop:
89
+ self.rescaler = albumentations.Resize(height=self.size, width=self.size)
90
+ self.preprocessor = albumentations.Compose(
91
+ [self.rescaler],
92
+ additional_targets={"segmentation": "image"})
93
+
94
+ @abstractmethod
95
+ def year(self):
96
+ raise NotImplementedError()
97
+
98
+ def __len__(self):
99
+ return len(self.labels["image_ids"])
100
+
101
+ def preprocess_image(self, image_path, segmentation_path=None):
102
+ image = Image.open(image_path)
103
+ if not image.mode == "RGB":
104
+ image = image.convert("RGB")
105
+ image = np.array(image).astype(np.uint8)
106
+ if segmentation_path:
107
+ segmentation = Image.open(segmentation_path)
108
+ if not self.onehot and not segmentation.mode == "RGB":
109
+ segmentation = segmentation.convert("RGB")
110
+ segmentation = np.array(segmentation).astype(np.uint8)
111
+ if self.onehot:
112
+ assert self.stuffthing
113
+ # stored in caffe format: unlabeled==255. stuff and thing from
114
+ # 0-181. to be compatible with the labels in
115
+ # https://github.com/nightrome/cocostuff/blob/master/labels.txt
116
+ # we shift stuffthing one to the right and put unlabeled in zero
117
+ # as long as segmentation is uint8 shifting to right handles the
118
+ # latter too
119
+ assert segmentation.dtype == np.uint8
120
+ segmentation = segmentation + 1
121
+
122
+ processed = self.preprocessor(image=image, segmentation=segmentation)
123
+
124
+ image, segmentation = processed["image"], processed["segmentation"]
125
+ else:
126
+ image = self.preprocessor(image=image,)['image']
127
+
128
+ image = (image / 127.5 - 1.0).astype(np.float32)
129
+ if segmentation_path:
130
+ if self.onehot:
131
+ assert segmentation.dtype == np.uint8
132
+ # make it one hot
133
+ n_labels = 183
134
+ flatseg = np.ravel(segmentation)
135
+ onehot = np.zeros((flatseg.size, n_labels), dtype=np.bool)
136
+ onehot[np.arange(flatseg.size), flatseg] = True
137
+ onehot = onehot.reshape(segmentation.shape + (n_labels,)).astype(int)
138
+ segmentation = onehot
139
+ else:
140
+ segmentation = (segmentation / 127.5 - 1.0).astype(np.float32)
141
+ return image, segmentation
142
+ else:
143
+ return image
144
+
145
+ def __getitem__(self, i):
146
+ img_path = self.img_id_to_filepath[self.labels["image_ids"][i]]
147
+ if self.use_segmenation:
148
+ seg_path = self.img_id_to_segmentation_filepath[self.labels["image_ids"][i]]
149
+ image, segmentation = self.preprocess_image(img_path, seg_path)
150
+ else:
151
+ image = self.preprocess_image(img_path)
152
+ captions = self.img_id_to_captions[self.labels["image_ids"][i]]
153
+ # randomly draw one of all available captions per image
154
+ caption = captions[np.random.randint(0, len(captions))]
155
+ example = {"image": image,
156
+ #"caption": [str(caption[0])],
157
+ "caption": caption,
158
+ "img_path": img_path,
159
+ "filename_": img_path.split(os.sep)[-1]
160
+ }
161
+ if self.use_segmenation:
162
+ example.update({"seg_path": seg_path, 'segmentation': segmentation})
163
+ return example
164
+
165
+
166
+ class CocoImagesAndCaptionsTrain2017(CocoBase):
167
+ """returns a pair of (image, caption)"""
168
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,):
169
+ super().__init__(size=size,
170
+ dataroot="data/coco/train2017",
171
+ datajson="data/coco/annotations/captions_train2017.json",
172
+ onehot_segmentation=onehot_segmentation,
173
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop)
174
+
175
+ def get_split(self):
176
+ return "train"
177
+
178
+ def year(self):
179
+ return '2017'
180
+
181
+
182
+ class CocoImagesAndCaptionsValidation2017(CocoBase):
183
+ """returns a pair of (image, caption)"""
184
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,
185
+ given_files=None):
186
+ super().__init__(size=size,
187
+ dataroot="data/coco/val2017",
188
+ datajson="data/coco/annotations/captions_val2017.json",
189
+ onehot_segmentation=onehot_segmentation,
190
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
191
+ given_files=given_files)
192
+
193
+ def get_split(self):
194
+ return "validation"
195
+
196
+ def year(self):
197
+ return '2017'
198
+
199
+
200
+
201
+ class CocoImagesAndCaptionsTrain2014(CocoBase):
202
+ """returns a pair of (image, caption)"""
203
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,crop_type='random'):
204
+ super().__init__(size=size,
205
+ dataroot="data/coco/train2014",
206
+ datajson="data/coco/annotations2014/annotations/captions_train2014.json",
207
+ onehot_segmentation=onehot_segmentation,
208
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
209
+ use_segmentation=False,
210
+ crop_type=crop_type)
211
+
212
+ def get_split(self):
213
+ return "train"
214
+
215
+ def year(self):
216
+ return '2014'
217
+
218
+ class CocoImagesAndCaptionsValidation2014(CocoBase):
219
+ """returns a pair of (image, caption)"""
220
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,
221
+ given_files=None,crop_type='center',**kwargs):
222
+ super().__init__(size=size,
223
+ dataroot="data/coco/val2014",
224
+ datajson="data/coco/annotations2014/annotations/captions_val2014.json",
225
+ onehot_segmentation=onehot_segmentation,
226
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
227
+ given_files=given_files,
228
+ use_segmentation=False,
229
+ crop_type=crop_type)
230
+
231
+ def get_split(self):
232
+ return "validation"
233
+
234
+ def year(self):
235
+ return '2014'
236
+
237
+ if __name__ == '__main__':
238
+ with open("data/coco/annotations2014/annotations/captions_val2014.json", "r") as json_file:
239
+ json_data = json.load(json_file)
240
+ capdirs = json_data["annotations"]
241
+ import pudb; pudb.set_trace()
242
+ #d2 = CocoImagesAndCaptionsTrain2014(size=256)
243
+ d2 = CocoImagesAndCaptionsValidation2014(size=256)
244
+ print("constructed dataset.")
245
+ print(f"length of {d2.__class__.__name__}: {len(d2)}")
246
+
247
+ ex2 = d2[0]
248
+ # ex3 = d3[0]
249
+ # print(ex1["image"].shape)
250
+ print(ex2["image"].shape)
251
+ # print(ex3["image"].shape)
252
+ # print(ex1["segmentation"].shape)
253
+ print(ex2["caption"].__class__.__name__)
stable_diffusion/ldm/data/dummy.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import random
3
+ import string
4
+ from torch.utils.data import Dataset, Subset
5
+
6
+ class DummyData(Dataset):
7
+ def __init__(self, length, size):
8
+ self.length = length
9
+ self.size = size
10
+
11
+ def __len__(self):
12
+ return self.length
13
+
14
+ def __getitem__(self, i):
15
+ x = np.random.randn(*self.size)
16
+ letters = string.ascii_lowercase
17
+ y = ''.join(random.choice(string.ascii_lowercase) for i in range(10))
18
+ return {"jpg": x, "txt": y}
19
+
20
+
21
+ class DummyDataWithEmbeddings(Dataset):
22
+ def __init__(self, length, size, emb_size):
23
+ self.length = length
24
+ self.size = size
25
+ self.emb_size = emb_size
26
+
27
+ def __len__(self):
28
+ return self.length
29
+
30
+ def __getitem__(self, i):
31
+ x = np.random.randn(*self.size)
32
+ y = np.random.randn(*self.emb_size).astype(np.float32)
33
+ return {"jpg": x, "txt": y}
34
+
stable_diffusion/ldm/data/imagenet.py ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, yaml, pickle, shutil, tarfile, glob
2
+ import cv2
3
+ import albumentations
4
+ import PIL
5
+ import numpy as np
6
+ import torchvision.transforms.functional as TF
7
+ from omegaconf import OmegaConf
8
+ from functools import partial
9
+ from PIL import Image
10
+ from tqdm import tqdm
11
+ from torch.utils.data import Dataset, Subset
12
+
13
+ import taming.data.utils as tdu
14
+ from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve
15
+ from taming.data.imagenet import ImagePaths
16
+
17
+ from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
18
+
19
+
20
+ def synset2idx(path_to_yaml="data/index_synset.yaml"):
21
+ with open(path_to_yaml) as f:
22
+ di2s = yaml.load(f)
23
+ return dict((v,k) for k,v in di2s.items())
24
+
25
+
26
+ class ImageNetBase(Dataset):
27
+ def __init__(self, config=None):
28
+ self.config = config or OmegaConf.create()
29
+ if not type(self.config)==dict:
30
+ self.config = OmegaConf.to_container(self.config)
31
+ self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
32
+ self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
33
+ self._prepare()
34
+ self._prepare_synset_to_human()
35
+ self._prepare_idx_to_synset()
36
+ self._prepare_human_to_integer_label()
37
+ self._load()
38
+
39
+ def __len__(self):
40
+ return len(self.data)
41
+
42
+ def __getitem__(self, i):
43
+ return self.data[i]
44
+
45
+ def _prepare(self):
46
+ raise NotImplementedError()
47
+
48
+ def _filter_relpaths(self, relpaths):
49
+ ignore = set([
50
+ "n06596364_9591.JPEG",
51
+ ])
52
+ relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
53
+ if "sub_indices" in self.config:
54
+ indices = str_to_indices(self.config["sub_indices"])
55
+ synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings
56
+ self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
57
+ files = []
58
+ for rpath in relpaths:
59
+ syn = rpath.split("/")[0]
60
+ if syn in synsets:
61
+ files.append(rpath)
62
+ return files
63
+ else:
64
+ return relpaths
65
+
66
+ def _prepare_synset_to_human(self):
67
+ SIZE = 2655750
68
+ URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
69
+ self.human_dict = os.path.join(self.root, "synset_human.txt")
70
+ if (not os.path.exists(self.human_dict) or
71
+ not os.path.getsize(self.human_dict)==SIZE):
72
+ download(URL, self.human_dict)
73
+
74
+ def _prepare_idx_to_synset(self):
75
+ URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
76
+ self.idx2syn = os.path.join(self.root, "index_synset.yaml")
77
+ if (not os.path.exists(self.idx2syn)):
78
+ download(URL, self.idx2syn)
79
+
80
+ def _prepare_human_to_integer_label(self):
81
+ URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
82
+ self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt")
83
+ if (not os.path.exists(self.human2integer)):
84
+ download(URL, self.human2integer)
85
+ with open(self.human2integer, "r") as f:
86
+ lines = f.read().splitlines()
87
+ assert len(lines) == 1000
88
+ self.human2integer_dict = dict()
89
+ for line in lines:
90
+ value, key = line.split(":")
91
+ self.human2integer_dict[key] = int(value)
92
+
93
+ def _load(self):
94
+ with open(self.txt_filelist, "r") as f:
95
+ self.relpaths = f.read().splitlines()
96
+ l1 = len(self.relpaths)
97
+ self.relpaths = self._filter_relpaths(self.relpaths)
98
+ print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths)))
99
+
100
+ self.synsets = [p.split("/")[0] for p in self.relpaths]
101
+ self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
102
+
103
+ unique_synsets = np.unique(self.synsets)
104
+ class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
105
+ if not self.keep_orig_class_label:
106
+ self.class_labels = [class_dict[s] for s in self.synsets]
107
+ else:
108
+ self.class_labels = [self.synset2idx[s] for s in self.synsets]
109
+
110
+ with open(self.human_dict, "r") as f:
111
+ human_dict = f.read().splitlines()
112
+ human_dict = dict(line.split(maxsplit=1) for line in human_dict)
113
+
114
+ self.human_labels = [human_dict[s] for s in self.synsets]
115
+
116
+ labels = {
117
+ "relpath": np.array(self.relpaths),
118
+ "synsets": np.array(self.synsets),
119
+ "class_label": np.array(self.class_labels),
120
+ "human_label": np.array(self.human_labels),
121
+ }
122
+
123
+ if self.process_images:
124
+ self.size = retrieve(self.config, "size", default=256)
125
+ self.data = ImagePaths(self.abspaths,
126
+ labels=labels,
127
+ size=self.size,
128
+ random_crop=self.random_crop,
129
+ )
130
+ else:
131
+ self.data = self.abspaths
132
+
133
+
134
+ class ImageNetTrain(ImageNetBase):
135
+ NAME = "ILSVRC2012_train"
136
+ URL = "http://www.image-net.org/challenges/LSVRC/2012/"
137
+ AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
138
+ FILES = [
139
+ "ILSVRC2012_img_train.tar",
140
+ ]
141
+ SIZES = [
142
+ 147897477120,
143
+ ]
144
+
145
+ def __init__(self, process_images=True, data_root=None, **kwargs):
146
+ self.process_images = process_images
147
+ self.data_root = data_root
148
+ super().__init__(**kwargs)
149
+
150
+ def _prepare(self):
151
+ if self.data_root:
152
+ self.root = os.path.join(self.data_root, self.NAME)
153
+ else:
154
+ cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
155
+ self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
156
+
157
+ self.datadir = os.path.join(self.root, "data")
158
+ self.txt_filelist = os.path.join(self.root, "filelist.txt")
159
+ self.expected_length = 1281167
160
+ self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop",
161
+ default=True)
162
+ if not tdu.is_prepared(self.root):
163
+ # prep
164
+ print("Preparing dataset {} in {}".format(self.NAME, self.root))
165
+
166
+ datadir = self.datadir
167
+ if not os.path.exists(datadir):
168
+ path = os.path.join(self.root, self.FILES[0])
169
+ if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
170
+ import academictorrents as at
171
+ atpath = at.get(self.AT_HASH, datastore=self.root)
172
+ assert atpath == path
173
+
174
+ print("Extracting {} to {}".format(path, datadir))
175
+ os.makedirs(datadir, exist_ok=True)
176
+ with tarfile.open(path, "r:") as tar:
177
+ tar.extractall(path=datadir)
178
+
179
+ print("Extracting sub-tars.")
180
+ subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
181
+ for subpath in tqdm(subpaths):
182
+ subdir = subpath[:-len(".tar")]
183
+ os.makedirs(subdir, exist_ok=True)
184
+ with tarfile.open(subpath, "r:") as tar:
185
+ tar.extractall(path=subdir)
186
+
187
+ filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
188
+ filelist = [os.path.relpath(p, start=datadir) for p in filelist]
189
+ filelist = sorted(filelist)
190
+ filelist = "\n".join(filelist)+"\n"
191
+ with open(self.txt_filelist, "w") as f:
192
+ f.write(filelist)
193
+
194
+ tdu.mark_prepared(self.root)
195
+
196
+
197
+ class ImageNetValidation(ImageNetBase):
198
+ NAME = "ILSVRC2012_validation"
199
+ URL = "http://www.image-net.org/challenges/LSVRC/2012/"
200
+ AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
201
+ VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
202
+ FILES = [
203
+ "ILSVRC2012_img_val.tar",
204
+ "validation_synset.txt",
205
+ ]
206
+ SIZES = [
207
+ 6744924160,
208
+ 1950000,
209
+ ]
210
+
211
+ def __init__(self, process_images=True, data_root=None, **kwargs):
212
+ self.data_root = data_root
213
+ self.process_images = process_images
214
+ super().__init__(**kwargs)
215
+
216
+ def _prepare(self):
217
+ if self.data_root:
218
+ self.root = os.path.join(self.data_root, self.NAME)
219
+ else:
220
+ cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
221
+ self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
222
+ self.datadir = os.path.join(self.root, "data")
223
+ self.txt_filelist = os.path.join(self.root, "filelist.txt")
224
+ self.expected_length = 50000
225
+ self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop",
226
+ default=False)
227
+ if not tdu.is_prepared(self.root):
228
+ # prep
229
+ print("Preparing dataset {} in {}".format(self.NAME, self.root))
230
+
231
+ datadir = self.datadir
232
+ if not os.path.exists(datadir):
233
+ path = os.path.join(self.root, self.FILES[0])
234
+ if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
235
+ import academictorrents as at
236
+ atpath = at.get(self.AT_HASH, datastore=self.root)
237
+ assert atpath == path
238
+
239
+ print("Extracting {} to {}".format(path, datadir))
240
+ os.makedirs(datadir, exist_ok=True)
241
+ with tarfile.open(path, "r:") as tar:
242
+ tar.extractall(path=datadir)
243
+
244
+ vspath = os.path.join(self.root, self.FILES[1])
245
+ if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]:
246
+ download(self.VS_URL, vspath)
247
+
248
+ with open(vspath, "r") as f:
249
+ synset_dict = f.read().splitlines()
250
+ synset_dict = dict(line.split() for line in synset_dict)
251
+
252
+ print("Reorganizing into synset folders")
253
+ synsets = np.unique(list(synset_dict.values()))
254
+ for s in synsets:
255
+ os.makedirs(os.path.join(datadir, s), exist_ok=True)
256
+ for k, v in synset_dict.items():
257
+ src = os.path.join(datadir, k)
258
+ dst = os.path.join(datadir, v)
259
+ shutil.move(src, dst)
260
+
261
+ filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
262
+ filelist = [os.path.relpath(p, start=datadir) for p in filelist]
263
+ filelist = sorted(filelist)
264
+ filelist = "\n".join(filelist)+"\n"
265
+ with open(self.txt_filelist, "w") as f:
266
+ f.write(filelist)
267
+
268
+ tdu.mark_prepared(self.root)
269
+
270
+
271
+
272
+ class ImageNetSR(Dataset):
273
+ def __init__(self, size=None,
274
+ degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1.,
275
+ random_crop=True):
276
+ """
277
+ Imagenet Superresolution Dataloader
278
+ Performs following ops in order:
279
+ 1. crops a crop of size s from image either as random or center crop
280
+ 2. resizes crop to size with cv2.area_interpolation
281
+ 3. degrades resized crop with degradation_fn
282
+
283
+ :param size: resizing to size after cropping
284
+ :param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
285
+ :param downscale_f: Low Resolution Downsample factor
286
+ :param min_crop_f: determines crop size s,
287
+ where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
288
+ :param max_crop_f: ""
289
+ :param data_root:
290
+ :param random_crop:
291
+ """
292
+ self.base = self.get_base()
293
+ assert size
294
+ assert (size / downscale_f).is_integer()
295
+ self.size = size
296
+ self.LR_size = int(size / downscale_f)
297
+ self.min_crop_f = min_crop_f
298
+ self.max_crop_f = max_crop_f
299
+ assert(max_crop_f <= 1.)
300
+ self.center_crop = not random_crop
301
+
302
+ self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
303
+
304
+ self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
305
+
306
+ if degradation == "bsrgan":
307
+ self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
308
+
309
+ elif degradation == "bsrgan_light":
310
+ self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
311
+
312
+ else:
313
+ interpolation_fn = {
314
+ "cv_nearest": cv2.INTER_NEAREST,
315
+ "cv_bilinear": cv2.INTER_LINEAR,
316
+ "cv_bicubic": cv2.INTER_CUBIC,
317
+ "cv_area": cv2.INTER_AREA,
318
+ "cv_lanczos": cv2.INTER_LANCZOS4,
319
+ "pil_nearest": PIL.Image.NEAREST,
320
+ "pil_bilinear": PIL.Image.BILINEAR,
321
+ "pil_bicubic": PIL.Image.BICUBIC,
322
+ "pil_box": PIL.Image.BOX,
323
+ "pil_hamming": PIL.Image.HAMMING,
324
+ "pil_lanczos": PIL.Image.LANCZOS,
325
+ }[degradation]
326
+
327
+ self.pil_interpolation = degradation.startswith("pil_")
328
+
329
+ if self.pil_interpolation:
330
+ self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
331
+
332
+ else:
333
+ self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
334
+ interpolation=interpolation_fn)
335
+
336
+ def __len__(self):
337
+ return len(self.base)
338
+
339
+ def __getitem__(self, i):
340
+ example = self.base[i]
341
+ image = Image.open(example["file_path_"])
342
+
343
+ if not image.mode == "RGB":
344
+ image = image.convert("RGB")
345
+
346
+ image = np.array(image).astype(np.uint8)
347
+
348
+ min_side_len = min(image.shape[:2])
349
+ crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
350
+ crop_side_len = int(crop_side_len)
351
+
352
+ if self.center_crop:
353
+ self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
354
+
355
+ else:
356
+ self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
357
+
358
+ image = self.cropper(image=image)["image"]
359
+ image = self.image_rescaler(image=image)["image"]
360
+
361
+ if self.pil_interpolation:
362
+ image_pil = PIL.Image.fromarray(image)
363
+ LR_image = self.degradation_process(image_pil)
364
+ LR_image = np.array(LR_image).astype(np.uint8)
365
+
366
+ else:
367
+ LR_image = self.degradation_process(image=image)["image"]
368
+
369
+ example["image"] = (image/127.5 - 1.0).astype(np.float32)
370
+ example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32)
371
+ example["caption"] = example["human_label"] # dummy caption
372
+ return example
373
+
374
+
375
+ class ImageNetSRTrain(ImageNetSR):
376
+ def __init__(self, **kwargs):
377
+ super().__init__(**kwargs)
378
+
379
+ def get_base(self):
380
+ with open("data/imagenet_train_hr_indices.p", "rb") as f:
381
+ indices = pickle.load(f)
382
+ dset = ImageNetTrain(process_images=False,)
383
+ return Subset(dset, indices)
384
+
385
+
386
+ class ImageNetSRValidation(ImageNetSR):
387
+ def __init__(self, **kwargs):
388
+ super().__init__(**kwargs)
389
+
390
+ def get_base(self):
391
+ with open("data/imagenet_val_hr_indices.p", "rb") as f:
392
+ indices = pickle.load(f)
393
+ dset = ImageNetValidation(process_images=False,)
394
+ return Subset(dset, indices)
stable_diffusion/ldm/data/inpainting/__init__.py ADDED
File without changes
stable_diffusion/ldm/data/inpainting/synthetic_mask.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image, ImageDraw
2
+ import numpy as np
3
+
4
+ settings = {
5
+ "256narrow": {
6
+ "p_irr": 1,
7
+ "min_n_irr": 4,
8
+ "max_n_irr": 50,
9
+ "max_l_irr": 40,
10
+ "max_w_irr": 10,
11
+ "min_n_box": None,
12
+ "max_n_box": None,
13
+ "min_s_box": None,
14
+ "max_s_box": None,
15
+ "marg": None,
16
+ },
17
+ "256train": {
18
+ "p_irr": 0.5,
19
+ "min_n_irr": 1,
20
+ "max_n_irr": 5,
21
+ "max_l_irr": 200,
22
+ "max_w_irr": 100,
23
+ "min_n_box": 1,
24
+ "max_n_box": 4,
25
+ "min_s_box": 30,
26
+ "max_s_box": 150,
27
+ "marg": 10,
28
+ },
29
+ "512train": { # TODO: experimental
30
+ "p_irr": 0.5,
31
+ "min_n_irr": 1,
32
+ "max_n_irr": 5,
33
+ "max_l_irr": 450,
34
+ "max_w_irr": 250,
35
+ "min_n_box": 1,
36
+ "max_n_box": 4,
37
+ "min_s_box": 30,
38
+ "max_s_box": 300,
39
+ "marg": 10,
40
+ },
41
+ "512train-large": { # TODO: experimental
42
+ "p_irr": 0.5,
43
+ "min_n_irr": 1,
44
+ "max_n_irr": 5,
45
+ "max_l_irr": 450,
46
+ "max_w_irr": 400,
47
+ "min_n_box": 1,
48
+ "max_n_box": 4,
49
+ "min_s_box": 75,
50
+ "max_s_box": 450,
51
+ "marg": 10,
52
+ },
53
+ }
54
+
55
+
56
+ def gen_segment_mask(mask, start, end, brush_width):
57
+ mask = mask > 0
58
+ mask = (255 * mask).astype(np.uint8)
59
+ mask = Image.fromarray(mask)
60
+ draw = ImageDraw.Draw(mask)
61
+ draw.line([start, end], fill=255, width=brush_width, joint="curve")
62
+ mask = np.array(mask) / 255
63
+ return mask
64
+
65
+
66
+ def gen_box_mask(mask, masked):
67
+ x_0, y_0, w, h = masked
68
+ mask[y_0:y_0 + h, x_0:x_0 + w] = 1
69
+ return mask
70
+
71
+
72
+ def gen_round_mask(mask, masked, radius):
73
+ x_0, y_0, w, h = masked
74
+ xy = [(x_0, y_0), (x_0 + w, y_0 + w)]
75
+
76
+ mask = mask > 0
77
+ mask = (255 * mask).astype(np.uint8)
78
+ mask = Image.fromarray(mask)
79
+ draw = ImageDraw.Draw(mask)
80
+ draw.rounded_rectangle(xy, radius=radius, fill=255)
81
+ mask = np.array(mask) / 255
82
+ return mask
83
+
84
+
85
+ def gen_large_mask(prng, img_h, img_w,
86
+ marg, p_irr, min_n_irr, max_n_irr, max_l_irr, max_w_irr,
87
+ min_n_box, max_n_box, min_s_box, max_s_box):
88
+ """
89
+ img_h: int, an image height
90
+ img_w: int, an image width
91
+ marg: int, a margin for a box starting coordinate
92
+ p_irr: float, 0 <= p_irr <= 1, a probability of a polygonal chain mask
93
+
94
+ min_n_irr: int, min number of segments
95
+ max_n_irr: int, max number of segments
96
+ max_l_irr: max length of a segment in polygonal chain
97
+ max_w_irr: max width of a segment in polygonal chain
98
+
99
+ min_n_box: int, min bound for the number of box primitives
100
+ max_n_box: int, max bound for the number of box primitives
101
+ min_s_box: int, min length of a box side
102
+ max_s_box: int, max length of a box side
103
+ """
104
+
105
+ mask = np.zeros((img_h, img_w))
106
+ uniform = prng.randint
107
+
108
+ if np.random.uniform(0, 1) < p_irr: # generate polygonal chain
109
+ n = uniform(min_n_irr, max_n_irr) # sample number of segments
110
+
111
+ for _ in range(n):
112
+ y = uniform(0, img_h) # sample a starting point
113
+ x = uniform(0, img_w)
114
+
115
+ a = uniform(0, 360) # sample angle
116
+ l = uniform(10, max_l_irr) # sample segment length
117
+ w = uniform(5, max_w_irr) # sample a segment width
118
+
119
+ # draw segment starting from (x,y) to (x_,y_) using brush of width w
120
+ x_ = x + l * np.sin(a)
121
+ y_ = y + l * np.cos(a)
122
+
123
+ mask = gen_segment_mask(mask, start=(x, y), end=(x_, y_), brush_width=w)
124
+ x, y = x_, y_
125
+ else: # generate Box masks
126
+ n = uniform(min_n_box, max_n_box) # sample number of rectangles
127
+
128
+ for _ in range(n):
129
+ h = uniform(min_s_box, max_s_box) # sample box shape
130
+ w = uniform(min_s_box, max_s_box)
131
+
132
+ x_0 = uniform(marg, img_w - marg - w) # sample upper-left coordinates of box
133
+ y_0 = uniform(marg, img_h - marg - h)
134
+
135
+ if np.random.uniform(0, 1) < 0.5:
136
+ mask = gen_box_mask(mask, masked=(x_0, y_0, w, h))
137
+ else:
138
+ r = uniform(0, 60) # sample radius
139
+ mask = gen_round_mask(mask, masked=(x_0, y_0, w, h), radius=r)
140
+ return mask
141
+
142
+
143
+ make_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256train"])
144
+ make_narrow_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256narrow"])
145
+ make_512_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train"])
146
+ make_512_lama_mask_large = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train-large"])
147
+
148
+
149
+ MASK_MODES = {
150
+ "256train": make_lama_mask,
151
+ "256narrow": make_narrow_lama_mask,
152
+ "512train": make_512_lama_mask,
153
+ "512train-large": make_512_lama_mask_large
154
+ }
155
+
156
+ if __name__ == "__main__":
157
+ import sys
158
+
159
+ out = sys.argv[1]
160
+
161
+ prng = np.random.RandomState(1)
162
+ kwargs = settings["256train"]
163
+ mask = gen_large_mask(prng, 256, 256, **kwargs)
164
+ mask = (255 * mask).astype(np.uint8)
165
+ mask = Image.fromarray(mask)
166
+ mask.save(out)
stable_diffusion/ldm/data/laion.py ADDED
@@ -0,0 +1,537 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import webdataset as wds
2
+ import kornia
3
+ from PIL import Image
4
+ import io
5
+ import os
6
+ import torchvision
7
+ from PIL import Image
8
+ import glob
9
+ import random
10
+ import numpy as np
11
+ import pytorch_lightning as pl
12
+ from tqdm import tqdm
13
+ from omegaconf import OmegaConf
14
+ from einops import rearrange
15
+ import torch
16
+ from webdataset.handlers import warn_and_continue
17
+
18
+
19
+ from ldm.util import instantiate_from_config
20
+ from ldm.data.inpainting.synthetic_mask import gen_large_mask, MASK_MODES
21
+ from ldm.data.base import PRNGMixin
22
+
23
+
24
+ class DataWithWings(torch.utils.data.IterableDataset):
25
+ def __init__(self, min_size, transform=None, target_transform=None):
26
+ self.min_size = min_size
27
+ self.transform = transform if transform is not None else nn.Identity()
28
+ self.target_transform = target_transform if target_transform is not None else nn.Identity()
29
+ self.kv = OnDiskKV(file='/home/ubuntu/laion5B-watermark-safety-ordered', key_format='q', value_format='ee')
30
+ self.kv_aesthetic = OnDiskKV(file='/home/ubuntu/laion5B-aesthetic-tags-kv', key_format='q', value_format='e')
31
+ self.pwatermark_threshold = 0.8
32
+ self.punsafe_threshold = 0.5
33
+ self.aesthetic_threshold = 5.
34
+ self.total_samples = 0
35
+ self.samples = 0
36
+ location = 'pipe:aws s3 cp --quiet s3://s-datasets/laion5b/laion2B-data/{000000..231349}.tar -'
37
+
38
+ self.inner_dataset = wds.DataPipeline(
39
+ wds.ResampledShards(location),
40
+ wds.tarfile_to_samples(handler=wds.warn_and_continue),
41
+ wds.shuffle(1000, handler=wds.warn_and_continue),
42
+ wds.decode('pilrgb', handler=wds.warn_and_continue),
43
+ wds.map(self._add_tags, handler=wds.ignore_and_continue),
44
+ wds.select(self._filter_predicate),
45
+ wds.map_dict(jpg=self.transform, txt=self.target_transform, punsafe=self._punsafe_to_class, handler=wds.warn_and_continue),
46
+ wds.to_tuple('jpg', 'txt', 'punsafe', handler=wds.warn_and_continue),
47
+ )
48
+
49
+ @staticmethod
50
+ def _compute_hash(url, text):
51
+ if url is None:
52
+ url = ''
53
+ if text is None:
54
+ text = ''
55
+ total = (url + text).encode('utf-8')
56
+ return mmh3.hash64(total)[0]
57
+
58
+ def _add_tags(self, x):
59
+ hsh = self._compute_hash(x['json']['url'], x['txt'])
60
+ pwatermark, punsafe = self.kv[hsh]
61
+ aesthetic = self.kv_aesthetic[hsh][0]
62
+ return {**x, 'pwatermark': pwatermark, 'punsafe': punsafe, 'aesthetic': aesthetic}
63
+
64
+ def _punsafe_to_class(self, punsafe):
65
+ return torch.tensor(punsafe >= self.punsafe_threshold).long()
66
+
67
+ def _filter_predicate(self, x):
68
+ try:
69
+ return x['pwatermark'] < self.pwatermark_threshold and x['aesthetic'] >= self.aesthetic_threshold and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
70
+ except:
71
+ return False
72
+
73
+ def __iter__(self):
74
+ return iter(self.inner_dataset)
75
+
76
+
77
+ def dict_collation_fn(samples, combine_tensors=True, combine_scalars=True):
78
+ """Take a list of samples (as dictionary) and create a batch, preserving the keys.
79
+ If `tensors` is True, `ndarray` objects are combined into
80
+ tensor batches.
81
+ :param dict samples: list of samples
82
+ :param bool tensors: whether to turn lists of ndarrays into a single ndarray
83
+ :returns: single sample consisting of a batch
84
+ :rtype: dict
85
+ """
86
+ keys = set.intersection(*[set(sample.keys()) for sample in samples])
87
+ batched = {key: [] for key in keys}
88
+
89
+ for s in samples:
90
+ [batched[key].append(s[key]) for key in batched]
91
+
92
+ result = {}
93
+ for key in batched:
94
+ if isinstance(batched[key][0], (int, float)):
95
+ if combine_scalars:
96
+ result[key] = np.array(list(batched[key]))
97
+ elif isinstance(batched[key][0], torch.Tensor):
98
+ if combine_tensors:
99
+ result[key] = torch.stack(list(batched[key]))
100
+ elif isinstance(batched[key][0], np.ndarray):
101
+ if combine_tensors:
102
+ result[key] = np.array(list(batched[key]))
103
+ else:
104
+ result[key] = list(batched[key])
105
+ return result
106
+
107
+
108
+ class WebDataModuleFromConfig(pl.LightningDataModule):
109
+ def __init__(self, tar_base, batch_size, train=None, validation=None,
110
+ test=None, num_workers=4, multinode=True, min_size=None,
111
+ max_pwatermark=1.0,
112
+ **kwargs):
113
+ super().__init__(self)
114
+ print(f'Setting tar base to {tar_base}')
115
+ self.tar_base = tar_base
116
+ self.batch_size = batch_size
117
+ self.num_workers = num_workers
118
+ self.train = train
119
+ self.validation = validation
120
+ self.test = test
121
+ self.multinode = multinode
122
+ self.min_size = min_size # filter out very small images
123
+ self.max_pwatermark = max_pwatermark # filter out watermarked images
124
+
125
+ def make_loader(self, dataset_config, train=True):
126
+ if 'image_transforms' in dataset_config:
127
+ image_transforms = [instantiate_from_config(tt) for tt in dataset_config.image_transforms]
128
+ else:
129
+ image_transforms = []
130
+
131
+ image_transforms.extend([torchvision.transforms.ToTensor(),
132
+ torchvision.transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
133
+ image_transforms = torchvision.transforms.Compose(image_transforms)
134
+
135
+ if 'transforms' in dataset_config:
136
+ transforms_config = OmegaConf.to_container(dataset_config.transforms)
137
+ else:
138
+ transforms_config = dict()
139
+
140
+ transform_dict = {dkey: load_partial_from_config(transforms_config[dkey])
141
+ if transforms_config[dkey] != 'identity' else identity
142
+ for dkey in transforms_config}
143
+ img_key = dataset_config.get('image_key', 'jpeg')
144
+ transform_dict.update({img_key: image_transforms})
145
+
146
+ if 'postprocess' in dataset_config:
147
+ postprocess = instantiate_from_config(dataset_config['postprocess'])
148
+ else:
149
+ postprocess = None
150
+
151
+ shuffle = dataset_config.get('shuffle', 0)
152
+ shardshuffle = shuffle > 0
153
+
154
+ nodesplitter = wds.shardlists.split_by_node if self.multinode else wds.shardlists.single_node_only
155
+
156
+ if self.tar_base == "__improvedaesthetic__":
157
+ print("## Warning, loading the same improved aesthetic dataset "
158
+ "for all splits and ignoring shards parameter.")
159
+ tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
160
+ else:
161
+ tars = os.path.join(self.tar_base, dataset_config.shards)
162
+
163
+ dset = wds.WebDataset(
164
+ tars,
165
+ nodesplitter=nodesplitter,
166
+ shardshuffle=shardshuffle,
167
+ handler=wds.warn_and_continue).repeat().shuffle(shuffle)
168
+ print(f'Loading webdataset with {len(dset.pipeline[0].urls)} shards.')
169
+
170
+ dset = (dset
171
+ .select(self.filter_keys)
172
+ .decode('pil', handler=wds.warn_and_continue)
173
+ .select(self.filter_size)
174
+ .map_dict(**transform_dict, handler=wds.warn_and_continue)
175
+ )
176
+ if postprocess is not None:
177
+ dset = dset.map(postprocess)
178
+ dset = (dset
179
+ .batched(self.batch_size, partial=False,
180
+ collation_fn=dict_collation_fn)
181
+ )
182
+
183
+ loader = wds.WebLoader(dset, batch_size=None, shuffle=False,
184
+ num_workers=self.num_workers)
185
+
186
+ return loader
187
+
188
+ def filter_size(self, x):
189
+ try:
190
+ valid = True
191
+ if self.min_size is not None and self.min_size > 1:
192
+ try:
193
+ valid = valid and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
194
+ except Exception:
195
+ valid = False
196
+ if self.max_pwatermark is not None and self.max_pwatermark < 1.0:
197
+ try:
198
+ valid = valid and x['json']['pwatermark'] <= self.max_pwatermark
199
+ except Exception:
200
+ valid = False
201
+ return valid
202
+ except Exception:
203
+ return False
204
+
205
+ def filter_keys(self, x):
206
+ try:
207
+ return ("jpg" in x) and ("txt" in x)
208
+ except Exception:
209
+ return False
210
+
211
+ def train_dataloader(self):
212
+ return self.make_loader(self.train)
213
+
214
+ def val_dataloader(self):
215
+ return self.make_loader(self.validation, train=False)
216
+
217
+ def test_dataloader(self):
218
+ return self.make_loader(self.test, train=False)
219
+
220
+
221
+ from ldm.modules.image_degradation import degradation_fn_bsr_light
222
+ import cv2
223
+
224
+ class AddLR(object):
225
+ def __init__(self, factor, output_size, initial_size=None, image_key="jpg"):
226
+ self.factor = factor
227
+ self.output_size = output_size
228
+ self.image_key = image_key
229
+ self.initial_size = initial_size
230
+
231
+ def pt2np(self, x):
232
+ x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
233
+ return x
234
+
235
+ def np2pt(self, x):
236
+ x = torch.from_numpy(x)/127.5-1.0
237
+ return x
238
+
239
+ def __call__(self, sample):
240
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
241
+ x = self.pt2np(sample[self.image_key])
242
+ if self.initial_size is not None:
243
+ x = cv2.resize(x, (self.initial_size, self.initial_size), interpolation=2)
244
+ x = degradation_fn_bsr_light(x, sf=self.factor)['image']
245
+ x = cv2.resize(x, (self.output_size, self.output_size), interpolation=2)
246
+ x = self.np2pt(x)
247
+ sample['lr'] = x
248
+ return sample
249
+
250
+ class AddBW(object):
251
+ def __init__(self, image_key="jpg"):
252
+ self.image_key = image_key
253
+
254
+ def pt2np(self, x):
255
+ x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
256
+ return x
257
+
258
+ def np2pt(self, x):
259
+ x = torch.from_numpy(x)/127.5-1.0
260
+ return x
261
+
262
+ def __call__(self, sample):
263
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
264
+ x = sample[self.image_key]
265
+ w = torch.rand(3, device=x.device)
266
+ w /= w.sum()
267
+ out = torch.einsum('hwc,c->hw', x, w)
268
+
269
+ # Keep as 3ch so we can pass to encoder, also we might want to add hints
270
+ sample['lr'] = out.unsqueeze(-1).tile(1,1,3)
271
+ return sample
272
+
273
+ class AddMask(PRNGMixin):
274
+ def __init__(self, mode="512train", p_drop=0.):
275
+ super().__init__()
276
+ assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
277
+ self.make_mask = MASK_MODES[mode]
278
+ self.p_drop = p_drop
279
+
280
+ def __call__(self, sample):
281
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
282
+ x = sample['jpg']
283
+ mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
284
+ if self.prng.choice(2, p=[1 - self.p_drop, self.p_drop]):
285
+ mask = np.ones_like(mask)
286
+ mask[mask < 0.5] = 0
287
+ mask[mask > 0.5] = 1
288
+ mask = torch.from_numpy(mask[..., None])
289
+ sample['mask'] = mask
290
+ sample['masked_image'] = x * (mask < 0.5)
291
+ return sample
292
+
293
+
294
+ class AddEdge(PRNGMixin):
295
+ def __init__(self, mode="512train", mask_edges=True):
296
+ super().__init__()
297
+ assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
298
+ self.make_mask = MASK_MODES[mode]
299
+ self.n_down_choices = [0]
300
+ self.sigma_choices = [1, 2]
301
+ self.mask_edges = mask_edges
302
+
303
+ @torch.no_grad()
304
+ def __call__(self, sample):
305
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
306
+ x = sample['jpg']
307
+
308
+ mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
309
+ mask[mask < 0.5] = 0
310
+ mask[mask > 0.5] = 1
311
+ mask = torch.from_numpy(mask[..., None])
312
+ sample['mask'] = mask
313
+
314
+ n_down_idx = self.prng.choice(len(self.n_down_choices))
315
+ sigma_idx = self.prng.choice(len(self.sigma_choices))
316
+
317
+ n_choices = len(self.n_down_choices)*len(self.sigma_choices)
318
+ raveled_idx = np.ravel_multi_index((n_down_idx, sigma_idx),
319
+ (len(self.n_down_choices), len(self.sigma_choices)))
320
+ normalized_idx = raveled_idx/max(1, n_choices-1)
321
+
322
+ n_down = self.n_down_choices[n_down_idx]
323
+ sigma = self.sigma_choices[sigma_idx]
324
+
325
+ kernel_size = 4*sigma+1
326
+ kernel_size = (kernel_size, kernel_size)
327
+ sigma = (sigma, sigma)
328
+ canny = kornia.filters.Canny(
329
+ low_threshold=0.1,
330
+ high_threshold=0.2,
331
+ kernel_size=kernel_size,
332
+ sigma=sigma,
333
+ hysteresis=True,
334
+ )
335
+ y = (x+1.0)/2.0 # in 01
336
+ y = y.unsqueeze(0).permute(0, 3, 1, 2).contiguous()
337
+
338
+ # down
339
+ for i_down in range(n_down):
340
+ size = min(y.shape[-2], y.shape[-1])//2
341
+ y = kornia.geometry.transform.resize(y, size, antialias=True)
342
+
343
+ # edge
344
+ _, y = canny(y)
345
+
346
+ if n_down > 0:
347
+ size = x.shape[0], x.shape[1]
348
+ y = kornia.geometry.transform.resize(y, size, interpolation="nearest")
349
+
350
+ y = y.permute(0, 2, 3, 1)[0].expand(-1, -1, 3).contiguous()
351
+ y = y*2.0-1.0
352
+
353
+ if self.mask_edges:
354
+ sample['masked_image'] = y * (mask < 0.5)
355
+ else:
356
+ sample['masked_image'] = y
357
+ sample['mask'] = torch.zeros_like(sample['mask'])
358
+
359
+ # concat normalized idx
360
+ sample['smoothing_strength'] = torch.ones_like(sample['mask'])*normalized_idx
361
+
362
+ return sample
363
+
364
+
365
+ def example00():
366
+ url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
367
+ dataset = wds.WebDataset(url)
368
+ example = next(iter(dataset))
369
+ for k in example:
370
+ print(k, type(example[k]))
371
+
372
+ print(example["__key__"])
373
+ for k in ["json", "txt"]:
374
+ print(example[k].decode())
375
+
376
+ image = Image.open(io.BytesIO(example["jpg"]))
377
+ outdir = "tmp"
378
+ os.makedirs(outdir, exist_ok=True)
379
+ image.save(os.path.join(outdir, example["__key__"] + ".png"))
380
+
381
+
382
+ def load_example(example):
383
+ return {
384
+ "key": example["__key__"],
385
+ "image": Image.open(io.BytesIO(example["jpg"])),
386
+ "text": example["txt"].decode(),
387
+ }
388
+
389
+
390
+ for i, example in tqdm(enumerate(dataset)):
391
+ ex = load_example(example)
392
+ print(ex["image"].size, ex["text"])
393
+ if i >= 100:
394
+ break
395
+
396
+
397
+ def example01():
398
+ # the first laion shards contain ~10k examples each
399
+ url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/{000000..000002}.tar -"
400
+
401
+ batch_size = 3
402
+ shuffle_buffer = 10000
403
+ dset = wds.WebDataset(
404
+ url,
405
+ nodesplitter=wds.shardlists.split_by_node,
406
+ shardshuffle=True,
407
+ )
408
+ dset = (dset
409
+ .shuffle(shuffle_buffer, initial=shuffle_buffer)
410
+ .decode('pil', handler=warn_and_continue)
411
+ .batched(batch_size, partial=False,
412
+ collation_fn=dict_collation_fn)
413
+ )
414
+
415
+ num_workers = 2
416
+ loader = wds.WebLoader(dset, batch_size=None, shuffle=False, num_workers=num_workers)
417
+
418
+ batch_sizes = list()
419
+ keys_per_epoch = list()
420
+ for epoch in range(5):
421
+ keys = list()
422
+ for batch in tqdm(loader):
423
+ batch_sizes.append(len(batch["__key__"]))
424
+ keys.append(batch["__key__"])
425
+
426
+ for bs in batch_sizes:
427
+ assert bs==batch_size
428
+ print(f"{len(batch_sizes)} batches of size {batch_size}.")
429
+ batch_sizes = list()
430
+
431
+ keys_per_epoch.append(keys)
432
+ for i_batch in [0, 1, -1]:
433
+ print(f"Batch {i_batch} of epoch {epoch}:")
434
+ print(keys[i_batch])
435
+ print("next epoch.")
436
+
437
+
438
+ def example02():
439
+ from omegaconf import OmegaConf
440
+ from torch.utils.data.distributed import DistributedSampler
441
+ from torch.utils.data import IterableDataset
442
+ from torch.utils.data import DataLoader, RandomSampler, Sampler, SequentialSampler
443
+ from pytorch_lightning.trainer.supporters import CombinedLoader, CycleIterator
444
+
445
+ #config = OmegaConf.load("configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml")
446
+ #config = OmegaConf.load("configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml")
447
+ config = OmegaConf.load("configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-256.yaml")
448
+ datamod = WebDataModuleFromConfig(**config["data"]["params"])
449
+ dataloader = datamod.train_dataloader()
450
+
451
+ for batch in dataloader:
452
+ print(batch.keys())
453
+ print(batch["jpg"].shape)
454
+ break
455
+
456
+
457
+ def example03():
458
+ # improved aesthetics
459
+ tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
460
+ dataset = wds.WebDataset(tars)
461
+
462
+ def filter_keys(x):
463
+ try:
464
+ return ("jpg" in x) and ("txt" in x)
465
+ except Exception:
466
+ return False
467
+
468
+ def filter_size(x):
469
+ try:
470
+ return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
471
+ except Exception:
472
+ return False
473
+
474
+ def filter_watermark(x):
475
+ try:
476
+ return x['json']['pwatermark'] < 0.5
477
+ except Exception:
478
+ return False
479
+
480
+ dataset = (dataset
481
+ .select(filter_keys)
482
+ .decode('pil', handler=wds.warn_and_continue))
483
+ n_save = 20
484
+ n_total = 0
485
+ n_large = 0
486
+ n_large_nowm = 0
487
+ for i, example in enumerate(dataset):
488
+ n_total += 1
489
+ if filter_size(example):
490
+ n_large += 1
491
+ if filter_watermark(example):
492
+ n_large_nowm += 1
493
+ if n_large_nowm < n_save+1:
494
+ image = example["jpg"]
495
+ image.save(os.path.join("tmp", f"{n_large_nowm-1:06}.png"))
496
+
497
+ if i%500 == 0:
498
+ print(i)
499
+ print(f"Large: {n_large}/{n_total} | {n_large/n_total*100:.2f}%")
500
+ if n_large > 0:
501
+ print(f"No Watermark: {n_large_nowm}/{n_large} | {n_large_nowm/n_large*100:.2f}%")
502
+
503
+
504
+
505
+ def example04():
506
+ # improved aesthetics
507
+ for i_shard in range(60208)[::-1]:
508
+ print(i_shard)
509
+ tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{:06}.tar -".format(i_shard)
510
+ dataset = wds.WebDataset(tars)
511
+
512
+ def filter_keys(x):
513
+ try:
514
+ return ("jpg" in x) and ("txt" in x)
515
+ except Exception:
516
+ return False
517
+
518
+ def filter_size(x):
519
+ try:
520
+ return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
521
+ except Exception:
522
+ return False
523
+
524
+ dataset = (dataset
525
+ .select(filter_keys)
526
+ .decode('pil', handler=wds.warn_and_continue))
527
+ try:
528
+ example = next(iter(dataset))
529
+ except Exception:
530
+ print(f"Error @ {i_shard}")
531
+
532
+
533
+ if __name__ == "__main__":
534
+ #example01()
535
+ #example02()
536
+ example03()
537
+ #example04()
stable_diffusion/ldm/data/lsun.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import PIL
4
+ from PIL import Image
5
+ from torch.utils.data import Dataset
6
+ from torchvision import transforms
7
+
8
+
9
+ class LSUNBase(Dataset):
10
+ def __init__(self,
11
+ txt_file,
12
+ data_root,
13
+ size=None,
14
+ interpolation="bicubic",
15
+ flip_p=0.5
16
+ ):
17
+ self.data_paths = txt_file
18
+ self.data_root = data_root
19
+ with open(self.data_paths, "r") as f:
20
+ self.image_paths = f.read().splitlines()
21
+ self._length = len(self.image_paths)
22
+ self.labels = {
23
+ "relative_file_path_": [l for l in self.image_paths],
24
+ "file_path_": [os.path.join(self.data_root, l)
25
+ for l in self.image_paths],
26
+ }
27
+
28
+ self.size = size
29
+ self.interpolation = {"linear": PIL.Image.LINEAR,
30
+ "bilinear": PIL.Image.BILINEAR,
31
+ "bicubic": PIL.Image.BICUBIC,
32
+ "lanczos": PIL.Image.LANCZOS,
33
+ }[interpolation]
34
+ self.flip = transforms.RandomHorizontalFlip(p=flip_p)
35
+
36
+ def __len__(self):
37
+ return self._length
38
+
39
+ def __getitem__(self, i):
40
+ example = dict((k, self.labels[k][i]) for k in self.labels)
41
+ image = Image.open(example["file_path_"])
42
+ if not image.mode == "RGB":
43
+ image = image.convert("RGB")
44
+
45
+ # default to score-sde preprocessing
46
+ img = np.array(image).astype(np.uint8)
47
+ crop = min(img.shape[0], img.shape[1])
48
+ h, w, = img.shape[0], img.shape[1]
49
+ img = img[(h - crop) // 2:(h + crop) // 2,
50
+ (w - crop) // 2:(w + crop) // 2]
51
+
52
+ image = Image.fromarray(img)
53
+ if self.size is not None:
54
+ image = image.resize((self.size, self.size), resample=self.interpolation)
55
+
56
+ image = self.flip(image)
57
+ image = np.array(image).astype(np.uint8)
58
+ example["image"] = (image / 127.5 - 1.0).astype(np.float32)
59
+ return example
60
+
61
+
62
+ class LSUNChurchesTrain(LSUNBase):
63
+ def __init__(self, **kwargs):
64
+ super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
65
+
66
+
67
+ class LSUNChurchesValidation(LSUNBase):
68
+ def __init__(self, flip_p=0., **kwargs):
69
+ super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
70
+ flip_p=flip_p, **kwargs)
71
+
72
+
73
+ class LSUNBedroomsTrain(LSUNBase):
74
+ def __init__(self, **kwargs):
75
+ super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
76
+
77
+
78
+ class LSUNBedroomsValidation(LSUNBase):
79
+ def __init__(self, flip_p=0.0, **kwargs):
80
+ super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
81
+ flip_p=flip_p, **kwargs)
82
+
83
+
84
+ class LSUNCatsTrain(LSUNBase):
85
+ def __init__(self, **kwargs):
86
+ super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
87
+
88
+
89
+ class LSUNCatsValidation(LSUNBase):
90
+ def __init__(self, flip_p=0., **kwargs):
91
+ super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
92
+ flip_p=flip_p, **kwargs)
stable_diffusion/ldm/data/simple.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict
2
+ import numpy as np
3
+ from omegaconf import DictConfig, ListConfig
4
+ import torch
5
+ from torch.utils.data import Dataset
6
+ from pathlib import Path
7
+ import json
8
+ from PIL import Image
9
+ from torchvision import transforms
10
+ from einops import rearrange
11
+ from ldm.util import instantiate_from_config
12
+ from datasets import load_dataset
13
+
14
+ def make_multi_folder_data(paths, caption_files=None, **kwargs):
15
+ """Make a concat dataset from multiple folders
16
+ Don't suport captions yet
17
+
18
+ If paths is a list, that's ok, if it's a Dict interpret it as:
19
+ k=folder v=n_times to repeat that
20
+ """
21
+ list_of_paths = []
22
+ if isinstance(paths, (Dict, DictConfig)):
23
+ assert caption_files is None, \
24
+ "Caption files not yet supported for repeats"
25
+ for folder_path, repeats in paths.items():
26
+ list_of_paths.extend([folder_path]*repeats)
27
+ paths = list_of_paths
28
+
29
+ if caption_files is not None:
30
+ datasets = [FolderData(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)]
31
+ else:
32
+ datasets = [FolderData(p, **kwargs) for p in paths]
33
+ return torch.utils.data.ConcatDataset(datasets)
34
+
35
+ class FolderData(Dataset):
36
+ def __init__(self,
37
+ root_dir,
38
+ caption_file=None,
39
+ image_transforms=[],
40
+ ext="jpg",
41
+ default_caption="",
42
+ postprocess=None,
43
+ return_paths=False,
44
+ ) -> None:
45
+ """Create a dataset from a folder of images.
46
+ If you pass in a root directory it will be searched for images
47
+ ending in ext (ext can be a list)
48
+ """
49
+ self.root_dir = Path(root_dir)
50
+ self.default_caption = default_caption
51
+ self.return_paths = return_paths
52
+ if isinstance(postprocess, DictConfig):
53
+ postprocess = instantiate_from_config(postprocess)
54
+ self.postprocess = postprocess
55
+ if caption_file is not None:
56
+ with open(caption_file, "rt") as f:
57
+ ext = Path(caption_file).suffix.lower()
58
+ if ext == ".json":
59
+ captions = json.load(f)
60
+ elif ext == ".jsonl":
61
+ lines = f.readlines()
62
+ lines = [json.loads(x) for x in lines]
63
+ captions = {x["file_name"]: x["text"].strip("\n") for x in lines}
64
+ else:
65
+ raise ValueError(f"Unrecognised format: {ext}")
66
+ self.captions = captions
67
+ else:
68
+ self.captions = None
69
+
70
+ if not isinstance(ext, (tuple, list, ListConfig)):
71
+ ext = [ext]
72
+
73
+ # Only used if there is no caption file
74
+ self.paths = []
75
+ for e in ext:
76
+ self.paths.extend(list(self.root_dir.rglob(f"*.{e}")))
77
+ if isinstance(image_transforms, ListConfig):
78
+ image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
79
+ image_transforms.extend([transforms.ToTensor(),
80
+ transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
81
+ image_transforms = transforms.Compose(image_transforms)
82
+ self.tform = image_transforms
83
+
84
+
85
+ def __len__(self):
86
+ if self.captions is not None:
87
+ return len(self.captions.keys())
88
+ else:
89
+ return len(self.paths)
90
+
91
+ def __getitem__(self, index):
92
+ data = {}
93
+ if self.captions is not None:
94
+ chosen = list(self.captions.keys())[index]
95
+ caption = self.captions.get(chosen, None)
96
+ if caption is None:
97
+ caption = self.default_caption
98
+ filename = self.root_dir/chosen
99
+ else:
100
+ filename = self.paths[index]
101
+
102
+ if self.return_paths:
103
+ data["path"] = str(filename)
104
+
105
+ im = Image.open(filename)
106
+ im = self.process_im(im)
107
+ data["image"] = im
108
+
109
+ if self.captions is not None:
110
+ data["txt"] = caption
111
+ else:
112
+ data["txt"] = self.default_caption
113
+
114
+ if self.postprocess is not None:
115
+ data = self.postprocess(data)
116
+
117
+ return data
118
+
119
+ def process_im(self, im):
120
+ im = im.convert("RGB")
121
+ return self.tform(im)
122
+
123
+ def hf_dataset(
124
+ name,
125
+ image_transforms=[],
126
+ image_column="image",
127
+ text_column="text",
128
+ split='train',
129
+ image_key='image',
130
+ caption_key='txt',
131
+ ):
132
+ """Make huggingface dataset with appropriate list of transforms applied
133
+ """
134
+ ds = load_dataset(name, split=split)
135
+ image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
136
+ image_transforms.extend([transforms.ToTensor(),
137
+ transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
138
+ tform = transforms.Compose(image_transforms)
139
+
140
+ assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}"
141
+ assert text_column in ds.column_names, f"Didn't find column {text_column} in {ds.column_names}"
142
+
143
+ def pre_process(examples):
144
+ processed = {}
145
+ processed[image_key] = [tform(im) for im in examples[image_column]]
146
+ processed[caption_key] = examples[text_column]
147
+ return processed
148
+
149
+ ds.set_transform(pre_process)
150
+ return ds
151
+
152
+ class TextOnly(Dataset):
153
+ def __init__(self, captions, output_size, image_key="image", caption_key="txt", n_gpus=1):
154
+ """Returns only captions with dummy images"""
155
+ self.output_size = output_size
156
+ self.image_key = image_key
157
+ self.caption_key = caption_key
158
+ if isinstance(captions, Path):
159
+ self.captions = self._load_caption_file(captions)
160
+ else:
161
+ self.captions = captions
162
+
163
+ if n_gpus > 1:
164
+ # hack to make sure that all the captions appear on each gpu
165
+ repeated = [n_gpus*[x] for x in self.captions]
166
+ self.captions = []
167
+ [self.captions.extend(x) for x in repeated]
168
+
169
+ def __len__(self):
170
+ return len(self.captions)
171
+
172
+ def __getitem__(self, index):
173
+ dummy_im = torch.zeros(3, self.output_size, self.output_size)
174
+ dummy_im = rearrange(dummy_im * 2. - 1., 'c h w -> h w c')
175
+ return {self.image_key: dummy_im, self.caption_key: self.captions[index]}
176
+
177
+ def _load_caption_file(self, filename):
178
+ with open(filename, 'rt') as f:
179
+ captions = f.readlines()
180
+ return [x.strip('\n') for x in captions]
stable_diffusion/ldm/extras.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ from omegaconf import OmegaConf
3
+ import torch
4
+ from ldm.util import instantiate_from_config
5
+ import logging
6
+ from contextlib import contextmanager
7
+
8
+ from contextlib import contextmanager
9
+ import logging
10
+
11
+ @contextmanager
12
+ def all_logging_disabled(highest_level=logging.CRITICAL):
13
+ """
14
+ A context manager that will prevent any logging messages
15
+ triggered during the body from being processed.
16
+
17
+ :param highest_level: the maximum logging level in use.
18
+ This would only need to be changed if a custom level greater than CRITICAL
19
+ is defined.
20
+
21
+ https://gist.github.com/simon-weber/7853144
22
+ """
23
+ # two kind-of hacks here:
24
+ # * can't get the highest logging level in effect => delegate to the user
25
+ # * can't get the current module-level override => use an undocumented
26
+ # (but non-private!) interface
27
+
28
+ previous_level = logging.root.manager.disable
29
+
30
+ logging.disable(highest_level)
31
+
32
+ try:
33
+ yield
34
+ finally:
35
+ logging.disable(previous_level)
36
+
37
+ def load_training_dir(train_dir, device, epoch="last"):
38
+ """Load a checkpoint and config from training directory"""
39
+ train_dir = Path(train_dir)
40
+ ckpt = list(train_dir.rglob(f"*{epoch}.ckpt"))
41
+ assert len(ckpt) == 1, f"found {len(ckpt)} matching ckpt files"
42
+ config = list(train_dir.rglob(f"*-project.yaml"))
43
+ assert len(ckpt) > 0, f"didn't find any config in {train_dir}"
44
+ if len(config) > 1:
45
+ print(f"found {len(config)} matching config files")
46
+ config = sorted(config)[-1]
47
+ print(f"selecting {config}")
48
+ else:
49
+ config = config[0]
50
+
51
+
52
+ config = OmegaConf.load(config)
53
+ return load_model_from_config(config, ckpt[0], device)
54
+
55
+ def load_model_from_config(config, ckpt, device="cpu", verbose=False):
56
+ """Loads a model from config and a ckpt
57
+ if config is a path will use omegaconf to load
58
+ """
59
+ if isinstance(config, (str, Path)):
60
+ config = OmegaConf.load(config)
61
+
62
+ with all_logging_disabled():
63
+ print(f"Loading model from {ckpt}")
64
+ pl_sd = torch.load(ckpt, map_location="cpu")
65
+ global_step = pl_sd["global_step"]
66
+ sd = pl_sd["state_dict"]
67
+ model = instantiate_from_config(config.model)
68
+ m, u = model.load_state_dict(sd, strict=False)
69
+ if len(m) > 0 and verbose:
70
+ print("missing keys:")
71
+ print(m)
72
+ if len(u) > 0 and verbose:
73
+ print("unexpected keys:")
74
+ model.to(device)
75
+ model.eval()
76
+ model.cond_stage_model.device = device
77
+ return model
stable_diffusion/ldm/guidance.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Tuple
2
+ from scipy import interpolate
3
+ import numpy as np
4
+ import torch
5
+ import matplotlib.pyplot as plt
6
+ from IPython.display import clear_output
7
+ import abc
8
+
9
+
10
+ class GuideModel(torch.nn.Module, abc.ABC):
11
+ def __init__(self) -> None:
12
+ super().__init__()
13
+
14
+ @abc.abstractmethod
15
+ def preprocess(self, x_img):
16
+ pass
17
+
18
+ @abc.abstractmethod
19
+ def compute_loss(self, inp):
20
+ pass
21
+
22
+
23
+ class Guider(torch.nn.Module):
24
+ def __init__(self, sampler, guide_model, scale=1.0, verbose=False):
25
+ """Apply classifier guidance
26
+
27
+ Specify a guidance scale as either a scalar
28
+ Or a schedule as a list of tuples t = 0->1 and scale, e.g.
29
+ [(0, 10), (0.5, 20), (1, 50)]
30
+ """
31
+ super().__init__()
32
+ self.sampler = sampler
33
+ self.index = 0
34
+ self.show = verbose
35
+ self.guide_model = guide_model
36
+ self.history = []
37
+
38
+ if isinstance(scale, (Tuple, List)):
39
+ times = np.array([x[0] for x in scale])
40
+ values = np.array([x[1] for x in scale])
41
+ self.scale_schedule = {"times": times, "values": values}
42
+ else:
43
+ self.scale_schedule = float(scale)
44
+
45
+ self.ddim_timesteps = sampler.ddim_timesteps
46
+ self.ddpm_num_timesteps = sampler.ddpm_num_timesteps
47
+
48
+
49
+ def get_scales(self):
50
+ if isinstance(self.scale_schedule, float):
51
+ return len(self.ddim_timesteps)*[self.scale_schedule]
52
+
53
+ interpolater = interpolate.interp1d(self.scale_schedule["times"], self.scale_schedule["values"])
54
+ fractional_steps = np.array(self.ddim_timesteps)/self.ddpm_num_timesteps
55
+ return interpolater(fractional_steps)
56
+
57
+ def modify_score(self, model, e_t, x, t, c):
58
+
59
+ # TODO look up index by t
60
+ scale = self.get_scales()[self.index]
61
+
62
+ if (scale == 0):
63
+ return e_t
64
+
65
+ sqrt_1ma = self.sampler.ddim_sqrt_one_minus_alphas[self.index].to(x.device)
66
+ with torch.enable_grad():
67
+ x_in = x.detach().requires_grad_(True)
68
+ pred_x0 = model.predict_start_from_noise(x_in, t=t, noise=e_t)
69
+ x_img = model.first_stage_model.decode((1/0.18215)*pred_x0)
70
+
71
+ inp = self.guide_model.preprocess(x_img)
72
+ loss = self.guide_model.compute_loss(inp)
73
+ grads = torch.autograd.grad(loss.sum(), x_in)[0]
74
+ correction = grads * scale
75
+
76
+ if self.show:
77
+ clear_output(wait=True)
78
+ print(loss.item(), scale, correction.abs().max().item(), e_t.abs().max().item())
79
+ self.history.append([loss.item(), scale, correction.min().item(), correction.max().item()])
80
+ plt.imshow((inp[0].detach().permute(1,2,0).clamp(-1,1).cpu()+1)/2)
81
+ plt.axis('off')
82
+ plt.show()
83
+ plt.imshow(correction[0][0].detach().cpu())
84
+ plt.axis('off')
85
+ plt.show()
86
+
87
+
88
+ e_t_mod = e_t - sqrt_1ma*correction
89
+ if self.show:
90
+ fig, axs = plt.subplots(1, 3)
91
+ axs[0].imshow(e_t[0][0].detach().cpu(), vmin=-2, vmax=+2)
92
+ axs[1].imshow(e_t_mod[0][0].detach().cpu(), vmin=-2, vmax=+2)
93
+ axs[2].imshow(correction[0][0].detach().cpu(), vmin=-2, vmax=+2)
94
+ plt.show()
95
+ self.index += 1
96
+ return e_t_mod
stable_diffusion/ldm/lr_scheduler.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ class LambdaWarmUpCosineScheduler:
5
+ """
6
+ note: use with a base_lr of 1.0
7
+ """
8
+ def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
9
+ self.lr_warm_up_steps = warm_up_steps
10
+ self.lr_start = lr_start
11
+ self.lr_min = lr_min
12
+ self.lr_max = lr_max
13
+ self.lr_max_decay_steps = max_decay_steps
14
+ self.last_lr = 0.
15
+ self.verbosity_interval = verbosity_interval
16
+
17
+ def schedule(self, n, **kwargs):
18
+ if self.verbosity_interval > 0:
19
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
20
+ if n < self.lr_warm_up_steps:
21
+ lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
22
+ self.last_lr = lr
23
+ return lr
24
+ else:
25
+ t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
26
+ t = min(t, 1.0)
27
+ lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
28
+ 1 + np.cos(t * np.pi))
29
+ self.last_lr = lr
30
+ return lr
31
+
32
+ def __call__(self, n, **kwargs):
33
+ return self.schedule(n,**kwargs)
34
+
35
+
36
+ class LambdaWarmUpCosineScheduler2:
37
+ """
38
+ supports repeated iterations, configurable via lists
39
+ note: use with a base_lr of 1.0.
40
+ """
41
+ def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
42
+ assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
43
+ self.lr_warm_up_steps = warm_up_steps
44
+ self.f_start = f_start
45
+ self.f_min = f_min
46
+ self.f_max = f_max
47
+ self.cycle_lengths = cycle_lengths
48
+ self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
49
+ self.last_f = 0.
50
+ self.verbosity_interval = verbosity_interval
51
+
52
+ def find_in_interval(self, n):
53
+ interval = 0
54
+ for cl in self.cum_cycles[1:]:
55
+ if n <= cl:
56
+ return interval
57
+ interval += 1
58
+
59
+ def schedule(self, n, **kwargs):
60
+ cycle = self.find_in_interval(n)
61
+ n = n - self.cum_cycles[cycle]
62
+ if self.verbosity_interval > 0:
63
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
64
+ f"current cycle {cycle}")
65
+ if n < self.lr_warm_up_steps[cycle]:
66
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
67
+ self.last_f = f
68
+ return f
69
+ else:
70
+ t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
71
+ t = min(t, 1.0)
72
+ f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
73
+ 1 + np.cos(t * np.pi))
74
+ self.last_f = f
75
+ return f
76
+
77
+ def __call__(self, n, **kwargs):
78
+ return self.schedule(n, **kwargs)
79
+
80
+
81
+ class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
82
+
83
+ def schedule(self, n, **kwargs):
84
+ cycle = self.find_in_interval(n)
85
+ n = n - self.cum_cycles[cycle]
86
+ if self.verbosity_interval > 0:
87
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
88
+ f"current cycle {cycle}")
89
+
90
+ if n < self.lr_warm_up_steps[cycle]:
91
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
92
+ self.last_f = f
93
+ return f
94
+ else:
95
+ f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
96
+ self.last_f = f
97
+ return f
98
+
stable_diffusion/ldm/models/autoencoder.py ADDED
@@ -0,0 +1,443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import pytorch_lightning as pl
3
+ import torch.nn.functional as F
4
+ from contextlib import contextmanager
5
+
6
+ from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
7
+
8
+ from ldm.modules.diffusionmodules.model import Encoder, Decoder
9
+ from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
10
+
11
+ from ldm.util import instantiate_from_config
12
+
13
+
14
+ class VQModel(pl.LightningModule):
15
+ def __init__(self,
16
+ ddconfig,
17
+ lossconfig,
18
+ n_embed,
19
+ embed_dim,
20
+ ckpt_path=None,
21
+ ignore_keys=[],
22
+ image_key="image",
23
+ colorize_nlabels=None,
24
+ monitor=None,
25
+ batch_resize_range=None,
26
+ scheduler_config=None,
27
+ lr_g_factor=1.0,
28
+ remap=None,
29
+ sane_index_shape=False, # tell vector quantizer to return indices as bhw
30
+ use_ema=False
31
+ ):
32
+ super().__init__()
33
+ self.embed_dim = embed_dim
34
+ self.n_embed = n_embed
35
+ self.image_key = image_key
36
+ self.encoder = Encoder(**ddconfig)
37
+ self.decoder = Decoder(**ddconfig)
38
+ self.loss = instantiate_from_config(lossconfig)
39
+ self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
40
+ remap=remap,
41
+ sane_index_shape=sane_index_shape)
42
+ self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
43
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
44
+ if colorize_nlabels is not None:
45
+ assert type(colorize_nlabels)==int
46
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
47
+ if monitor is not None:
48
+ self.monitor = monitor
49
+ self.batch_resize_range = batch_resize_range
50
+ if self.batch_resize_range is not None:
51
+ print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
52
+
53
+ self.use_ema = use_ema
54
+ if self.use_ema:
55
+ self.model_ema = LitEma(self)
56
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
57
+
58
+ if ckpt_path is not None:
59
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
60
+ self.scheduler_config = scheduler_config
61
+ self.lr_g_factor = lr_g_factor
62
+
63
+ @contextmanager
64
+ def ema_scope(self, context=None):
65
+ if self.use_ema:
66
+ self.model_ema.store(self.parameters())
67
+ self.model_ema.copy_to(self)
68
+ if context is not None:
69
+ print(f"{context}: Switched to EMA weights")
70
+ try:
71
+ yield None
72
+ finally:
73
+ if self.use_ema:
74
+ self.model_ema.restore(self.parameters())
75
+ if context is not None:
76
+ print(f"{context}: Restored training weights")
77
+
78
+ def init_from_ckpt(self, path, ignore_keys=list()):
79
+ sd = torch.load(path, map_location="cpu")["state_dict"]
80
+ keys = list(sd.keys())
81
+ for k in keys:
82
+ for ik in ignore_keys:
83
+ if k.startswith(ik):
84
+ print("Deleting key {} from state_dict.".format(k))
85
+ del sd[k]
86
+ missing, unexpected = self.load_state_dict(sd, strict=False)
87
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
88
+ if len(missing) > 0:
89
+ print(f"Missing Keys: {missing}")
90
+ print(f"Unexpected Keys: {unexpected}")
91
+
92
+ def on_train_batch_end(self, *args, **kwargs):
93
+ if self.use_ema:
94
+ self.model_ema(self)
95
+
96
+ def encode(self, x):
97
+ h = self.encoder(x)
98
+ h = self.quant_conv(h)
99
+ quant, emb_loss, info = self.quantize(h)
100
+ return quant, emb_loss, info
101
+
102
+ def encode_to_prequant(self, x):
103
+ h = self.encoder(x)
104
+ h = self.quant_conv(h)
105
+ return h
106
+
107
+ def decode(self, quant):
108
+ quant = self.post_quant_conv(quant)
109
+ dec = self.decoder(quant)
110
+ return dec
111
+
112
+ def decode_code(self, code_b):
113
+ quant_b = self.quantize.embed_code(code_b)
114
+ dec = self.decode(quant_b)
115
+ return dec
116
+
117
+ def forward(self, input, return_pred_indices=False):
118
+ quant, diff, (_,_,ind) = self.encode(input)
119
+ dec = self.decode(quant)
120
+ if return_pred_indices:
121
+ return dec, diff, ind
122
+ return dec, diff
123
+
124
+ def get_input(self, batch, k):
125
+ x = batch[k]
126
+ if len(x.shape) == 3:
127
+ x = x[..., None]
128
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
129
+ if self.batch_resize_range is not None:
130
+ lower_size = self.batch_resize_range[0]
131
+ upper_size = self.batch_resize_range[1]
132
+ if self.global_step <= 4:
133
+ # do the first few batches with max size to avoid later oom
134
+ new_resize = upper_size
135
+ else:
136
+ new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
137
+ if new_resize != x.shape[2]:
138
+ x = F.interpolate(x, size=new_resize, mode="bicubic")
139
+ x = x.detach()
140
+ return x
141
+
142
+ def training_step(self, batch, batch_idx, optimizer_idx):
143
+ # https://github.com/pytorch/pytorch/issues/37142
144
+ # try not to fool the heuristics
145
+ x = self.get_input(batch, self.image_key)
146
+ xrec, qloss, ind = self(x, return_pred_indices=True)
147
+
148
+ if optimizer_idx == 0:
149
+ # autoencode
150
+ aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
151
+ last_layer=self.get_last_layer(), split="train",
152
+ predicted_indices=ind)
153
+
154
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
155
+ return aeloss
156
+
157
+ if optimizer_idx == 1:
158
+ # discriminator
159
+ discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
160
+ last_layer=self.get_last_layer(), split="train")
161
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
162
+ return discloss
163
+
164
+ def validation_step(self, batch, batch_idx):
165
+ log_dict = self._validation_step(batch, batch_idx)
166
+ with self.ema_scope():
167
+ log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
168
+ return log_dict
169
+
170
+ def _validation_step(self, batch, batch_idx, suffix=""):
171
+ x = self.get_input(batch, self.image_key)
172
+ xrec, qloss, ind = self(x, return_pred_indices=True)
173
+ aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
174
+ self.global_step,
175
+ last_layer=self.get_last_layer(),
176
+ split="val"+suffix,
177
+ predicted_indices=ind
178
+ )
179
+
180
+ discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
181
+ self.global_step,
182
+ last_layer=self.get_last_layer(),
183
+ split="val"+suffix,
184
+ predicted_indices=ind
185
+ )
186
+ rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
187
+ self.log(f"val{suffix}/rec_loss", rec_loss,
188
+ prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
189
+ self.log(f"val{suffix}/aeloss", aeloss,
190
+ prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
191
+ if version.parse(pl.__version__) >= version.parse('1.4.0'):
192
+ del log_dict_ae[f"val{suffix}/rec_loss"]
193
+ self.log_dict(log_dict_ae)
194
+ self.log_dict(log_dict_disc)
195
+ return self.log_dict
196
+
197
+ def configure_optimizers(self):
198
+ lr_d = self.learning_rate
199
+ lr_g = self.lr_g_factor*self.learning_rate
200
+ print("lr_d", lr_d)
201
+ print("lr_g", lr_g)
202
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
203
+ list(self.decoder.parameters())+
204
+ list(self.quantize.parameters())+
205
+ list(self.quant_conv.parameters())+
206
+ list(self.post_quant_conv.parameters()),
207
+ lr=lr_g, betas=(0.5, 0.9))
208
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
209
+ lr=lr_d, betas=(0.5, 0.9))
210
+
211
+ if self.scheduler_config is not None:
212
+ scheduler = instantiate_from_config(self.scheduler_config)
213
+
214
+ print("Setting up LambdaLR scheduler...")
215
+ scheduler = [
216
+ {
217
+ 'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
218
+ 'interval': 'step',
219
+ 'frequency': 1
220
+ },
221
+ {
222
+ 'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
223
+ 'interval': 'step',
224
+ 'frequency': 1
225
+ },
226
+ ]
227
+ return [opt_ae, opt_disc], scheduler
228
+ return [opt_ae, opt_disc], []
229
+
230
+ def get_last_layer(self):
231
+ return self.decoder.conv_out.weight
232
+
233
+ def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
234
+ log = dict()
235
+ x = self.get_input(batch, self.image_key)
236
+ x = x.to(self.device)
237
+ if only_inputs:
238
+ log["inputs"] = x
239
+ return log
240
+ xrec, _ = self(x)
241
+ if x.shape[1] > 3:
242
+ # colorize with random projection
243
+ assert xrec.shape[1] > 3
244
+ x = self.to_rgb(x)
245
+ xrec = self.to_rgb(xrec)
246
+ log["inputs"] = x
247
+ log["reconstructions"] = xrec
248
+ if plot_ema:
249
+ with self.ema_scope():
250
+ xrec_ema, _ = self(x)
251
+ if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
252
+ log["reconstructions_ema"] = xrec_ema
253
+ return log
254
+
255
+ def to_rgb(self, x):
256
+ assert self.image_key == "segmentation"
257
+ if not hasattr(self, "colorize"):
258
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
259
+ x = F.conv2d(x, weight=self.colorize)
260
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
261
+ return x
262
+
263
+
264
+ class VQModelInterface(VQModel):
265
+ def __init__(self, embed_dim, *args, **kwargs):
266
+ super().__init__(embed_dim=embed_dim, *args, **kwargs)
267
+ self.embed_dim = embed_dim
268
+
269
+ def encode(self, x):
270
+ h = self.encoder(x)
271
+ h = self.quant_conv(h)
272
+ return h
273
+
274
+ def decode(self, h, force_not_quantize=False):
275
+ # also go through quantization layer
276
+ if not force_not_quantize:
277
+ quant, emb_loss, info = self.quantize(h)
278
+ else:
279
+ quant = h
280
+ quant = self.post_quant_conv(quant)
281
+ dec = self.decoder(quant)
282
+ return dec
283
+
284
+
285
+ class AutoencoderKL(pl.LightningModule):
286
+ def __init__(self,
287
+ ddconfig,
288
+ lossconfig,
289
+ embed_dim,
290
+ ckpt_path=None,
291
+ ignore_keys=[],
292
+ image_key="image",
293
+ colorize_nlabels=None,
294
+ monitor=None,
295
+ ):
296
+ super().__init__()
297
+ self.image_key = image_key
298
+ self.encoder = Encoder(**ddconfig)
299
+ self.decoder = Decoder(**ddconfig)
300
+ self.loss = instantiate_from_config(lossconfig)
301
+ assert ddconfig["double_z"]
302
+ self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
303
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
304
+ self.embed_dim = embed_dim
305
+ if colorize_nlabels is not None:
306
+ assert type(colorize_nlabels)==int
307
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
308
+ if monitor is not None:
309
+ self.monitor = monitor
310
+ if ckpt_path is not None:
311
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
312
+
313
+ def init_from_ckpt(self, path, ignore_keys=list()):
314
+ sd = torch.load(path, map_location="cpu")["state_dict"]
315
+ keys = list(sd.keys())
316
+ for k in keys:
317
+ for ik in ignore_keys:
318
+ if k.startswith(ik):
319
+ print("Deleting key {} from state_dict.".format(k))
320
+ del sd[k]
321
+ self.load_state_dict(sd, strict=False)
322
+ print(f"Restored from {path}")
323
+
324
+ def encode(self, x):
325
+ h = self.encoder(x)
326
+ moments = self.quant_conv(h)
327
+ posterior = DiagonalGaussianDistribution(moments)
328
+ return posterior
329
+
330
+ def decode(self, z):
331
+ z = self.post_quant_conv(z)
332
+ dec = self.decoder(z)
333
+ return dec
334
+
335
+ def forward(self, input, sample_posterior=True):
336
+ posterior = self.encode(input)
337
+ if sample_posterior:
338
+ z = posterior.sample()
339
+ else:
340
+ z = posterior.mode()
341
+ dec = self.decode(z)
342
+ return dec, posterior
343
+
344
+ def get_input(self, batch, k):
345
+ x = batch[k]
346
+ if len(x.shape) == 3:
347
+ x = x[..., None]
348
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
349
+ return x
350
+
351
+ def training_step(self, batch, batch_idx, optimizer_idx):
352
+ inputs = self.get_input(batch, self.image_key)
353
+ reconstructions, posterior = self(inputs)
354
+
355
+ if optimizer_idx == 0:
356
+ # train encoder+decoder+logvar
357
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
358
+ last_layer=self.get_last_layer(), split="train")
359
+ self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
360
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
361
+ return aeloss
362
+
363
+ if optimizer_idx == 1:
364
+ # train the discriminator
365
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
366
+ last_layer=self.get_last_layer(), split="train")
367
+
368
+ self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
369
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
370
+ return discloss
371
+
372
+ def validation_step(self, batch, batch_idx):
373
+ inputs = self.get_input(batch, self.image_key)
374
+ reconstructions, posterior = self(inputs)
375
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
376
+ last_layer=self.get_last_layer(), split="val")
377
+
378
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
379
+ last_layer=self.get_last_layer(), split="val")
380
+
381
+ self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
382
+ self.log_dict(log_dict_ae)
383
+ self.log_dict(log_dict_disc)
384
+ return self.log_dict
385
+
386
+ def configure_optimizers(self):
387
+ lr = self.learning_rate
388
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
389
+ list(self.decoder.parameters())+
390
+ list(self.quant_conv.parameters())+
391
+ list(self.post_quant_conv.parameters()),
392
+ lr=lr, betas=(0.5, 0.9))
393
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
394
+ lr=lr, betas=(0.5, 0.9))
395
+ return [opt_ae, opt_disc], []
396
+
397
+ def get_last_layer(self):
398
+ return self.decoder.conv_out.weight
399
+
400
+ @torch.no_grad()
401
+ def log_images(self, batch, only_inputs=False, **kwargs):
402
+ log = dict()
403
+ x = self.get_input(batch, self.image_key)
404
+ x = x.to(self.device)
405
+ if not only_inputs:
406
+ xrec, posterior = self(x)
407
+ if x.shape[1] > 3:
408
+ # colorize with random projection
409
+ assert xrec.shape[1] > 3
410
+ x = self.to_rgb(x)
411
+ xrec = self.to_rgb(xrec)
412
+ log["samples"] = self.decode(torch.randn_like(posterior.sample()))
413
+ log["reconstructions"] = xrec
414
+ log["inputs"] = x
415
+ return log
416
+
417
+ def to_rgb(self, x):
418
+ assert self.image_key == "segmentation"
419
+ if not hasattr(self, "colorize"):
420
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
421
+ x = F.conv2d(x, weight=self.colorize)
422
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
423
+ return x
424
+
425
+
426
+ class IdentityFirstStage(torch.nn.Module):
427
+ def __init__(self, *args, vq_interface=False, **kwargs):
428
+ self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
429
+ super().__init__()
430
+
431
+ def encode(self, x, *args, **kwargs):
432
+ return x
433
+
434
+ def decode(self, x, *args, **kwargs):
435
+ return x
436
+
437
+ def quantize(self, x, *args, **kwargs):
438
+ if self.vq_interface:
439
+ return x, None, [None, None, None]
440
+ return x
441
+
442
+ def forward(self, x, *args, **kwargs):
443
+ return x
stable_diffusion/ldm/models/diffusion/__init__.py ADDED
File without changes
stable_diffusion/ldm/models/diffusion/classifier.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import pytorch_lightning as pl
4
+ from omegaconf import OmegaConf
5
+ from torch.nn import functional as F
6
+ from torch.optim import AdamW
7
+ from torch.optim.lr_scheduler import LambdaLR
8
+ from copy import deepcopy
9
+ from einops import rearrange
10
+ from glob import glob
11
+ from natsort import natsorted
12
+
13
+ from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
14
+ from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
15
+
16
+ __models__ = {
17
+ 'class_label': EncoderUNetModel,
18
+ 'segmentation': UNetModel
19
+ }
20
+
21
+
22
+ def disabled_train(self, mode=True):
23
+ """Overwrite model.train with this function to make sure train/eval mode
24
+ does not change anymore."""
25
+ return self
26
+
27
+
28
+ class NoisyLatentImageClassifier(pl.LightningModule):
29
+
30
+ def __init__(self,
31
+ diffusion_path,
32
+ num_classes,
33
+ ckpt_path=None,
34
+ pool='attention',
35
+ label_key=None,
36
+ diffusion_ckpt_path=None,
37
+ scheduler_config=None,
38
+ weight_decay=1.e-2,
39
+ log_steps=10,
40
+ monitor='val/loss',
41
+ *args,
42
+ **kwargs):
43
+ super().__init__(*args, **kwargs)
44
+ self.num_classes = num_classes
45
+ # get latest config of diffusion model
46
+ diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
47
+ self.diffusion_config = OmegaConf.load(diffusion_config).model
48
+ self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
49
+ self.load_diffusion()
50
+
51
+ self.monitor = monitor
52
+ self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
53
+ self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
54
+ self.log_steps = log_steps
55
+
56
+ self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
57
+ else self.diffusion_model.cond_stage_key
58
+
59
+ assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
60
+
61
+ if self.label_key not in __models__:
62
+ raise NotImplementedError()
63
+
64
+ self.load_classifier(ckpt_path, pool)
65
+
66
+ self.scheduler_config = scheduler_config
67
+ self.use_scheduler = self.scheduler_config is not None
68
+ self.weight_decay = weight_decay
69
+
70
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
71
+ sd = torch.load(path, map_location="cpu")
72
+ if "state_dict" in list(sd.keys()):
73
+ sd = sd["state_dict"]
74
+ keys = list(sd.keys())
75
+ for k in keys:
76
+ for ik in ignore_keys:
77
+ if k.startswith(ik):
78
+ print("Deleting key {} from state_dict.".format(k))
79
+ del sd[k]
80
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
81
+ sd, strict=False)
82
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
83
+ if len(missing) > 0:
84
+ print(f"Missing Keys: {missing}")
85
+ if len(unexpected) > 0:
86
+ print(f"Unexpected Keys: {unexpected}")
87
+
88
+ def load_diffusion(self):
89
+ model = instantiate_from_config(self.diffusion_config)
90
+ self.diffusion_model = model.eval()
91
+ self.diffusion_model.train = disabled_train
92
+ for param in self.diffusion_model.parameters():
93
+ param.requires_grad = False
94
+
95
+ def load_classifier(self, ckpt_path, pool):
96
+ model_config = deepcopy(self.diffusion_config.params.unet_config.params)
97
+ model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
98
+ model_config.out_channels = self.num_classes
99
+ if self.label_key == 'class_label':
100
+ model_config.pool = pool
101
+
102
+ self.model = __models__[self.label_key](**model_config)
103
+ if ckpt_path is not None:
104
+ print('#####################################################################')
105
+ print(f'load from ckpt "{ckpt_path}"')
106
+ print('#####################################################################')
107
+ self.init_from_ckpt(ckpt_path)
108
+
109
+ @torch.no_grad()
110
+ def get_x_noisy(self, x, t, noise=None):
111
+ noise = default(noise, lambda: torch.randn_like(x))
112
+ continuous_sqrt_alpha_cumprod = None
113
+ if self.diffusion_model.use_continuous_noise:
114
+ continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
115
+ # todo: make sure t+1 is correct here
116
+
117
+ return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
118
+ continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
119
+
120
+ def forward(self, x_noisy, t, *args, **kwargs):
121
+ return self.model(x_noisy, t)
122
+
123
+ @torch.no_grad()
124
+ def get_input(self, batch, k):
125
+ x = batch[k]
126
+ if len(x.shape) == 3:
127
+ x = x[..., None]
128
+ x = rearrange(x, 'b h w c -> b c h w')
129
+ x = x.to(memory_format=torch.contiguous_format).float()
130
+ return x
131
+
132
+ @torch.no_grad()
133
+ def get_conditioning(self, batch, k=None):
134
+ if k is None:
135
+ k = self.label_key
136
+ assert k is not None, 'Needs to provide label key'
137
+
138
+ targets = batch[k].to(self.device)
139
+
140
+ if self.label_key == 'segmentation':
141
+ targets = rearrange(targets, 'b h w c -> b c h w')
142
+ for down in range(self.numd):
143
+ h, w = targets.shape[-2:]
144
+ targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
145
+
146
+ # targets = rearrange(targets,'b c h w -> b h w c')
147
+
148
+ return targets
149
+
150
+ def compute_top_k(self, logits, labels, k, reduction="mean"):
151
+ _, top_ks = torch.topk(logits, k, dim=1)
152
+ if reduction == "mean":
153
+ return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
154
+ elif reduction == "none":
155
+ return (top_ks == labels[:, None]).float().sum(dim=-1)
156
+
157
+ def on_train_epoch_start(self):
158
+ # save some memory
159
+ self.diffusion_model.model.to('cpu')
160
+
161
+ @torch.no_grad()
162
+ def write_logs(self, loss, logits, targets):
163
+ log_prefix = 'train' if self.training else 'val'
164
+ log = {}
165
+ log[f"{log_prefix}/loss"] = loss.mean()
166
+ log[f"{log_prefix}/acc@1"] = self.compute_top_k(
167
+ logits, targets, k=1, reduction="mean"
168
+ )
169
+ log[f"{log_prefix}/acc@5"] = self.compute_top_k(
170
+ logits, targets, k=5, reduction="mean"
171
+ )
172
+
173
+ self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
174
+ self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
175
+ self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
176
+ lr = self.optimizers().param_groups[0]['lr']
177
+ self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
178
+
179
+ def shared_step(self, batch, t=None):
180
+ x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
181
+ targets = self.get_conditioning(batch)
182
+ if targets.dim() == 4:
183
+ targets = targets.argmax(dim=1)
184
+ if t is None:
185
+ t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
186
+ else:
187
+ t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
188
+ x_noisy = self.get_x_noisy(x, t)
189
+ logits = self(x_noisy, t)
190
+
191
+ loss = F.cross_entropy(logits, targets, reduction='none')
192
+
193
+ self.write_logs(loss.detach(), logits.detach(), targets.detach())
194
+
195
+ loss = loss.mean()
196
+ return loss, logits, x_noisy, targets
197
+
198
+ def training_step(self, batch, batch_idx):
199
+ loss, *_ = self.shared_step(batch)
200
+ return loss
201
+
202
+ def reset_noise_accs(self):
203
+ self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
204
+ range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
205
+
206
+ def on_validation_start(self):
207
+ self.reset_noise_accs()
208
+
209
+ @torch.no_grad()
210
+ def validation_step(self, batch, batch_idx):
211
+ loss, *_ = self.shared_step(batch)
212
+
213
+ for t in self.noisy_acc:
214
+ _, logits, _, targets = self.shared_step(batch, t)
215
+ self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
216
+ self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
217
+
218
+ return loss
219
+
220
+ def configure_optimizers(self):
221
+ optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
222
+
223
+ if self.use_scheduler:
224
+ scheduler = instantiate_from_config(self.scheduler_config)
225
+
226
+ print("Setting up LambdaLR scheduler...")
227
+ scheduler = [
228
+ {
229
+ 'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
230
+ 'interval': 'step',
231
+ 'frequency': 1
232
+ }]
233
+ return [optimizer], scheduler
234
+
235
+ return optimizer
236
+
237
+ @torch.no_grad()
238
+ def log_images(self, batch, N=8, *args, **kwargs):
239
+ log = dict()
240
+ x = self.get_input(batch, self.diffusion_model.first_stage_key)
241
+ log['inputs'] = x
242
+
243
+ y = self.get_conditioning(batch)
244
+
245
+ if self.label_key == 'class_label':
246
+ y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
247
+ log['labels'] = y
248
+
249
+ if ismap(y):
250
+ log['labels'] = self.diffusion_model.to_rgb(y)
251
+
252
+ for step in range(self.log_steps):
253
+ current_time = step * self.log_time_interval
254
+
255
+ _, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
256
+
257
+ log[f'inputs@t{current_time}'] = x_noisy
258
+
259
+ pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
260
+ pred = rearrange(pred, 'b h w c -> b c h w')
261
+
262
+ log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
263
+
264
+ for key in log:
265
+ log[key] = log[key][:N]
266
+
267
+ return log
stable_diffusion/ldm/models/diffusion/ddim.py ADDED
@@ -0,0 +1,344 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+
3
+ import torch
4
+ import numpy as np
5
+ from tqdm import tqdm
6
+ from functools import partial
7
+ from einops import rearrange
8
+
9
+ from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
10
+ from ldm.models.diffusion.sampling_util import renorm_thresholding, norm_thresholding, spatial_norm_thresholding
11
+
12
+
13
+ class DDIMSampler(object):
14
+ def __init__(self, model, schedule="linear", **kwargs):
15
+ super().__init__()
16
+ self.model = model
17
+ self.ddpm_num_timesteps = model.num_timesteps
18
+ self.schedule = schedule
19
+
20
+ def to(self, device):
21
+ """Same as to in torch module
22
+ Don't really underestand why this isn't a module in the first place"""
23
+ for k, v in self.__dict__.items():
24
+ if isinstance(v, torch.Tensor):
25
+ new_v = getattr(self, k).to(device)
26
+ setattr(self, k, new_v)
27
+
28
+
29
+ def register_buffer(self, name, attr):
30
+ if type(attr) == torch.Tensor:
31
+ if attr.device != torch.device("cuda"):
32
+ attr = attr.to(torch.device("cuda"))
33
+ setattr(self, name, attr)
34
+
35
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
36
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
37
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
38
+ alphas_cumprod = self.model.alphas_cumprod
39
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
40
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
41
+
42
+ self.register_buffer('betas', to_torch(self.model.betas))
43
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
44
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
45
+
46
+ # calculations for diffusion q(x_t | x_{t-1}) and others
47
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
48
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
49
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
50
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
51
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
52
+
53
+ # ddim sampling parameters
54
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
55
+ ddim_timesteps=self.ddim_timesteps,
56
+ eta=ddim_eta,verbose=verbose)
57
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
58
+ self.register_buffer('ddim_alphas', ddim_alphas)
59
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
60
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
61
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
62
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
63
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
64
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
65
+
66
+
67
+ def sample(self,
68
+ S,
69
+ batch_size,
70
+ shape,
71
+ conditioning=None,
72
+ callback=None,
73
+ normals_sequence=None,
74
+ img_callback=None,
75
+ quantize_x0=False,
76
+ eta=0.,
77
+ mask=None,
78
+ x0=None,
79
+ temperature=1.,
80
+ noise_dropout=0.,
81
+ score_corrector=None,
82
+ corrector_kwargs=None,
83
+ verbose=True,
84
+ x_T=None,
85
+ t_start = -1,
86
+ log_every_t=100,
87
+ unconditional_guidance_scale=1.,
88
+ unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
89
+ dynamic_threshold=None,
90
+ till_T = None,
91
+ verbose_iter = False,
92
+ **kwargs
93
+ ):
94
+ if conditioning is not None:
95
+ if isinstance(conditioning, dict):
96
+ ctmp = conditioning[list(conditioning.keys())[0]]
97
+ while isinstance(ctmp, list): ctmp = ctmp[0]
98
+ cbs = ctmp.shape[0]
99
+ if cbs != batch_size:
100
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
101
+
102
+ else:
103
+ if conditioning.shape[0] != batch_size:
104
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
105
+
106
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
107
+ # sampling
108
+ C, H, W = shape
109
+ size = (batch_size, C, H, W)
110
+ if verbose_iter:
111
+ print(f'Data shape for DDIM sampling is {size}, eta {eta}')
112
+
113
+ samples, intermediates = self.ddim_sampling(conditioning, size,
114
+ callback=callback,
115
+ img_callback=img_callback,
116
+ quantize_denoised=quantize_x0,
117
+ mask=mask, x0=x0,
118
+ ddim_use_original_steps=False,
119
+ noise_dropout=noise_dropout,
120
+ temperature=temperature,
121
+ score_corrector=score_corrector,
122
+ corrector_kwargs=corrector_kwargs,
123
+ x_T=x_T,
124
+ log_every_t=log_every_t,
125
+ unconditional_guidance_scale=unconditional_guidance_scale,
126
+ unconditional_conditioning=unconditional_conditioning,
127
+ dynamic_threshold=dynamic_threshold,
128
+ till_T = till_T,
129
+ verbose_iter=verbose_iter,
130
+ t_start=t_start
131
+ )
132
+ return samples, intermediates
133
+
134
+
135
+ def ddim_sampling(self, cond, shape,
136
+ x_T=None, ddim_use_original_steps=False,
137
+ callback=None, timesteps=None, quantize_denoised=False,
138
+ mask=None, x0=None, img_callback=None, log_every_t=100,
139
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
140
+ unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
141
+ t_start=-1, till_T=None, verbose_iter=True):
142
+ device = self.model.betas.device
143
+ b = shape[0]
144
+ if x_T is None:
145
+ img = torch.randn(shape, device=device)
146
+ else:
147
+ img = x_T
148
+
149
+ if timesteps is None:
150
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
151
+ elif timesteps is not None and not ddim_use_original_steps:
152
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
153
+ timesteps = self.ddim_timesteps[:subset_end]
154
+
155
+ timesteps = timesteps[:t_start]
156
+
157
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
158
+ time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
159
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
160
+
161
+ if verbose_iter:
162
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
163
+ iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
164
+ else:
165
+ iterator = time_range
166
+ if till_T is not None:
167
+ till = till_T
168
+ else:
169
+ till = 0
170
+ for i, step in enumerate(iterator):
171
+ index = total_steps - i - 1
172
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
173
+
174
+ if mask is not None:
175
+ assert x0 is not None
176
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
177
+ img = img_orig * mask + (1. - mask) * img
178
+
179
+ outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
180
+ quantize_denoised=quantize_denoised, temperature=temperature,
181
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
182
+ corrector_kwargs=corrector_kwargs,
183
+ unconditional_guidance_scale=unconditional_guidance_scale,
184
+ unconditional_conditioning=unconditional_conditioning,
185
+ dynamic_threshold=dynamic_threshold)
186
+ img, pred_x0 = outs
187
+ if callback:
188
+ img = callback(i, img, pred_x0)
189
+ if img_callback: img_callback(pred_x0, i)
190
+
191
+ if index % log_every_t == 0 or index == total_steps - 1:
192
+ intermediates['x_inter'].append(img)
193
+ intermediates['pred_x0'].append(pred_x0)
194
+ if index+1 == till:
195
+ break
196
+ return img, intermediates
197
+
198
+
199
+ def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
200
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
201
+ unconditional_guidance_scale=1., unconditional_conditioning=None,
202
+ dynamic_threshold=None):
203
+ b, *_, device = *x.shape, x.device
204
+
205
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
206
+ e_t = self.model.apply_model(x, t, c)
207
+ else:
208
+ x_in = torch.cat([x] * 2)
209
+ t_in = torch.cat([t] * 2)
210
+ if isinstance(c, dict):
211
+ assert isinstance(unconditional_conditioning, dict)
212
+ # print(f'C: {c}')
213
+ c_in = dict()
214
+ for k in c:
215
+ if isinstance(c[k], list):
216
+ c_in[k] = [torch.cat([
217
+ unconditional_conditioning[k][i],
218
+ c[k][i]]) for i in range(len(c[k]))]
219
+ else:
220
+ c_in[k] = torch.cat([
221
+ unconditional_conditioning[k],
222
+ c[k]])
223
+ else:
224
+ c_in = torch.cat([unconditional_conditioning, c])
225
+ # print(f'C: {c.shape}')
226
+ # print(f'C_uncond: {unconditional_conditioning.shape}')
227
+ # print(f'C_in: {c_in}')
228
+ # print(f'Input shape before model: {x_in.shape} {t_in.shape}')
229
+ e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
230
+ e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
231
+
232
+ if score_corrector is not None:
233
+ assert self.model.parameterization == "eps"
234
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
235
+ # print(f'Final shape after model: {x.shape} {e_t.shape}')
236
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
237
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
238
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
239
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
240
+ # select parameters corresponding to the currently considered timestep
241
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
242
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
243
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
244
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
245
+
246
+ # current prediction for x_0
247
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
248
+ if quantize_denoised:
249
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
250
+
251
+ if dynamic_threshold is not None:
252
+ pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
253
+
254
+ # direction pointing to x_t
255
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
256
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
257
+ if noise_dropout > 0.:
258
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
259
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
260
+
261
+ return x_prev, pred_x0
262
+
263
+ @torch.no_grad()
264
+ def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
265
+ unconditional_guidance_scale=1.0, unconditional_conditioning=None):
266
+ num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
267
+
268
+ assert t_enc <= num_reference_steps
269
+ num_steps = t_enc
270
+
271
+ if use_original_steps:
272
+ alphas_next = self.alphas_cumprod[:num_steps]
273
+ alphas = self.alphas_cumprod_prev[:num_steps]
274
+ else:
275
+ alphas_next = self.ddim_alphas[:num_steps]
276
+ alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
277
+
278
+ x_next = x0
279
+ intermediates = []
280
+ inter_steps = []
281
+ for i in tqdm(range(num_steps), desc='Encoding Image'):
282
+ t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
283
+ if unconditional_guidance_scale == 1.:
284
+ noise_pred = self.model.apply_model(x_next, t, c)
285
+ else:
286
+ assert unconditional_conditioning is not None
287
+ e_t_uncond, noise_pred = torch.chunk(
288
+ self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
289
+ torch.cat((unconditional_conditioning, c))), 2)
290
+ noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
291
+
292
+ xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
293
+ weighted_noise_pred = alphas_next[i].sqrt() * (
294
+ (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
295
+ x_next = xt_weighted + weighted_noise_pred
296
+ if return_intermediates and i % (
297
+ num_steps // return_intermediates) == 0 and i < num_steps - 1:
298
+ intermediates.append(x_next)
299
+ inter_steps.append(i)
300
+ elif return_intermediates and i >= num_steps - 2:
301
+ intermediates.append(x_next)
302
+ inter_steps.append(i)
303
+
304
+ out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
305
+ if return_intermediates:
306
+ out.update({'intermediates': intermediates})
307
+ return x_next, out
308
+
309
+ @torch.no_grad()
310
+ def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
311
+ # fast, but does not allow for exact reconstruction
312
+ # t serves as an index to gather the correct alphas
313
+ if use_original_steps:
314
+ sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
315
+ sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
316
+ else:
317
+ sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
318
+ sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
319
+
320
+ if noise is None:
321
+ noise = torch.randn_like(x0)
322
+ return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
323
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
324
+
325
+ @torch.no_grad()
326
+ def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
327
+ use_original_steps=False):
328
+
329
+ timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
330
+ timesteps = timesteps[:t_start]
331
+
332
+ time_range = np.flip(timesteps)
333
+ total_steps = timesteps.shape[0]
334
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
335
+
336
+ iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
337
+ x_dec = x_latent
338
+ for i, step in enumerate(iterator):
339
+ index = total_steps - i - 1
340
+ ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
341
+ x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
342
+ unconditional_guidance_scale=unconditional_guidance_scale,
343
+ unconditional_conditioning=unconditional_conditioning)
344
+ return x_dec
stable_diffusion/ldm/models/diffusion/ddpm.py ADDED
@@ -0,0 +1,1934 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ wild mixture of
3
+ https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
4
+ https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
5
+ https://github.com/CompVis/taming-transformers
6
+ -- merci
7
+ """
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+ import numpy as np
12
+ import pytorch_lightning as pl
13
+ from torch.optim.lr_scheduler import LambdaLR
14
+ from einops import rearrange, repeat
15
+ from contextlib import contextmanager, nullcontext
16
+ from functools import partial
17
+ import itertools
18
+ from tqdm import tqdm
19
+ from torchvision.utils import make_grid
20
+ from pytorch_lightning.utilities.distributed import rank_zero_only
21
+ from omegaconf import ListConfig
22
+
23
+ from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
24
+ from ldm.modules.ema import LitEma
25
+ from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
26
+ from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
27
+ from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
28
+ from ldm.models.diffusion.ddim import DDIMSampler
29
+ from ldm.modules.attention import CrossAttention
30
+
31
+
32
+ __conditioning_keys__ = {'concat': 'c_concat',
33
+ 'crossattn': 'c_crossattn',
34
+ 'adm': 'y'}
35
+
36
+
37
+ def disabled_train(self, mode=True):
38
+ """Overwrite model.train with this function to make sure train/eval mode
39
+ does not change anymore."""
40
+ return self
41
+
42
+
43
+ def uniform_on_device(r1, r2, shape, device):
44
+ return (r1 - r2) * torch.rand(*shape, device=device) + r2
45
+
46
+
47
+ class DDPM(pl.LightningModule):
48
+ # classic DDPM with Gaussian diffusion, in image space
49
+ def __init__(self,
50
+ unet_config,
51
+ timesteps=1000,
52
+ beta_schedule="linear",
53
+ loss_type="l2",
54
+ ckpt_path=None,
55
+ ignore_keys=[],
56
+ load_only_unet=False,
57
+ monitor="val/loss",
58
+ use_ema=True,
59
+ first_stage_key="image",
60
+ image_size=256,
61
+ channels=3,
62
+ log_every_t=100,
63
+ clip_denoised=True,
64
+ linear_start=1e-4,
65
+ linear_end=2e-2,
66
+ cosine_s=8e-3,
67
+ given_betas=None,
68
+ original_elbo_weight=0.,
69
+ v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
70
+ l_simple_weight=1.,
71
+ conditioning_key=None,
72
+ parameterization="eps", # all assuming fixed variance schedules
73
+ scheduler_config=None,
74
+ use_positional_encodings=False,
75
+ learn_logvar=False,
76
+ logvar_init=0.,
77
+ make_it_fit=False,
78
+ ucg_training=None,
79
+ ):
80
+ super().__init__()
81
+ assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
82
+ self.parameterization = parameterization
83
+ print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
84
+ self.cond_stage_model = None
85
+ self.clip_denoised = clip_denoised
86
+ self.log_every_t = log_every_t
87
+ self.first_stage_key = first_stage_key
88
+ self.image_size = image_size # try conv?
89
+ self.channels = channels
90
+ self.use_positional_encodings = use_positional_encodings
91
+ self.model = DiffusionWrapper(unet_config, conditioning_key)
92
+ count_params(self.model, verbose=True)
93
+ self.use_ema = use_ema
94
+ if self.use_ema:
95
+ self.model_ema = LitEma(self.model)
96
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
97
+
98
+ self.use_scheduler = scheduler_config is not None
99
+ if self.use_scheduler:
100
+ self.scheduler_config = scheduler_config
101
+
102
+ self.v_posterior = v_posterior
103
+ self.original_elbo_weight = original_elbo_weight
104
+ self.l_simple_weight = l_simple_weight
105
+
106
+ if monitor is not None:
107
+ self.monitor = monitor
108
+ self.make_it_fit = make_it_fit
109
+ if ckpt_path is not None:
110
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
111
+
112
+ self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
113
+ linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
114
+
115
+ self.loss_type = loss_type
116
+
117
+ self.learn_logvar = learn_logvar
118
+ self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
119
+ if self.learn_logvar:
120
+ self.logvar = nn.Parameter(self.logvar, requires_grad=True)
121
+
122
+ self.ucg_training = ucg_training or dict()
123
+ if self.ucg_training:
124
+ self.ucg_prng = np.random.RandomState()
125
+
126
+ def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
127
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
128
+ if exists(given_betas):
129
+ betas = given_betas
130
+ else:
131
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
132
+ cosine_s=cosine_s)
133
+ alphas = 1. - betas
134
+ alphas_cumprod = np.cumprod(alphas, axis=0)
135
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
136
+
137
+ timesteps, = betas.shape
138
+ self.num_timesteps = int(timesteps)
139
+ self.linear_start = linear_start
140
+ self.linear_end = linear_end
141
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
142
+
143
+ to_torch = partial(torch.tensor, dtype=torch.float32)
144
+
145
+ self.register_buffer('betas', to_torch(betas))
146
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
147
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
148
+
149
+ # calculations for diffusion q(x_t | x_{t-1}) and others
150
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
151
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
152
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
153
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
154
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
155
+
156
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
157
+ posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
158
+ 1. - alphas_cumprod) + self.v_posterior * betas
159
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
160
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
161
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
162
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
163
+ self.register_buffer('posterior_mean_coef1', to_torch(
164
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
165
+ self.register_buffer('posterior_mean_coef2', to_torch(
166
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
167
+
168
+ if self.parameterization == "eps":
169
+ lvlb_weights = self.betas ** 2 / (
170
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
171
+ elif self.parameterization == "x0":
172
+ lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
173
+ else:
174
+ raise NotImplementedError("mu not supported")
175
+ # TODO how to choose this term
176
+ lvlb_weights[0] = lvlb_weights[1]
177
+ self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
178
+ assert not torch.isnan(self.lvlb_weights).all()
179
+
180
+ @contextmanager
181
+ def ema_scope(self, context=None):
182
+ if self.use_ema:
183
+ self.model_ema.store(self.model.parameters())
184
+ self.model_ema.copy_to(self.model)
185
+ if context is not None:
186
+ print(f"{context}: Switched to EMA weights")
187
+ try:
188
+ yield None
189
+ finally:
190
+ if self.use_ema:
191
+ self.model_ema.restore(self.model.parameters())
192
+ if context is not None:
193
+ print(f"{context}: Restored training weights")
194
+
195
+ @torch.no_grad()
196
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
197
+ sd = torch.load(path, map_location="cpu")
198
+ if "state_dict" in list(sd.keys()):
199
+ sd = sd["state_dict"]
200
+ keys = list(sd.keys())
201
+ for k in keys:
202
+ for ik in ignore_keys:
203
+ if k.startswith(ik):
204
+ print("Deleting key {} from state_dict.".format(k))
205
+ del sd[k]
206
+ if self.make_it_fit:
207
+ n_params = len([name for name, _ in
208
+ itertools.chain(self.named_parameters(),
209
+ self.named_buffers())])
210
+ for name, param in tqdm(
211
+ itertools.chain(self.named_parameters(),
212
+ self.named_buffers()),
213
+ desc="Fitting old weights to new weights",
214
+ total=n_params
215
+ ):
216
+ if not name in sd:
217
+ continue
218
+ old_shape = sd[name].shape
219
+ new_shape = param.shape
220
+ assert len(old_shape)==len(new_shape)
221
+ if len(new_shape) > 2:
222
+ # we only modify first two axes
223
+ assert new_shape[2:] == old_shape[2:]
224
+ # assumes first axis corresponds to output dim
225
+ if not new_shape == old_shape:
226
+ new_param = param.clone()
227
+ old_param = sd[name]
228
+ if len(new_shape) == 1:
229
+ for i in range(new_param.shape[0]):
230
+ new_param[i] = old_param[i % old_shape[0]]
231
+ elif len(new_shape) >= 2:
232
+ for i in range(new_param.shape[0]):
233
+ for j in range(new_param.shape[1]):
234
+ new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
235
+
236
+ n_used_old = torch.ones(old_shape[1])
237
+ for j in range(new_param.shape[1]):
238
+ n_used_old[j % old_shape[1]] += 1
239
+ n_used_new = torch.zeros(new_shape[1])
240
+ for j in range(new_param.shape[1]):
241
+ n_used_new[j] = n_used_old[j % old_shape[1]]
242
+
243
+ n_used_new = n_used_new[None, :]
244
+ while len(n_used_new.shape) < len(new_shape):
245
+ n_used_new = n_used_new.unsqueeze(-1)
246
+ new_param /= n_used_new
247
+
248
+ sd[name] = new_param
249
+
250
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
251
+ sd, strict=False)
252
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
253
+ if len(missing) > 0:
254
+ print(f"Missing Keys: {missing}")
255
+ if len(unexpected) > 0:
256
+ print(f"Unexpected Keys: {unexpected}")
257
+
258
+ def q_mean_variance(self, x_start, t):
259
+ """
260
+ Get the distribution q(x_t | x_0).
261
+ :param x_start: the [N x C x ...] tensor of noiseless inputs.
262
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
263
+ :return: A tuple (mean, variance, log_variance), all of x_start's shape.
264
+ """
265
+ mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
266
+ variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
267
+ log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
268
+ return mean, variance, log_variance
269
+
270
+ def predict_start_from_noise(self, x_t, t, noise):
271
+ return (
272
+ extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
273
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
274
+ )
275
+
276
+ def q_posterior(self, x_start, x_t, t):
277
+ posterior_mean = (
278
+ extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
279
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
280
+ )
281
+ posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
282
+ posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
283
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
284
+
285
+ def p_mean_variance(self, x, t, clip_denoised: bool):
286
+ model_out = self.model(x, t)
287
+ if self.parameterization == "eps":
288
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
289
+ elif self.parameterization == "x0":
290
+ x_recon = model_out
291
+ if clip_denoised:
292
+ x_recon.clamp_(-1., 1.)
293
+
294
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
295
+ return model_mean, posterior_variance, posterior_log_variance
296
+
297
+ @torch.no_grad()
298
+ def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
299
+ b, *_, device = *x.shape, x.device
300
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
301
+ noise = noise_like(x.shape, device, repeat_noise)
302
+ # no noise when t == 0
303
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
304
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
305
+
306
+ @torch.no_grad()
307
+ def p_sample_loop(self, shape, return_intermediates=False):
308
+ device = self.betas.device
309
+ b = shape[0]
310
+ img = torch.randn(shape, device=device)
311
+ intermediates = [img]
312
+ for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
313
+ img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
314
+ clip_denoised=self.clip_denoised)
315
+ if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
316
+ intermediates.append(img)
317
+ if return_intermediates:
318
+ return img, intermediates
319
+ return img
320
+
321
+ @torch.no_grad()
322
+ def sample(self, batch_size=16, return_intermediates=False):
323
+ image_size = self.image_size
324
+ channels = self.channels
325
+ return self.p_sample_loop((batch_size, channels, image_size, image_size),
326
+ return_intermediates=return_intermediates)
327
+
328
+ def q_sample(self, x_start, t, noise=None):
329
+ noise = default(noise, lambda: torch.randn_like(x_start))
330
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
331
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
332
+
333
+ def get_loss(self, pred, target, mean=True):
334
+ if self.loss_type == 'l1':
335
+ loss = (target - pred).abs()
336
+ if mean:
337
+ loss = loss.mean()
338
+ elif self.loss_type == 'l2':
339
+ if mean:
340
+ loss = torch.nn.functional.mse_loss(target, pred)
341
+ else:
342
+ loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
343
+ else:
344
+ raise NotImplementedError("unknown loss type '{loss_type}'")
345
+
346
+ return loss
347
+
348
+ def p_losses(self, x_start, t, noise=None):
349
+ noise = default(noise, lambda: torch.randn_like(x_start))
350
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
351
+ model_out = self.model(x_noisy, t)
352
+
353
+ loss_dict = {}
354
+ if self.parameterization == "eps":
355
+ target = noise
356
+ elif self.parameterization == "x0":
357
+ target = x_start
358
+ else:
359
+ raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
360
+
361
+ loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
362
+
363
+ log_prefix = 'train' if self.training else 'val'
364
+
365
+ loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
366
+ loss_simple = loss.mean() * self.l_simple_weight
367
+
368
+ loss_vlb = (self.lvlb_weights[t] * loss).mean()
369
+ loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
370
+
371
+ loss = loss_simple + self.original_elbo_weight * loss_vlb
372
+
373
+ loss_dict.update({f'{log_prefix}/loss': loss})
374
+
375
+ return loss, loss_dict
376
+
377
+ def forward(self, x, *args, **kwargs):
378
+ # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
379
+ # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
380
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
381
+ return self.p_losses(x, t, *args, **kwargs)
382
+
383
+ def get_input(self, batch, k):
384
+ x = batch[k]
385
+ if len(x.shape) == 3:
386
+ x = x[..., None]
387
+ x = rearrange(x, 'b h w c -> b c h w')
388
+ x = x.to(memory_format=torch.contiguous_format).float()
389
+ return x
390
+
391
+ def shared_step(self, batch):
392
+ x = self.get_input(batch, self.first_stage_key)
393
+ loss, loss_dict = self(x)
394
+ return loss, loss_dict
395
+
396
+ def training_step(self, batch, batch_idx):
397
+ for k in self.ucg_training:
398
+ p = self.ucg_training[k]["p"]
399
+ val = self.ucg_training[k]["val"]
400
+ if val is None:
401
+ val = ""
402
+ for i in range(len(batch[k])):
403
+ if self.ucg_prng.choice(2, p=[1-p, p]):
404
+ batch[k][i] = val
405
+
406
+ loss, loss_dict = self.shared_step(batch)
407
+
408
+ self.log_dict(loss_dict, prog_bar=True,
409
+ logger=True, on_step=True, on_epoch=True)
410
+
411
+ self.log("global_step", self.global_step,
412
+ prog_bar=True, logger=True, on_step=True, on_epoch=False)
413
+
414
+ if self.use_scheduler:
415
+ lr = self.optimizers().param_groups[0]['lr']
416
+ self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
417
+
418
+ return loss
419
+
420
+ @torch.no_grad()
421
+ def validation_step(self, batch, batch_idx):
422
+ _, loss_dict_no_ema = self.shared_step(batch)
423
+ with self.ema_scope():
424
+ _, loss_dict_ema = self.shared_step(batch)
425
+ loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
426
+ self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
427
+ self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
428
+
429
+ def on_train_batch_end(self, *args, **kwargs):
430
+ if self.use_ema:
431
+ self.model_ema(self.model)
432
+
433
+ def _get_rows_from_list(self, samples):
434
+ n_imgs_per_row = len(samples)
435
+ denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
436
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
437
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
438
+ return denoise_grid
439
+
440
+ @torch.no_grad()
441
+ def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
442
+ log = dict()
443
+ x = self.get_input(batch, self.first_stage_key)
444
+ N = min(x.shape[0], N)
445
+ n_row = min(x.shape[0], n_row)
446
+ x = x.to(self.device)[:N]
447
+ log["inputs"] = x
448
+
449
+ # get diffusion row
450
+ diffusion_row = list()
451
+ x_start = x[:n_row]
452
+
453
+ for t in range(self.num_timesteps):
454
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
455
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
456
+ t = t.to(self.device).long()
457
+ noise = torch.randn_like(x_start)
458
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
459
+ diffusion_row.append(x_noisy)
460
+
461
+ log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
462
+
463
+ if sample:
464
+ # get denoise row
465
+ with self.ema_scope("Plotting"):
466
+ samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
467
+
468
+ log["samples"] = samples
469
+ log["denoise_row"] = self._get_rows_from_list(denoise_row)
470
+
471
+ if return_keys:
472
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
473
+ return log
474
+ else:
475
+ return {key: log[key] for key in return_keys}
476
+ return log
477
+
478
+ def configure_optimizers(self):
479
+ lr = self.learning_rate
480
+ params = list(self.model.parameters())
481
+ if self.learn_logvar:
482
+ params = params + [self.logvar]
483
+ opt = torch.optim.AdamW(params, lr=lr)
484
+ return opt
485
+
486
+
487
+ class LatentDiffusion(DDPM):
488
+ """main class"""
489
+ def __init__(self,
490
+ first_stage_config,
491
+ cond_stage_config,
492
+ num_timesteps_cond=None,
493
+ cond_stage_key="image",
494
+ cond_stage_trainable=False,
495
+ concat_mode=True,
496
+ cond_stage_forward=None,
497
+ conditioning_key=None,
498
+ scale_factor=1.0,
499
+ scale_by_std=False,
500
+ unet_trainable=True,
501
+ *args, **kwargs):
502
+ self.num_timesteps_cond = default(num_timesteps_cond, 1)
503
+ self.scale_by_std = scale_by_std
504
+ assert self.num_timesteps_cond <= kwargs['timesteps']
505
+ # for backwards compatibility after implementation of DiffusionWrapper
506
+ if conditioning_key is None:
507
+ conditioning_key = 'concat' if concat_mode else 'crossattn'
508
+ if cond_stage_config == '__is_unconditional__':
509
+ conditioning_key = None
510
+ ckpt_path = kwargs.pop("ckpt_path", None)
511
+ ignore_keys = kwargs.pop("ignore_keys", [])
512
+ super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
513
+ self.concat_mode = concat_mode
514
+ self.cond_stage_trainable = cond_stage_trainable
515
+ self.unet_trainable = unet_trainable
516
+ self.cond_stage_key = cond_stage_key
517
+ try:
518
+ self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
519
+ except:
520
+ self.num_downs = 0
521
+ if not scale_by_std:
522
+ self.scale_factor = scale_factor
523
+ else:
524
+ self.register_buffer('scale_factor', torch.tensor(scale_factor))
525
+ self.instantiate_first_stage(first_stage_config)
526
+ self.instantiate_cond_stage(cond_stage_config)
527
+ self.cond_stage_forward = cond_stage_forward
528
+ self.clip_denoised = False
529
+ self.bbox_tokenizer = None
530
+
531
+ self.restarted_from_ckpt = False
532
+ if ckpt_path is not None:
533
+ self.init_from_ckpt(ckpt_path, ignore_keys)
534
+ self.restarted_from_ckpt = True
535
+
536
+ def make_cond_schedule(self, ):
537
+ self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
538
+ ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
539
+ self.cond_ids[:self.num_timesteps_cond] = ids
540
+
541
+ @rank_zero_only
542
+ @torch.no_grad()
543
+ def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
544
+ # only for very first batch
545
+ if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
546
+ assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
547
+ # set rescale weight to 1./std of encodings
548
+ print("### USING STD-RESCALING ###")
549
+ x = super().get_input(batch, self.first_stage_key)
550
+ x = x.to(self.device)
551
+ encoder_posterior = self.encode_first_stage(x)
552
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
553
+ del self.scale_factor
554
+ self.register_buffer('scale_factor', 1. / z.flatten().std())
555
+ print(f"setting self.scale_factor to {self.scale_factor}")
556
+ print("### USING STD-RESCALING ###")
557
+
558
+ def register_schedule(self,
559
+ given_betas=None, beta_schedule="linear", timesteps=1000,
560
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
561
+ super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
562
+
563
+ self.shorten_cond_schedule = self.num_timesteps_cond > 1
564
+ if self.shorten_cond_schedule:
565
+ self.make_cond_schedule()
566
+
567
+ def instantiate_first_stage(self, config):
568
+ model = instantiate_from_config(config)
569
+ self.first_stage_model = model.eval()
570
+ self.first_stage_model.train = disabled_train
571
+ for param in self.first_stage_model.parameters():
572
+ param.requires_grad = False
573
+
574
+ def instantiate_cond_stage(self, config):
575
+ if not self.cond_stage_trainable:
576
+ if config == "__is_first_stage__":
577
+ print("Using first stage also as cond stage.")
578
+ self.cond_stage_model = self.first_stage_model
579
+ elif config == "__is_unconditional__":
580
+ print(f"Training {self.__class__.__name__} as an unconditional model.")
581
+ self.cond_stage_model = None
582
+ # self.be_unconditional = True
583
+ else:
584
+ model = instantiate_from_config(config)
585
+ self.cond_stage_model = model.eval()
586
+ # self.cond_stage_model.train = disabled_train
587
+ for param in self.cond_stage_model.parameters():
588
+ param.requires_grad = False
589
+ else:
590
+ assert config != '__is_first_stage__'
591
+ assert config != '__is_unconditional__'
592
+ model = instantiate_from_config(config)
593
+ self.cond_stage_model = model
594
+
595
+ def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
596
+ denoise_row = []
597
+ for zd in tqdm(samples, desc=desc):
598
+ denoise_row.append(self.decode_first_stage(zd.to(self.device),
599
+ force_not_quantize=force_no_decoder_quantization))
600
+ n_imgs_per_row = len(denoise_row)
601
+ denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
602
+ denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
603
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
604
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
605
+ return denoise_grid
606
+
607
+ def get_first_stage_encoding(self, encoder_posterior):
608
+ if isinstance(encoder_posterior, DiagonalGaussianDistribution):
609
+ z = encoder_posterior.sample()
610
+ elif isinstance(encoder_posterior, torch.Tensor):
611
+ z = encoder_posterior
612
+ else:
613
+ raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
614
+ return self.scale_factor * z
615
+
616
+ def get_learned_conditioning(self, c):
617
+ if self.cond_stage_forward is None:
618
+ if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
619
+ c = self.cond_stage_model.encode(c)
620
+ if isinstance(c, DiagonalGaussianDistribution):
621
+ c = c.mode()
622
+ else:
623
+ c = self.cond_stage_model(c)
624
+ else:
625
+ assert hasattr(self.cond_stage_model, self.cond_stage_forward)
626
+ c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
627
+ return c
628
+
629
+ def meshgrid(self, h, w):
630
+ y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
631
+ x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
632
+
633
+ arr = torch.cat([y, x], dim=-1)
634
+ return arr
635
+
636
+ def delta_border(self, h, w):
637
+ """
638
+ :param h: height
639
+ :param w: width
640
+ :return: normalized distance to image border,
641
+ wtith min distance = 0 at border and max dist = 0.5 at image center
642
+ """
643
+ lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
644
+ arr = self.meshgrid(h, w) / lower_right_corner
645
+ dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
646
+ dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
647
+ edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
648
+ return edge_dist
649
+
650
+ def get_weighting(self, h, w, Ly, Lx, device):
651
+ weighting = self.delta_border(h, w)
652
+ weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
653
+ self.split_input_params["clip_max_weight"], )
654
+ weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
655
+
656
+ if self.split_input_params["tie_braker"]:
657
+ L_weighting = self.delta_border(Ly, Lx)
658
+ L_weighting = torch.clip(L_weighting,
659
+ self.split_input_params["clip_min_tie_weight"],
660
+ self.split_input_params["clip_max_tie_weight"])
661
+
662
+ L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
663
+ weighting = weighting * L_weighting
664
+ return weighting
665
+
666
+ def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
667
+ """
668
+ :param x: img of size (bs, c, h, w)
669
+ :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
670
+ """
671
+ bs, nc, h, w = x.shape
672
+
673
+ # number of crops in image
674
+ Ly = (h - kernel_size[0]) // stride[0] + 1
675
+ Lx = (w - kernel_size[1]) // stride[1] + 1
676
+
677
+ if uf == 1 and df == 1:
678
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
679
+ unfold = torch.nn.Unfold(**fold_params)
680
+
681
+ fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
682
+
683
+ weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
684
+ normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
685
+ weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
686
+
687
+ elif uf > 1 and df == 1:
688
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
689
+ unfold = torch.nn.Unfold(**fold_params)
690
+
691
+ fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
692
+ dilation=1, padding=0,
693
+ stride=(stride[0] * uf, stride[1] * uf))
694
+ fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
695
+
696
+ weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
697
+ normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
698
+ weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
699
+
700
+ elif df > 1 and uf == 1:
701
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
702
+ unfold = torch.nn.Unfold(**fold_params)
703
+
704
+ fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
705
+ dilation=1, padding=0,
706
+ stride=(stride[0] // df, stride[1] // df))
707
+ fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
708
+
709
+ weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
710
+ normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
711
+ weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
712
+
713
+ else:
714
+ raise NotImplementedError
715
+
716
+ return fold, unfold, normalization, weighting
717
+
718
+ @torch.no_grad()
719
+ def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
720
+ cond_key=None, return_original_cond=False, bs=None, return_x=False):
721
+ x = super().get_input(batch, k)
722
+ if bs is not None:
723
+ x = x[:bs]
724
+ x = x.to(self.device)
725
+ encoder_posterior = self.encode_first_stage(x)
726
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
727
+
728
+ if self.model.conditioning_key is not None:
729
+ if cond_key is None:
730
+ cond_key = self.cond_stage_key
731
+ if cond_key != self.first_stage_key:
732
+ if cond_key in ['caption', 'coordinates_bbox', "txt"]:
733
+ xc = batch[cond_key]
734
+ elif cond_key == 'class_label':
735
+ xc = batch
736
+ else:
737
+ xc = super().get_input(batch, cond_key).to(self.device)
738
+ else:
739
+ xc = x
740
+ if not self.cond_stage_trainable or force_c_encode:
741
+ if isinstance(xc, dict) or isinstance(xc, list):
742
+ c = self.get_learned_conditioning(xc)
743
+ else:
744
+ c = self.get_learned_conditioning(xc.to(self.device))
745
+ else:
746
+ c = xc
747
+ if bs is not None:
748
+ c = c[:bs]
749
+
750
+ if self.use_positional_encodings:
751
+ pos_x, pos_y = self.compute_latent_shifts(batch)
752
+ ckey = __conditioning_keys__[self.model.conditioning_key]
753
+ c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
754
+
755
+ else:
756
+ c = None
757
+ xc = None
758
+ if self.use_positional_encodings:
759
+ pos_x, pos_y = self.compute_latent_shifts(batch)
760
+ c = {'pos_x': pos_x, 'pos_y': pos_y}
761
+ out = [z, c]
762
+ if return_first_stage_outputs:
763
+ xrec = self.decode_first_stage(z)
764
+ out.extend([x, xrec])
765
+ if return_x:
766
+ out.extend([x])
767
+ if return_original_cond:
768
+ out.append(xc)
769
+ return out
770
+
771
+ @torch.no_grad()
772
+ def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
773
+ if predict_cids:
774
+ if z.dim() == 4:
775
+ z = torch.argmax(z.exp(), dim=1).long()
776
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
777
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
778
+
779
+ z = 1. / self.scale_factor * z
780
+
781
+ if hasattr(self, "split_input_params"):
782
+ if self.split_input_params["patch_distributed_vq"]:
783
+ ks = self.split_input_params["ks"] # eg. (128, 128)
784
+ stride = self.split_input_params["stride"] # eg. (64, 64)
785
+ uf = self.split_input_params["vqf"]
786
+ bs, nc, h, w = z.shape
787
+ if ks[0] > h or ks[1] > w:
788
+ ks = (min(ks[0], h), min(ks[1], w))
789
+ print("reducing Kernel")
790
+
791
+ if stride[0] > h or stride[1] > w:
792
+ stride = (min(stride[0], h), min(stride[1], w))
793
+ print("reducing stride")
794
+
795
+ fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
796
+
797
+ z = unfold(z) # (bn, nc * prod(**ks), L)
798
+ # 1. Reshape to img shape
799
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
800
+
801
+ # 2. apply model loop over last dim
802
+ if isinstance(self.first_stage_model, VQModelInterface):
803
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
804
+ force_not_quantize=predict_cids or force_not_quantize)
805
+ for i in range(z.shape[-1])]
806
+ else:
807
+
808
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
809
+ for i in range(z.shape[-1])]
810
+
811
+ o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
812
+ o = o * weighting
813
+ # Reverse 1. reshape to img shape
814
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
815
+ # stitch crops together
816
+ decoded = fold(o)
817
+ decoded = decoded / normalization # norm is shape (1, 1, h, w)
818
+ return decoded
819
+ else:
820
+ if isinstance(self.first_stage_model, VQModelInterface):
821
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
822
+ else:
823
+ return self.first_stage_model.decode(z)
824
+
825
+ else:
826
+ if isinstance(self.first_stage_model, VQModelInterface):
827
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
828
+ else:
829
+ return self.first_stage_model.decode(z)
830
+
831
+ @torch.no_grad()
832
+ def encode_first_stage(self, x):
833
+ if hasattr(self, "split_input_params"):
834
+ if self.split_input_params["patch_distributed_vq"]:
835
+ ks = self.split_input_params["ks"] # eg. (128, 128)
836
+ stride = self.split_input_params["stride"] # eg. (64, 64)
837
+ df = self.split_input_params["vqf"]
838
+ self.split_input_params['original_image_size'] = x.shape[-2:]
839
+ bs, nc, h, w = x.shape
840
+ if ks[0] > h or ks[1] > w:
841
+ ks = (min(ks[0], h), min(ks[1], w))
842
+ print("reducing Kernel")
843
+
844
+ if stride[0] > h or stride[1] > w:
845
+ stride = (min(stride[0], h), min(stride[1], w))
846
+ print("reducing stride")
847
+
848
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
849
+ z = unfold(x) # (bn, nc * prod(**ks), L)
850
+ # Reshape to img shape
851
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
852
+
853
+ output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
854
+ for i in range(z.shape[-1])]
855
+
856
+ o = torch.stack(output_list, axis=-1)
857
+ o = o * weighting
858
+
859
+ # Reverse reshape to img shape
860
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
861
+ # stitch crops together
862
+ decoded = fold(o)
863
+ decoded = decoded / normalization
864
+ return decoded
865
+
866
+ else:
867
+ return self.first_stage_model.encode(x)
868
+ else:
869
+ return self.first_stage_model.encode(x)
870
+
871
+ def shared_step(self, batch, **kwargs):
872
+ x, c = self.get_input(batch, self.first_stage_key)
873
+ loss = self(x, c)
874
+ return loss
875
+
876
+ def forward(self, x, c, *args, **kwargs):
877
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
878
+ if self.model.conditioning_key is not None:
879
+ assert c is not None
880
+ if self.cond_stage_trainable:
881
+ c = self.get_learned_conditioning(c)
882
+ if self.shorten_cond_schedule: # TODO: drop this option
883
+ tc = self.cond_ids[t].to(self.device)
884
+ c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
885
+ return self.p_losses(x, c, t, *args, **kwargs)
886
+
887
+ def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
888
+ def rescale_bbox(bbox):
889
+ x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
890
+ y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
891
+ w = min(bbox[2] / crop_coordinates[2], 1 - x0)
892
+ h = min(bbox[3] / crop_coordinates[3], 1 - y0)
893
+ return x0, y0, w, h
894
+
895
+ return [rescale_bbox(b) for b in bboxes]
896
+
897
+ def apply_model(self, x_noisy, t, cond, return_ids=False):
898
+
899
+ if isinstance(cond, dict):
900
+ # hybrid case, cond is exptected to be a dict
901
+ pass
902
+ else:
903
+ if not isinstance(cond, list):
904
+ cond = [cond]
905
+ key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
906
+ cond = {key: cond}
907
+
908
+ if hasattr(self, "split_input_params"):
909
+ assert len(cond) == 1 # todo can only deal with one conditioning atm
910
+ assert not return_ids
911
+ ks = self.split_input_params["ks"] # eg. (128, 128)
912
+ stride = self.split_input_params["stride"] # eg. (64, 64)
913
+
914
+ h, w = x_noisy.shape[-2:]
915
+
916
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
917
+
918
+ z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
919
+ # Reshape to img shape
920
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
921
+ z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
922
+
923
+ if self.cond_stage_key in ["image", "LR_image", "segmentation",
924
+ 'bbox_img'] and self.model.conditioning_key: # todo check for completeness
925
+ c_key = next(iter(cond.keys())) # get key
926
+ c = next(iter(cond.values())) # get value
927
+ assert (len(c) == 1) # todo extend to list with more than one elem
928
+ c = c[0] # get element
929
+
930
+ c = unfold(c)
931
+ c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
932
+
933
+ cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
934
+
935
+ elif self.cond_stage_key == 'coordinates_bbox':
936
+ assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
937
+
938
+ # assuming padding of unfold is always 0 and its dilation is always 1
939
+ n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
940
+ full_img_h, full_img_w = self.split_input_params['original_image_size']
941
+ # as we are operating on latents, we need the factor from the original image size to the
942
+ # spatial latent size to properly rescale the crops for regenerating the bbox annotations
943
+ num_downs = self.first_stage_model.encoder.num_resolutions - 1
944
+ rescale_latent = 2 ** (num_downs)
945
+
946
+ # get top left postions of patches as conforming for the bbbox tokenizer, therefore we
947
+ # need to rescale the tl patch coordinates to be in between (0,1)
948
+ tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
949
+ rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
950
+ for patch_nr in range(z.shape[-1])]
951
+
952
+ # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
953
+ patch_limits = [(x_tl, y_tl,
954
+ rescale_latent * ks[0] / full_img_w,
955
+ rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
956
+ # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
957
+
958
+ # tokenize crop coordinates for the bounding boxes of the respective patches
959
+ patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
960
+ for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
961
+ print(patch_limits_tknzd[0].shape)
962
+ # cut tknzd crop position from conditioning
963
+ assert isinstance(cond, dict), 'cond must be dict to be fed into model'
964
+ cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
965
+ print(cut_cond.shape)
966
+
967
+ adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
968
+ adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
969
+ print(adapted_cond.shape)
970
+ adapted_cond = self.get_learned_conditioning(adapted_cond)
971
+ print(adapted_cond.shape)
972
+ adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
973
+ print(adapted_cond.shape)
974
+
975
+ cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
976
+
977
+ else:
978
+ cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
979
+
980
+ # apply model by loop over crops
981
+ output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
982
+ assert not isinstance(output_list[0],
983
+ tuple) # todo cant deal with multiple model outputs check this never happens
984
+
985
+ o = torch.stack(output_list, axis=-1)
986
+ o = o * weighting
987
+ # Reverse reshape to img shape
988
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
989
+ # stitch crops together
990
+ x_recon = fold(o) / normalization
991
+
992
+ else:
993
+ x_recon = self.model(x_noisy, t, **cond)
994
+
995
+ if isinstance(x_recon, tuple) and not return_ids:
996
+ return x_recon[0]
997
+ else:
998
+ return x_recon
999
+
1000
+ def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
1001
+ return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
1002
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
1003
+
1004
+ def _prior_bpd(self, x_start):
1005
+ """
1006
+ Get the prior KL term for the variational lower-bound, measured in
1007
+ bits-per-dim.
1008
+ This term can't be optimized, as it only depends on the encoder.
1009
+ :param x_start: the [N x C x ...] tensor of inputs.
1010
+ :return: a batch of [N] KL values (in bits), one per batch element.
1011
+ """
1012
+ batch_size = x_start.shape[0]
1013
+ t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
1014
+ qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
1015
+ kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
1016
+ return mean_flat(kl_prior) / np.log(2.0)
1017
+
1018
+ def p_losses(self, x_start, cond, t, noise=None):
1019
+ noise = default(noise, lambda: torch.randn_like(x_start))
1020
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
1021
+ model_output = self.apply_model(x_noisy, t, cond)
1022
+
1023
+ loss_dict = {}
1024
+ prefix = 'train' if self.training else 'val'
1025
+
1026
+ if self.parameterization == "x0":
1027
+ target = x_start
1028
+ elif self.parameterization == "eps":
1029
+ target = noise
1030
+ else:
1031
+ raise NotImplementedError()
1032
+
1033
+ loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
1034
+ loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
1035
+
1036
+ logvar_t = self.logvar[t].to(self.device)
1037
+ loss = loss_simple / torch.exp(logvar_t) + logvar_t
1038
+ # loss = loss_simple / torch.exp(self.logvar) + self.logvar
1039
+ if self.learn_logvar:
1040
+ loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
1041
+ loss_dict.update({'logvar': self.logvar.data.mean()})
1042
+
1043
+ loss = self.l_simple_weight * loss.mean()
1044
+
1045
+ loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
1046
+ loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
1047
+ loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
1048
+ loss += (self.original_elbo_weight * loss_vlb)
1049
+ loss_dict.update({f'{prefix}/loss': loss})
1050
+
1051
+ return loss, loss_dict
1052
+
1053
+ def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
1054
+ return_x0=False, score_corrector=None, corrector_kwargs=None):
1055
+ t_in = t
1056
+ model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
1057
+
1058
+ if score_corrector is not None:
1059
+ assert self.parameterization == "eps"
1060
+ model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
1061
+
1062
+ if return_codebook_ids:
1063
+ model_out, logits = model_out
1064
+
1065
+ if self.parameterization == "eps":
1066
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
1067
+ elif self.parameterization == "x0":
1068
+ x_recon = model_out
1069
+ else:
1070
+ raise NotImplementedError()
1071
+
1072
+ if clip_denoised:
1073
+ x_recon.clamp_(-1., 1.)
1074
+ if quantize_denoised:
1075
+ x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
1076
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
1077
+ if return_codebook_ids:
1078
+ return model_mean, posterior_variance, posterior_log_variance, logits
1079
+ elif return_x0:
1080
+ return model_mean, posterior_variance, posterior_log_variance, x_recon
1081
+ else:
1082
+ return model_mean, posterior_variance, posterior_log_variance
1083
+
1084
+ @torch.no_grad()
1085
+ def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
1086
+ return_codebook_ids=False, quantize_denoised=False, return_x0=False,
1087
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
1088
+ b, *_, device = *x.shape, x.device
1089
+ outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
1090
+ return_codebook_ids=return_codebook_ids,
1091
+ quantize_denoised=quantize_denoised,
1092
+ return_x0=return_x0,
1093
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1094
+ if return_codebook_ids:
1095
+ raise DeprecationWarning("Support dropped.")
1096
+ model_mean, _, model_log_variance, logits = outputs
1097
+ elif return_x0:
1098
+ model_mean, _, model_log_variance, x0 = outputs
1099
+ else:
1100
+ model_mean, _, model_log_variance = outputs
1101
+
1102
+ noise = noise_like(x.shape, device, repeat_noise) * temperature
1103
+ if noise_dropout > 0.:
1104
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
1105
+ # no noise when t == 0
1106
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
1107
+
1108
+ if return_codebook_ids:
1109
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
1110
+ if return_x0:
1111
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
1112
+ else:
1113
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
1114
+
1115
+ @torch.no_grad()
1116
+ def p_sample_edit(self, x, c, t, clip_denoised=False, repeat_noise=False,
1117
+ return_codebook_ids=False, quantize_denoised=False, return_x0=False,
1118
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
1119
+ b, *_, device = *x.shape, x.device
1120
+ outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
1121
+ return_codebook_ids=return_codebook_ids,
1122
+ quantize_denoised=quantize_denoised,
1123
+ return_x0=return_x0,
1124
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1125
+ if return_codebook_ids:
1126
+ raise DeprecationWarning("Support dropped.")
1127
+ model_mean, _, model_log_variance, logits = outputs
1128
+ elif return_x0:
1129
+ model_mean, _, model_log_variance, x0 = outputs
1130
+ else:
1131
+ model_mean, _, model_log_variance = outputs
1132
+
1133
+ noise = noise_like(x.shape, device, repeat_noise) * temperature
1134
+ if noise_dropout > 0.:
1135
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
1136
+ # no noise when t == 0
1137
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
1138
+
1139
+ if return_codebook_ids:
1140
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
1141
+ if return_x0:
1142
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
1143
+ else:
1144
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, noise
1145
+
1146
+ @torch.no_grad()
1147
+ def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
1148
+ img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
1149
+ score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
1150
+ log_every_t=None):
1151
+ if not log_every_t:
1152
+ log_every_t = self.log_every_t
1153
+ timesteps = self.num_timesteps
1154
+ if batch_size is not None:
1155
+ b = batch_size if batch_size is not None else shape[0]
1156
+ shape = [batch_size] + list(shape)
1157
+ else:
1158
+ b = batch_size = shape[0]
1159
+ if x_T is None:
1160
+ img = torch.randn(shape, device=self.device)
1161
+ else:
1162
+ img = x_T
1163
+ intermediates = []
1164
+ if cond is not None:
1165
+ if isinstance(cond, dict):
1166
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1167
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1168
+ else:
1169
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1170
+
1171
+ if start_T is not None:
1172
+ timesteps = min(timesteps, start_T)
1173
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
1174
+ total=timesteps) if verbose else reversed(
1175
+ range(0, timesteps))
1176
+ if type(temperature) == float:
1177
+ temperature = [temperature] * timesteps
1178
+
1179
+ for i in iterator:
1180
+ ts = torch.full((b,), i, device=self.device, dtype=torch.long)
1181
+ if self.shorten_cond_schedule:
1182
+ assert self.model.conditioning_key != 'hybrid'
1183
+ tc = self.cond_ids[ts].to(cond.device)
1184
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1185
+
1186
+ img, x0_partial = self.p_sample(img, cond, ts,
1187
+ clip_denoised=self.clip_denoised,
1188
+ quantize_denoised=quantize_denoised, return_x0=True,
1189
+ temperature=temperature[i], noise_dropout=noise_dropout,
1190
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1191
+ if mask is not None:
1192
+ assert x0 is not None
1193
+ img_orig = self.q_sample(x0, ts)
1194
+ img = img_orig * mask + (1. - mask) * img
1195
+
1196
+ if i % log_every_t == 0 or i == timesteps - 1:
1197
+ intermediates.append(x0_partial)
1198
+ if callback: callback(i)
1199
+ if img_callback: img_callback(img, i)
1200
+ return img, intermediates
1201
+
1202
+ @torch.no_grad()
1203
+ def p_sample_loop(self, cond, shape, return_intermediates=False,
1204
+ x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
1205
+ mask=None, x0=None, img_callback=None, start_T=None,
1206
+ log_every_t=None, till_T=None):
1207
+
1208
+ if not log_every_t:
1209
+ log_every_t = self.log_every_t
1210
+ device = self.betas.device
1211
+ b = shape[0]
1212
+ if x_T is None:
1213
+ img = torch.randn(shape, device=device)
1214
+ else:
1215
+ img = x_T
1216
+
1217
+ intermediates = [img]
1218
+ if timesteps is None:
1219
+ timesteps = self.num_timesteps
1220
+
1221
+ if start_T is not None:
1222
+ timesteps = min(timesteps, start_T)
1223
+ if till_T is not None:
1224
+ till = till_T
1225
+ else:
1226
+ till = 0
1227
+ iterator = tqdm(reversed(range(till, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
1228
+ range(till, timesteps))
1229
+
1230
+ if mask is not None:
1231
+ assert x0 is not None
1232
+ assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
1233
+
1234
+ for i in iterator:
1235
+ ts = torch.full((b,), i, device=device, dtype=torch.long)
1236
+ if self.shorten_cond_schedule:
1237
+ assert self.model.conditioning_key != 'hybrid'
1238
+ tc = self.cond_ids[ts].to(cond.device)
1239
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1240
+
1241
+ img = self.p_sample(img, cond, ts,
1242
+ clip_denoised=self.clip_denoised,
1243
+ quantize_denoised=quantize_denoised)
1244
+ if mask is not None:
1245
+ img_orig = self.q_sample(x0, ts)
1246
+ img = img_orig * mask + (1. - mask) * img
1247
+
1248
+ if i % log_every_t == 0 or i == timesteps - 1:
1249
+ intermediates.append(img)
1250
+ if callback: callback(i)
1251
+ if img_callback: img_callback(img, i)
1252
+
1253
+ if return_intermediates:
1254
+ return img, intermediates
1255
+ return img
1256
+
1257
+ @torch.no_grad()
1258
+ def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
1259
+ verbose=True, timesteps=None, quantize_denoised=False,
1260
+ mask=None, x0=None, till_T=None, shape=None,**kwargs):
1261
+ if shape is None:
1262
+ shape = (batch_size, self.channels, self.image_size, self.image_size)
1263
+ if cond is not None:
1264
+ if isinstance(cond, dict):
1265
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1266
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1267
+ else:
1268
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1269
+ return self.p_sample_loop(cond,
1270
+ shape,
1271
+ return_intermediates=return_intermediates, x_T=x_T,
1272
+ verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
1273
+ mask=mask, x0=x0,till_T=till_T)
1274
+
1275
+ @torch.no_grad()
1276
+ def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
1277
+ if ddim:
1278
+ ddim_sampler = DDIMSampler(self)
1279
+ shape = (self.channels, self.image_size, self.image_size)
1280
+ samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
1281
+ shape, cond, verbose=False, **kwargs)
1282
+
1283
+ else:
1284
+ samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
1285
+ return_intermediates=True, **kwargs)
1286
+
1287
+ return samples, intermediates
1288
+
1289
+ @torch.no_grad()
1290
+ def get_unconditional_conditioning(self, batch_size, null_label=None):
1291
+ if null_label is not None:
1292
+ xc = null_label
1293
+ if isinstance(xc, ListConfig):
1294
+ xc = list(xc)
1295
+ if isinstance(xc, dict) or isinstance(xc, list):
1296
+ c = self.get_learned_conditioning(xc)
1297
+ else:
1298
+ if hasattr(xc, "to"):
1299
+ xc = xc.to(self.device)
1300
+ c = self.get_learned_conditioning(xc)
1301
+ else:
1302
+ # todo: get null label from cond_stage_model
1303
+ raise NotImplementedError()
1304
+ c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
1305
+ return c
1306
+
1307
+ @torch.no_grad()
1308
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1309
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
1310
+ plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
1311
+ use_ema_scope=True,
1312
+ **kwargs):
1313
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
1314
+ use_ddim = ddim_steps is not None
1315
+
1316
+ log = dict()
1317
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
1318
+ return_first_stage_outputs=True,
1319
+ force_c_encode=True,
1320
+ return_original_cond=True,
1321
+ bs=N)
1322
+ N = min(x.shape[0], N)
1323
+ n_row = min(x.shape[0], n_row)
1324
+ log["inputs"] = x
1325
+ log["reconstruction"] = xrec
1326
+ if self.model.conditioning_key is not None:
1327
+ if hasattr(self.cond_stage_model, "decode"):
1328
+ xc = self.cond_stage_model.decode(c)
1329
+ log["conditioning"] = xc
1330
+ elif self.cond_stage_key in ["caption", "txt"]:
1331
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25)
1332
+ log["conditioning"] = xc
1333
+ elif self.cond_stage_key == 'class_label':
1334
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25)
1335
+ log['conditioning'] = xc
1336
+ elif isimage(xc):
1337
+ log["conditioning"] = xc
1338
+ if ismap(xc):
1339
+ log["original_conditioning"] = self.to_rgb(xc)
1340
+
1341
+ if plot_diffusion_rows:
1342
+ # get diffusion row
1343
+ diffusion_row = list()
1344
+ z_start = z[:n_row]
1345
+ for t in range(self.num_timesteps):
1346
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1347
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1348
+ t = t.to(self.device).long()
1349
+ noise = torch.randn_like(z_start)
1350
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1351
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1352
+
1353
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1354
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1355
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1356
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1357
+ log["diffusion_row"] = diffusion_grid
1358
+
1359
+ if sample:
1360
+ # get denoise row
1361
+ with ema_scope("Sampling"):
1362
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
1363
+ ddim_steps=ddim_steps,eta=ddim_eta)
1364
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1365
+ x_samples = self.decode_first_stage(samples)
1366
+ log["samples"] = x_samples
1367
+ if plot_denoise_rows:
1368
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1369
+ log["denoise_row"] = denoise_grid
1370
+
1371
+ if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
1372
+ self.first_stage_model, IdentityFirstStage):
1373
+ # also display when quantizing x0 while sampling
1374
+ with ema_scope("Plotting Quantized Denoised"):
1375
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
1376
+ ddim_steps=ddim_steps,eta=ddim_eta,
1377
+ quantize_denoised=True)
1378
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
1379
+ # quantize_denoised=True)
1380
+ x_samples = self.decode_first_stage(samples.to(self.device))
1381
+ log["samples_x0_quantized"] = x_samples
1382
+
1383
+ if unconditional_guidance_scale > 1.0:
1384
+ uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1385
+ # uc = torch.zeros_like(c)
1386
+ with ema_scope("Sampling with classifier-free guidance"):
1387
+ samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1388
+ ddim_steps=ddim_steps, eta=ddim_eta,
1389
+ unconditional_guidance_scale=unconditional_guidance_scale,
1390
+ unconditional_conditioning=uc,
1391
+ )
1392
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
1393
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1394
+
1395
+ if inpaint:
1396
+ # make a simple center square
1397
+ b, h, w = z.shape[0], z.shape[2], z.shape[3]
1398
+ mask = torch.ones(N, h, w).to(self.device)
1399
+ # zeros will be filled in
1400
+ mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
1401
+ mask = mask[:, None, ...]
1402
+ with ema_scope("Plotting Inpaint"):
1403
+
1404
+ samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
1405
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1406
+ x_samples = self.decode_first_stage(samples.to(self.device))
1407
+ log["samples_inpainting"] = x_samples
1408
+ log["mask"] = mask
1409
+
1410
+ # outpaint
1411
+ mask = 1. - mask
1412
+ with ema_scope("Plotting Outpaint"):
1413
+ samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
1414
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1415
+ x_samples = self.decode_first_stage(samples.to(self.device))
1416
+ log["samples_outpainting"] = x_samples
1417
+
1418
+ if plot_progressive_rows:
1419
+ with ema_scope("Plotting Progressives"):
1420
+ img, progressives = self.progressive_denoising(c,
1421
+ shape=(self.channels, self.image_size, self.image_size),
1422
+ batch_size=N)
1423
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1424
+ log["progressive_row"] = prog_row
1425
+
1426
+ if return_keys:
1427
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
1428
+ return log
1429
+ else:
1430
+ return {key: log[key] for key in return_keys}
1431
+ return log
1432
+
1433
+ def configure_optimizers(self):
1434
+ lr = self.learning_rate
1435
+ params = []
1436
+ if self.unet_trainable == "attn":
1437
+ print("Training only unet attention layers")
1438
+ for n, m in self.model.named_modules():
1439
+ if isinstance(m, CrossAttention) and n.endswith('attn2'):
1440
+ params.extend(m.parameters())
1441
+ elif self.unet_trainable is True or self.unet_trainable == "all":
1442
+ print("Training the full unet")
1443
+ params = list(self.model.parameters())
1444
+ else:
1445
+ raise ValueError(f"Unrecognised setting for unet_trainable: {self.unet_trainable}")
1446
+
1447
+ if self.cond_stage_trainable:
1448
+ print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
1449
+ params = params + list(self.cond_stage_model.parameters())
1450
+ if self.learn_logvar:
1451
+ print('Diffusion model optimizing logvar')
1452
+ params.append(self.logvar)
1453
+ opt = torch.optim.AdamW(params, lr=lr)
1454
+ if self.use_scheduler:
1455
+ assert 'target' in self.scheduler_config
1456
+ scheduler = instantiate_from_config(self.scheduler_config)
1457
+
1458
+ print("Setting up LambdaLR scheduler...")
1459
+ scheduler = [
1460
+ {
1461
+ 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
1462
+ 'interval': 'step',
1463
+ 'frequency': 1
1464
+ }]
1465
+ return [opt], scheduler
1466
+ return opt
1467
+
1468
+ @torch.no_grad()
1469
+ def to_rgb(self, x):
1470
+ x = x.float()
1471
+ if not hasattr(self, "colorize"):
1472
+ self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
1473
+ x = nn.functional.conv2d(x, weight=self.colorize)
1474
+ x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
1475
+ return x
1476
+
1477
+
1478
+ class DiffusionWrapper(pl.LightningModule):
1479
+ def __init__(self, diff_model_config, conditioning_key):
1480
+ super().__init__()
1481
+ self.diffusion_model = instantiate_from_config(diff_model_config)
1482
+ self.conditioning_key = conditioning_key
1483
+ assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm']
1484
+
1485
+ def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None):
1486
+ if self.conditioning_key is None:
1487
+ out = self.diffusion_model(x, t)
1488
+ elif self.conditioning_key == 'concat':
1489
+ xc = torch.cat([x] + c_concat, dim=1)
1490
+ out = self.diffusion_model(xc, t)
1491
+ elif self.conditioning_key == 'crossattn':
1492
+ cc = torch.cat(c_crossattn, 1)
1493
+ out = self.diffusion_model(x, t, context=cc)
1494
+ elif self.conditioning_key == 'hybrid':
1495
+ xc = torch.cat([x] + c_concat, dim=1)
1496
+ cc = torch.cat(c_crossattn, 1)
1497
+ out = self.diffusion_model(xc, t, context=cc)
1498
+ elif self.conditioning_key == 'hybrid-adm':
1499
+ assert c_adm is not None
1500
+ xc = torch.cat([x] + c_concat, dim=1)
1501
+ cc = torch.cat(c_crossattn, 1)
1502
+ out = self.diffusion_model(xc, t, context=cc, y=c_adm)
1503
+ elif self.conditioning_key == 'adm':
1504
+ cc = c_crossattn[0]
1505
+ out = self.diffusion_model(x, t, y=cc)
1506
+ else:
1507
+ raise NotImplementedError()
1508
+
1509
+ return out
1510
+
1511
+
1512
+ class LatentUpscaleDiffusion(LatentDiffusion):
1513
+ def __init__(self, *args, low_scale_config, low_scale_key="LR", **kwargs):
1514
+ super().__init__(*args, **kwargs)
1515
+ # assumes that neither the cond_stage nor the low_scale_model contain trainable params
1516
+ assert not self.cond_stage_trainable
1517
+ self.instantiate_low_stage(low_scale_config)
1518
+ self.low_scale_key = low_scale_key
1519
+
1520
+ def instantiate_low_stage(self, config):
1521
+ model = instantiate_from_config(config)
1522
+ self.low_scale_model = model.eval()
1523
+ self.low_scale_model.train = disabled_train
1524
+ for param in self.low_scale_model.parameters():
1525
+ param.requires_grad = False
1526
+
1527
+ @torch.no_grad()
1528
+ def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
1529
+ if not log_mode:
1530
+ z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
1531
+ else:
1532
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1533
+ force_c_encode=True, return_original_cond=True, bs=bs)
1534
+ x_low = batch[self.low_scale_key][:bs]
1535
+ x_low = rearrange(x_low, 'b h w c -> b c h w')
1536
+ x_low = x_low.to(memory_format=torch.contiguous_format).float()
1537
+ zx, noise_level = self.low_scale_model(x_low)
1538
+ all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
1539
+ #import pudb; pu.db
1540
+ if log_mode:
1541
+ # TODO: maybe disable if too expensive
1542
+ interpretability = False
1543
+ if interpretability:
1544
+ zx = zx[:, :, ::2, ::2]
1545
+ x_low_rec = self.low_scale_model.decode(zx)
1546
+ return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
1547
+ return z, all_conds
1548
+
1549
+ @torch.no_grad()
1550
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1551
+ plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
1552
+ unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
1553
+ **kwargs):
1554
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
1555
+ use_ddim = ddim_steps is not None
1556
+
1557
+ log = dict()
1558
+ z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
1559
+ log_mode=True)
1560
+ N = min(x.shape[0], N)
1561
+ n_row = min(x.shape[0], n_row)
1562
+ log["inputs"] = x
1563
+ log["reconstruction"] = xrec
1564
+ log["x_lr"] = x_low
1565
+ log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
1566
+ if self.model.conditioning_key is not None:
1567
+ if hasattr(self.cond_stage_model, "decode"):
1568
+ xc = self.cond_stage_model.decode(c)
1569
+ log["conditioning"] = xc
1570
+ elif self.cond_stage_key in ["caption", "txt"]:
1571
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25)
1572
+ log["conditioning"] = xc
1573
+ elif self.cond_stage_key == 'class_label':
1574
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25)
1575
+ log['conditioning'] = xc
1576
+ elif isimage(xc):
1577
+ log["conditioning"] = xc
1578
+ if ismap(xc):
1579
+ log["original_conditioning"] = self.to_rgb(xc)
1580
+
1581
+ if plot_diffusion_rows:
1582
+ # get diffusion row
1583
+ diffusion_row = list()
1584
+ z_start = z[:n_row]
1585
+ for t in range(self.num_timesteps):
1586
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1587
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1588
+ t = t.to(self.device).long()
1589
+ noise = torch.randn_like(z_start)
1590
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1591
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1592
+
1593
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1594
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1595
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1596
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1597
+ log["diffusion_row"] = diffusion_grid
1598
+
1599
+ if sample:
1600
+ # get denoise row
1601
+ with ema_scope("Sampling"):
1602
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1603
+ ddim_steps=ddim_steps, eta=ddim_eta)
1604
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1605
+ x_samples = self.decode_first_stage(samples)
1606
+ log["samples"] = x_samples
1607
+ if plot_denoise_rows:
1608
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1609
+ log["denoise_row"] = denoise_grid
1610
+
1611
+ if unconditional_guidance_scale > 1.0:
1612
+ uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1613
+ # TODO explore better "unconditional" choices for the other keys
1614
+ # maybe guide away from empty text label and highest noise level and maximally degraded zx?
1615
+ uc = dict()
1616
+ for k in c:
1617
+ if k == "c_crossattn":
1618
+ assert isinstance(c[k], list) and len(c[k]) == 1
1619
+ uc[k] = [uc_tmp]
1620
+ elif k == "c_adm": # todo: only run with text-based guidance?
1621
+ assert isinstance(c[k], torch.Tensor)
1622
+ uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
1623
+ elif isinstance(c[k], list):
1624
+ uc[k] = [c[k][i] for i in range(len(c[k]))]
1625
+ else:
1626
+ uc[k] = c[k]
1627
+
1628
+ with ema_scope("Sampling with classifier-free guidance"):
1629
+ samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1630
+ ddim_steps=ddim_steps, eta=ddim_eta,
1631
+ unconditional_guidance_scale=unconditional_guidance_scale,
1632
+ unconditional_conditioning=uc,
1633
+ )
1634
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
1635
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1636
+
1637
+ if plot_progressive_rows:
1638
+ with ema_scope("Plotting Progressives"):
1639
+ img, progressives = self.progressive_denoising(c,
1640
+ shape=(self.channels, self.image_size, self.image_size),
1641
+ batch_size=N)
1642
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1643
+ log["progressive_row"] = prog_row
1644
+
1645
+ return log
1646
+
1647
+
1648
+ class LatentInpaintDiffusion(LatentDiffusion):
1649
+ """
1650
+ can either run as pure inpainting model (only concat mode) or with mixed conditionings,
1651
+ e.g. mask as concat and text via cross-attn.
1652
+ To disable finetuning mode, set finetune_keys to None
1653
+ """
1654
+ def __init__(self,
1655
+ finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
1656
+ "model_ema.diffusion_modelinput_blocks00weight"
1657
+ ),
1658
+ concat_keys=("mask", "masked_image"),
1659
+ masked_image_key="masked_image",
1660
+ keep_finetune_dims=4, # if model was trained without concat mode before and we would like to keep these channels
1661
+ c_concat_log_start=None, # to log reconstruction of c_concat codes
1662
+ c_concat_log_end=None,
1663
+ *args, **kwargs
1664
+ ):
1665
+ ckpt_path = kwargs.pop("ckpt_path", None)
1666
+ ignore_keys = kwargs.pop("ignore_keys", list())
1667
+ super().__init__(*args, **kwargs)
1668
+ self.masked_image_key = masked_image_key
1669
+ assert self.masked_image_key in concat_keys
1670
+ self.finetune_keys = finetune_keys
1671
+ self.concat_keys = concat_keys
1672
+ self.keep_dims = keep_finetune_dims
1673
+ self.c_concat_log_start = c_concat_log_start
1674
+ self.c_concat_log_end = c_concat_log_end
1675
+ if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
1676
+ if exists(ckpt_path):
1677
+ self.init_from_ckpt(ckpt_path, ignore_keys)
1678
+
1679
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
1680
+ sd = torch.load(path, map_location="cpu")
1681
+ if "state_dict" in list(sd.keys()):
1682
+ sd = sd["state_dict"]
1683
+ keys = list(sd.keys())
1684
+ for k in keys:
1685
+ for ik in ignore_keys:
1686
+ if k.startswith(ik):
1687
+ print("Deleting key {} from state_dict.".format(k))
1688
+ del sd[k]
1689
+
1690
+ # make it explicit, finetune by including extra input channels
1691
+ if exists(self.finetune_keys) and k in self.finetune_keys:
1692
+ new_entry = None
1693
+ for name, param in self.named_parameters():
1694
+ if name in self.finetune_keys:
1695
+ print(f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
1696
+ new_entry = torch.zeros_like(param) # zero init
1697
+ assert exists(new_entry), 'did not find matching parameter to modify'
1698
+ new_entry[:, :self.keep_dims, ...] = sd[k]
1699
+ sd[k] = new_entry
1700
+
1701
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(sd, strict=False)
1702
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
1703
+ if len(missing) > 0:
1704
+ print(f"Missing Keys: {missing}")
1705
+ if len(unexpected) > 0:
1706
+ print(f"Unexpected Keys: {unexpected}")
1707
+
1708
+ @torch.no_grad()
1709
+ def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
1710
+ # note: restricted to non-trainable encoders currently
1711
+ assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
1712
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1713
+ force_c_encode=True, return_original_cond=True, bs=bs)
1714
+
1715
+ assert exists(self.concat_keys)
1716
+ c_cat = list()
1717
+ for ck in self.concat_keys:
1718
+ cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
1719
+ if bs is not None:
1720
+ cc = cc[:bs]
1721
+ cc = cc.to(self.device)
1722
+ bchw = z.shape
1723
+ if ck != self.masked_image_key:
1724
+ cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
1725
+ else:
1726
+ cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
1727
+ c_cat.append(cc)
1728
+ c_cat = torch.cat(c_cat, dim=1)
1729
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
1730
+ if return_first_stage_outputs:
1731
+ return z, all_conds, x, xrec, xc
1732
+ return z, all_conds
1733
+
1734
+ @torch.no_grad()
1735
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1736
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
1737
+ plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
1738
+ use_ema_scope=True,
1739
+ **kwargs):
1740
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
1741
+ use_ddim = ddim_steps is not None
1742
+
1743
+ log = dict()
1744
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
1745
+ c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
1746
+ N = min(x.shape[0], N)
1747
+ n_row = min(x.shape[0], n_row)
1748
+ log["inputs"] = x
1749
+ log["reconstruction"] = xrec
1750
+ if self.model.conditioning_key is not None:
1751
+ if hasattr(self.cond_stage_model, "decode"):
1752
+ xc = self.cond_stage_model.decode(c)
1753
+ log["conditioning"] = xc
1754
+ elif self.cond_stage_key in ["caption", "txt"]:
1755
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
1756
+ log["conditioning"] = xc
1757
+ elif self.cond_stage_key == 'class_label':
1758
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
1759
+ log['conditioning'] = xc
1760
+ elif isimage(xc):
1761
+ log["conditioning"] = xc
1762
+ if ismap(xc):
1763
+ log["original_conditioning"] = self.to_rgb(xc)
1764
+
1765
+ if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
1766
+ log["c_concat_decoded"] = self.decode_first_stage(c_cat[:,self.c_concat_log_start:self.c_concat_log_end])
1767
+
1768
+ if plot_diffusion_rows:
1769
+ # get diffusion row
1770
+ diffusion_row = list()
1771
+ z_start = z[:n_row]
1772
+ for t in range(self.num_timesteps):
1773
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1774
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1775
+ t = t.to(self.device).long()
1776
+ noise = torch.randn_like(z_start)
1777
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1778
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1779
+
1780
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1781
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1782
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1783
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1784
+ log["diffusion_row"] = diffusion_grid
1785
+
1786
+ if sample:
1787
+ # get denoise row
1788
+ with ema_scope("Sampling"):
1789
+ samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
1790
+ batch_size=N, ddim=use_ddim,
1791
+ ddim_steps=ddim_steps, eta=ddim_eta)
1792
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1793
+ x_samples = self.decode_first_stage(samples)
1794
+ log["samples"] = x_samples
1795
+ if plot_denoise_rows:
1796
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1797
+ log["denoise_row"] = denoise_grid
1798
+
1799
+ if unconditional_guidance_scale > 1.0:
1800
+ uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1801
+ uc_cat = c_cat
1802
+ uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
1803
+ with ema_scope("Sampling with classifier-free guidance"):
1804
+ samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
1805
+ batch_size=N, ddim=use_ddim,
1806
+ ddim_steps=ddim_steps, eta=ddim_eta,
1807
+ unconditional_guidance_scale=unconditional_guidance_scale,
1808
+ unconditional_conditioning=uc_full,
1809
+ )
1810
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
1811
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1812
+
1813
+ log["masked_image"] = rearrange(batch["masked_image"],
1814
+ 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
1815
+ return log
1816
+
1817
+
1818
+ class Layout2ImgDiffusion(LatentDiffusion):
1819
+ # TODO: move all layout-specific hacks to this class
1820
+ def __init__(self, cond_stage_key, *args, **kwargs):
1821
+ assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
1822
+ super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
1823
+
1824
+ def log_images(self, batch, N=8, *args, **kwargs):
1825
+ logs = super().log_images(batch=batch, N=N, *args, **kwargs)
1826
+
1827
+ key = 'train' if self.training else 'validation'
1828
+ dset = self.trainer.datamodule.datasets[key]
1829
+ mapper = dset.conditional_builders[self.cond_stage_key]
1830
+
1831
+ bbox_imgs = []
1832
+ map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
1833
+ for tknzd_bbox in batch[self.cond_stage_key][:N]:
1834
+ bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
1835
+ bbox_imgs.append(bboximg)
1836
+
1837
+ cond_img = torch.stack(bbox_imgs, dim=0)
1838
+ logs['bbox_image'] = cond_img
1839
+ return logs
1840
+
1841
+
1842
+ class SimpleUpscaleDiffusion(LatentDiffusion):
1843
+ def __init__(self, *args, low_scale_key="LR", **kwargs):
1844
+ super().__init__(*args, **kwargs)
1845
+ # assumes that neither the cond_stage nor the low_scale_model contain trainable params
1846
+ assert not self.cond_stage_trainable
1847
+ self.low_scale_key = low_scale_key
1848
+
1849
+ @torch.no_grad()
1850
+ def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
1851
+ if not log_mode:
1852
+ z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
1853
+ else:
1854
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1855
+ force_c_encode=True, return_original_cond=True, bs=bs)
1856
+ x_low = batch[self.low_scale_key][:bs]
1857
+ x_low = rearrange(x_low, 'b h w c -> b c h w')
1858
+ x_low = x_low.to(memory_format=torch.contiguous_format).float()
1859
+
1860
+ encoder_posterior = self.encode_first_stage(x_low)
1861
+ zx = self.get_first_stage_encoding(encoder_posterior).detach()
1862
+ all_conds = {"c_concat": [zx], "c_crossattn": [c]}
1863
+
1864
+ if log_mode:
1865
+ # TODO: maybe disable if too expensive
1866
+ interpretability = False
1867
+ if interpretability:
1868
+ zx = zx[:, :, ::2, ::2]
1869
+ return z, all_conds, x, xrec, xc, x_low
1870
+ return z, all_conds
1871
+
1872
+ @torch.no_grad()
1873
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1874
+ plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
1875
+ unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
1876
+ **kwargs):
1877
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
1878
+ use_ddim = ddim_steps is not None
1879
+
1880
+ log = dict()
1881
+ z, c, x, xrec, xc, x_low = self.get_input(batch, self.first_stage_key, bs=N, log_mode=True)
1882
+ N = min(x.shape[0], N)
1883
+ n_row = min(x.shape[0], n_row)
1884
+ log["inputs"] = x
1885
+ log["reconstruction"] = xrec
1886
+ log["x_lr"] = x_low
1887
+
1888
+ if self.model.conditioning_key is not None:
1889
+ if hasattr(self.cond_stage_model, "decode"):
1890
+ xc = self.cond_stage_model.decode(c)
1891
+ log["conditioning"] = xc
1892
+ elif self.cond_stage_key in ["caption", "txt"]:
1893
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25)
1894
+ log["conditioning"] = xc
1895
+ elif self.cond_stage_key == 'class_label':
1896
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25)
1897
+ log['conditioning'] = xc
1898
+ elif isimage(xc):
1899
+ log["conditioning"] = xc
1900
+ if ismap(xc):
1901
+ log["original_conditioning"] = self.to_rgb(xc)
1902
+
1903
+ if sample:
1904
+ # get denoise row
1905
+ with ema_scope("Sampling"):
1906
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1907
+ ddim_steps=ddim_steps, eta=ddim_eta)
1908
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1909
+ x_samples = self.decode_first_stage(samples)
1910
+ log["samples"] = x_samples
1911
+
1912
+ if unconditional_guidance_scale > 1.0:
1913
+ uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1914
+ uc = dict()
1915
+ for k in c:
1916
+ if k == "c_crossattn":
1917
+ assert isinstance(c[k], list) and len(c[k]) == 1
1918
+ uc[k] = [uc_tmp]
1919
+ elif isinstance(c[k], list):
1920
+ uc[k] = [c[k][i] for i in range(len(c[k]))]
1921
+ else:
1922
+ uc[k] = c[k]
1923
+
1924
+ with ema_scope("Sampling with classifier-free guidance"):
1925
+ samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1926
+ ddim_steps=ddim_steps, eta=ddim_eta,
1927
+ unconditional_guidance_scale=unconditional_guidance_scale,
1928
+ unconditional_conditioning=uc,
1929
+ )
1930
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
1931
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1932
+
1933
+
1934
+ return log
stable_diffusion/ldm/models/diffusion/dpm_solver/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .sampler import DPMSolverSampler
stable_diffusion/ldm/models/diffusion/dpm_solver/dpm_solver.py ADDED
@@ -0,0 +1,1184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import math
4
+
5
+
6
+ class NoiseScheduleVP:
7
+ def __init__(
8
+ self,
9
+ schedule='discrete',
10
+ betas=None,
11
+ alphas_cumprod=None,
12
+ continuous_beta_0=0.1,
13
+ continuous_beta_1=20.,
14
+ ):
15
+ """Create a wrapper class for the forward SDE (VP type).
16
+
17
+ ***
18
+ Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
19
+ We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
20
+ ***
21
+
22
+ The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
23
+ We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
24
+ Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
25
+
26
+ log_alpha_t = self.marginal_log_mean_coeff(t)
27
+ sigma_t = self.marginal_std(t)
28
+ lambda_t = self.marginal_lambda(t)
29
+
30
+ Moreover, as lambda(t) is an invertible function, we also support its inverse function:
31
+
32
+ t = self.inverse_lambda(lambda_t)
33
+
34
+ ===============================================================
35
+
36
+ We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
37
+
38
+ 1. For discrete-time DPMs:
39
+
40
+ For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
41
+ t_i = (i + 1) / N
42
+ e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
43
+ We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
44
+
45
+ Args:
46
+ betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
47
+ alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
48
+
49
+ Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
50
+
51
+ **Important**: Please pay special attention for the args for `alphas_cumprod`:
52
+ The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
53
+ q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
54
+ Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
55
+ alpha_{t_n} = \sqrt{\hat{alpha_n}},
56
+ and
57
+ log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
58
+
59
+
60
+ 2. For continuous-time DPMs:
61
+
62
+ We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
63
+ schedule are the default settings in DDPM and improved-DDPM:
64
+
65
+ Args:
66
+ beta_min: A `float` number. The smallest beta for the linear schedule.
67
+ beta_max: A `float` number. The largest beta for the linear schedule.
68
+ cosine_s: A `float` number. The hyperparameter in the cosine schedule.
69
+ cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
70
+ T: A `float` number. The ending time of the forward process.
71
+
72
+ ===============================================================
73
+
74
+ Args:
75
+ schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
76
+ 'linear' or 'cosine' for continuous-time DPMs.
77
+ Returns:
78
+ A wrapper object of the forward SDE (VP type).
79
+
80
+ ===============================================================
81
+
82
+ Example:
83
+
84
+ # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
85
+ >>> ns = NoiseScheduleVP('discrete', betas=betas)
86
+
87
+ # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
88
+ >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
89
+
90
+ # For continuous-time DPMs (VPSDE), linear schedule:
91
+ >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
92
+
93
+ """
94
+
95
+ if schedule not in ['discrete', 'linear', 'cosine']:
96
+ raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
97
+
98
+ self.schedule = schedule
99
+ if schedule == 'discrete':
100
+ if betas is not None:
101
+ log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
102
+ else:
103
+ assert alphas_cumprod is not None
104
+ log_alphas = 0.5 * torch.log(alphas_cumprod)
105
+ self.total_N = len(log_alphas)
106
+ self.T = 1.
107
+ self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
108
+ self.log_alpha_array = log_alphas.reshape((1, -1,))
109
+ else:
110
+ self.total_N = 1000
111
+ self.beta_0 = continuous_beta_0
112
+ self.beta_1 = continuous_beta_1
113
+ self.cosine_s = 0.008
114
+ self.cosine_beta_max = 999.
115
+ self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
116
+ self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
117
+ self.schedule = schedule
118
+ if schedule == 'cosine':
119
+ # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
120
+ # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
121
+ self.T = 0.9946
122
+ else:
123
+ self.T = 1.
124
+
125
+ def marginal_log_mean_coeff(self, t):
126
+ """
127
+ Compute log(alpha_t) of a given continuous-time label t in [0, T].
128
+ """
129
+ if self.schedule == 'discrete':
130
+ return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
131
+ elif self.schedule == 'linear':
132
+ return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
133
+ elif self.schedule == 'cosine':
134
+ log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
135
+ log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
136
+ return log_alpha_t
137
+
138
+ def marginal_alpha(self, t):
139
+ """
140
+ Compute alpha_t of a given continuous-time label t in [0, T].
141
+ """
142
+ return torch.exp(self.marginal_log_mean_coeff(t))
143
+
144
+ def marginal_std(self, t):
145
+ """
146
+ Compute sigma_t of a given continuous-time label t in [0, T].
147
+ """
148
+ return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
149
+
150
+ def marginal_lambda(self, t):
151
+ """
152
+ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
153
+ """
154
+ log_mean_coeff = self.marginal_log_mean_coeff(t)
155
+ log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
156
+ return log_mean_coeff - log_std
157
+
158
+ def inverse_lambda(self, lamb):
159
+ """
160
+ Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
161
+ """
162
+ if self.schedule == 'linear':
163
+ tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
164
+ Delta = self.beta_0**2 + tmp
165
+ return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
166
+ elif self.schedule == 'discrete':
167
+ log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
168
+ t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
169
+ return t.reshape((-1,))
170
+ else:
171
+ log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
172
+ t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
173
+ t = t_fn(log_alpha)
174
+ return t
175
+
176
+
177
+ def model_wrapper(
178
+ model,
179
+ noise_schedule,
180
+ model_type="noise",
181
+ model_kwargs={},
182
+ guidance_type="uncond",
183
+ condition=None,
184
+ unconditional_condition=None,
185
+ guidance_scale=1.,
186
+ classifier_fn=None,
187
+ classifier_kwargs={},
188
+ ):
189
+ """Create a wrapper function for the noise prediction model.
190
+
191
+ DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
192
+ firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
193
+
194
+ We support four types of the diffusion model by setting `model_type`:
195
+
196
+ 1. "noise": noise prediction model. (Trained by predicting noise).
197
+
198
+ 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
199
+
200
+ 3. "v": velocity prediction model. (Trained by predicting the velocity).
201
+ The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
202
+
203
+ [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
204
+ arXiv preprint arXiv:2202.00512 (2022).
205
+ [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
206
+ arXiv preprint arXiv:2210.02303 (2022).
207
+
208
+ 4. "score": marginal score function. (Trained by denoising score matching).
209
+ Note that the score function and the noise prediction model follows a simple relationship:
210
+ ```
211
+ noise(x_t, t) = -sigma_t * score(x_t, t)
212
+ ```
213
+
214
+ We support three types of guided sampling by DPMs by setting `guidance_type`:
215
+ 1. "uncond": unconditional sampling by DPMs.
216
+ The input `model` has the following format:
217
+ ``
218
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
219
+ ``
220
+
221
+ 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
222
+ The input `model` has the following format:
223
+ ``
224
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
225
+ ``
226
+
227
+ The input `classifier_fn` has the following format:
228
+ ``
229
+ classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
230
+ ``
231
+
232
+ [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
233
+ in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
234
+
235
+ 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
236
+ The input `model` has the following format:
237
+ ``
238
+ model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
239
+ ``
240
+ And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
241
+
242
+ [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
243
+ arXiv preprint arXiv:2207.12598 (2022).
244
+
245
+
246
+ The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
247
+ or continuous-time labels (i.e. epsilon to T).
248
+
249
+ We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
250
+ ``
251
+ def model_fn(x, t_continuous) -> noise:
252
+ t_input = get_model_input_time(t_continuous)
253
+ return noise_pred(model, x, t_input, **model_kwargs)
254
+ ``
255
+ where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
256
+
257
+ ===============================================================
258
+
259
+ Args:
260
+ model: A diffusion model with the corresponding format described above.
261
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
262
+ model_type: A `str`. The parameterization type of the diffusion model.
263
+ "noise" or "x_start" or "v" or "score".
264
+ model_kwargs: A `dict`. A dict for the other inputs of the model function.
265
+ guidance_type: A `str`. The type of the guidance for sampling.
266
+ "uncond" or "classifier" or "classifier-free".
267
+ condition: A pytorch tensor. The condition for the guided sampling.
268
+ Only used for "classifier" or "classifier-free" guidance type.
269
+ unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
270
+ Only used for "classifier-free" guidance type.
271
+ guidance_scale: A `float`. The scale for the guided sampling.
272
+ classifier_fn: A classifier function. Only used for the classifier guidance.
273
+ classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
274
+ Returns:
275
+ A noise prediction model that accepts the noised data and the continuous time as the inputs.
276
+ """
277
+
278
+ def get_model_input_time(t_continuous):
279
+ """
280
+ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
281
+ For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
282
+ For continuous-time DPMs, we just use `t_continuous`.
283
+ """
284
+ if noise_schedule.schedule == 'discrete':
285
+ return (t_continuous - 1. / noise_schedule.total_N) * 1000.
286
+ else:
287
+ return t_continuous
288
+
289
+ def noise_pred_fn(x, t_continuous, cond=None):
290
+ if t_continuous.reshape((-1,)).shape[0] == 1:
291
+ t_continuous = t_continuous.expand((x.shape[0]))
292
+ t_input = get_model_input_time(t_continuous)
293
+ if cond is None:
294
+ output = model(x, t_input, **model_kwargs)
295
+ else:
296
+ output = model(x, t_input, cond, **model_kwargs)
297
+ if model_type == "noise":
298
+ return output
299
+ elif model_type == "x_start":
300
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
301
+ dims = x.dim()
302
+ return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
303
+ elif model_type == "v":
304
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
305
+ dims = x.dim()
306
+ return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
307
+ elif model_type == "score":
308
+ sigma_t = noise_schedule.marginal_std(t_continuous)
309
+ dims = x.dim()
310
+ return -expand_dims(sigma_t, dims) * output
311
+
312
+ def cond_grad_fn(x, t_input):
313
+ """
314
+ Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
315
+ """
316
+ with torch.enable_grad():
317
+ x_in = x.detach().requires_grad_(True)
318
+ log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
319
+ return torch.autograd.grad(log_prob.sum(), x_in)[0]
320
+
321
+ def model_fn(x, t_continuous):
322
+ """
323
+ The noise predicition model function that is used for DPM-Solver.
324
+ """
325
+ if t_continuous.reshape((-1,)).shape[0] == 1:
326
+ t_continuous = t_continuous.expand((x.shape[0]))
327
+ if guidance_type == "uncond":
328
+ return noise_pred_fn(x, t_continuous)
329
+ elif guidance_type == "classifier":
330
+ assert classifier_fn is not None
331
+ t_input = get_model_input_time(t_continuous)
332
+ cond_grad = cond_grad_fn(x, t_input)
333
+ sigma_t = noise_schedule.marginal_std(t_continuous)
334
+ noise = noise_pred_fn(x, t_continuous)
335
+ return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
336
+ elif guidance_type == "classifier-free":
337
+ if guidance_scale == 1. or unconditional_condition is None:
338
+ return noise_pred_fn(x, t_continuous, cond=condition)
339
+ else:
340
+ x_in = torch.cat([x] * 2)
341
+ t_in = torch.cat([t_continuous] * 2)
342
+ c_in = torch.cat([unconditional_condition, condition])
343
+ noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
344
+ return noise_uncond + guidance_scale * (noise - noise_uncond)
345
+
346
+ assert model_type in ["noise", "x_start", "v"]
347
+ assert guidance_type in ["uncond", "classifier", "classifier-free"]
348
+ return model_fn
349
+
350
+
351
+ class DPM_Solver:
352
+ def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
353
+ """Construct a DPM-Solver.
354
+
355
+ We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
356
+ If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
357
+ If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
358
+ In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
359
+ The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
360
+
361
+ Args:
362
+ model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
363
+ ``
364
+ def model_fn(x, t_continuous):
365
+ return noise
366
+ ``
367
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
368
+ predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
369
+ thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
370
+ max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
371
+
372
+ [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
373
+ """
374
+ self.model = model_fn
375
+ self.noise_schedule = noise_schedule
376
+ self.predict_x0 = predict_x0
377
+ self.thresholding = thresholding
378
+ self.max_val = max_val
379
+
380
+ def noise_prediction_fn(self, x, t):
381
+ """
382
+ Return the noise prediction model.
383
+ """
384
+ return self.model(x, t)
385
+
386
+ def data_prediction_fn(self, x, t):
387
+ """
388
+ Return the data prediction model (with thresholding).
389
+ """
390
+ noise = self.noise_prediction_fn(x, t)
391
+ dims = x.dim()
392
+ alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
393
+ x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
394
+ if self.thresholding:
395
+ p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
396
+ s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
397
+ s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
398
+ x0 = torch.clamp(x0, -s, s) / s
399
+ return x0
400
+
401
+ def model_fn(self, x, t):
402
+ """
403
+ Convert the model to the noise prediction model or the data prediction model.
404
+ """
405
+ if self.predict_x0:
406
+ return self.data_prediction_fn(x, t)
407
+ else:
408
+ return self.noise_prediction_fn(x, t)
409
+
410
+ def get_time_steps(self, skip_type, t_T, t_0, N, device):
411
+ """Compute the intermediate time steps for sampling.
412
+
413
+ Args:
414
+ skip_type: A `str`. The type for the spacing of the time steps. We support three types:
415
+ - 'logSNR': uniform logSNR for the time steps.
416
+ - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
417
+ - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
418
+ t_T: A `float`. The starting time of the sampling (default is T).
419
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
420
+ N: A `int`. The total number of the spacing of the time steps.
421
+ device: A torch device.
422
+ Returns:
423
+ A pytorch tensor of the time steps, with the shape (N + 1,).
424
+ """
425
+ if skip_type == 'logSNR':
426
+ lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
427
+ lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
428
+ logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
429
+ return self.noise_schedule.inverse_lambda(logSNR_steps)
430
+ elif skip_type == 'time_uniform':
431
+ return torch.linspace(t_T, t_0, N + 1).to(device)
432
+ elif skip_type == 'time_quadratic':
433
+ t_order = 2
434
+ t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
435
+ return t
436
+ else:
437
+ raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
438
+
439
+ def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
440
+ """
441
+ Get the order of each step for sampling by the singlestep DPM-Solver.
442
+
443
+ We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
444
+ Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
445
+ - If order == 1:
446
+ We take `steps` of DPM-Solver-1 (i.e. DDIM).
447
+ - If order == 2:
448
+ - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
449
+ - If steps % 2 == 0, we use K steps of DPM-Solver-2.
450
+ - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
451
+ - If order == 3:
452
+ - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
453
+ - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
454
+ - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
455
+ - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
456
+
457
+ ============================================
458
+ Args:
459
+ order: A `int`. The max order for the solver (2 or 3).
460
+ steps: A `int`. The total number of function evaluations (NFE).
461
+ skip_type: A `str`. The type for the spacing of the time steps. We support three types:
462
+ - 'logSNR': uniform logSNR for the time steps.
463
+ - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
464
+ - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
465
+ t_T: A `float`. The starting time of the sampling (default is T).
466
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
467
+ device: A torch device.
468
+ Returns:
469
+ orders: A list of the solver order of each step.
470
+ """
471
+ if order == 3:
472
+ K = steps // 3 + 1
473
+ if steps % 3 == 0:
474
+ orders = [3,] * (K - 2) + [2, 1]
475
+ elif steps % 3 == 1:
476
+ orders = [3,] * (K - 1) + [1]
477
+ else:
478
+ orders = [3,] * (K - 1) + [2]
479
+ elif order == 2:
480
+ if steps % 2 == 0:
481
+ K = steps // 2
482
+ orders = [2,] * K
483
+ else:
484
+ K = steps // 2 + 1
485
+ orders = [2,] * (K - 1) + [1]
486
+ elif order == 1:
487
+ K = 1
488
+ orders = [1,] * steps
489
+ else:
490
+ raise ValueError("'order' must be '1' or '2' or '3'.")
491
+ if skip_type == 'logSNR':
492
+ # To reproduce the results in DPM-Solver paper
493
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
494
+ else:
495
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders)).to(device)]
496
+ return timesteps_outer, orders
497
+
498
+ def denoise_to_zero_fn(self, x, s):
499
+ """
500
+ Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
501
+ """
502
+ return self.data_prediction_fn(x, s)
503
+
504
+ def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
505
+ """
506
+ DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
507
+
508
+ Args:
509
+ x: A pytorch tensor. The initial value at time `s`.
510
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
511
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
512
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
513
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
514
+ return_intermediate: A `bool`. If true, also return the model value at time `s`.
515
+ Returns:
516
+ x_t: A pytorch tensor. The approximated solution at time `t`.
517
+ """
518
+ ns = self.noise_schedule
519
+ dims = x.dim()
520
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
521
+ h = lambda_t - lambda_s
522
+ log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
523
+ sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
524
+ alpha_t = torch.exp(log_alpha_t)
525
+
526
+ if self.predict_x0:
527
+ phi_1 = torch.expm1(-h)
528
+ if model_s is None:
529
+ model_s = self.model_fn(x, s)
530
+ x_t = (
531
+ expand_dims(sigma_t / sigma_s, dims) * x
532
+ - expand_dims(alpha_t * phi_1, dims) * model_s
533
+ )
534
+ if return_intermediate:
535
+ return x_t, {'model_s': model_s}
536
+ else:
537
+ return x_t
538
+ else:
539
+ phi_1 = torch.expm1(h)
540
+ if model_s is None:
541
+ model_s = self.model_fn(x, s)
542
+ x_t = (
543
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
544
+ - expand_dims(sigma_t * phi_1, dims) * model_s
545
+ )
546
+ if return_intermediate:
547
+ return x_t, {'model_s': model_s}
548
+ else:
549
+ return x_t
550
+
551
+ def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False, solver_type='dpm_solver'):
552
+ """
553
+ Singlestep solver DPM-Solver-2 from time `s` to time `t`.
554
+
555
+ Args:
556
+ x: A pytorch tensor. The initial value at time `s`.
557
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
558
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
559
+ r1: A `float`. The hyperparameter of the second-order solver.
560
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
561
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
562
+ return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
563
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
564
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
565
+ Returns:
566
+ x_t: A pytorch tensor. The approximated solution at time `t`.
567
+ """
568
+ if solver_type not in ['dpm_solver', 'taylor']:
569
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
570
+ if r1 is None:
571
+ r1 = 0.5
572
+ ns = self.noise_schedule
573
+ dims = x.dim()
574
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
575
+ h = lambda_t - lambda_s
576
+ lambda_s1 = lambda_s + r1 * h
577
+ s1 = ns.inverse_lambda(lambda_s1)
578
+ log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(t)
579
+ sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
580
+ alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
581
+
582
+ if self.predict_x0:
583
+ phi_11 = torch.expm1(-r1 * h)
584
+ phi_1 = torch.expm1(-h)
585
+
586
+ if model_s is None:
587
+ model_s = self.model_fn(x, s)
588
+ x_s1 = (
589
+ expand_dims(sigma_s1 / sigma_s, dims) * x
590
+ - expand_dims(alpha_s1 * phi_11, dims) * model_s
591
+ )
592
+ model_s1 = self.model_fn(x_s1, s1)
593
+ if solver_type == 'dpm_solver':
594
+ x_t = (
595
+ expand_dims(sigma_t / sigma_s, dims) * x
596
+ - expand_dims(alpha_t * phi_1, dims) * model_s
597
+ - (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
598
+ )
599
+ elif solver_type == 'taylor':
600
+ x_t = (
601
+ expand_dims(sigma_t / sigma_s, dims) * x
602
+ - expand_dims(alpha_t * phi_1, dims) * model_s
603
+ + (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (model_s1 - model_s)
604
+ )
605
+ else:
606
+ phi_11 = torch.expm1(r1 * h)
607
+ phi_1 = torch.expm1(h)
608
+
609
+ if model_s is None:
610
+ model_s = self.model_fn(x, s)
611
+ x_s1 = (
612
+ expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
613
+ - expand_dims(sigma_s1 * phi_11, dims) * model_s
614
+ )
615
+ model_s1 = self.model_fn(x_s1, s1)
616
+ if solver_type == 'dpm_solver':
617
+ x_t = (
618
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
619
+ - expand_dims(sigma_t * phi_1, dims) * model_s
620
+ - (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
621
+ )
622
+ elif solver_type == 'taylor':
623
+ x_t = (
624
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
625
+ - expand_dims(sigma_t * phi_1, dims) * model_s
626
+ - (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
627
+ )
628
+ if return_intermediate:
629
+ return x_t, {'model_s': model_s, 'model_s1': model_s1}
630
+ else:
631
+ return x_t
632
+
633
+ def singlestep_dpm_solver_third_update(self, x, s, t, r1=1./3., r2=2./3., model_s=None, model_s1=None, return_intermediate=False, solver_type='dpm_solver'):
634
+ """
635
+ Singlestep solver DPM-Solver-3 from time `s` to time `t`.
636
+
637
+ Args:
638
+ x: A pytorch tensor. The initial value at time `s`.
639
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
640
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
641
+ r1: A `float`. The hyperparameter of the third-order solver.
642
+ r2: A `float`. The hyperparameter of the third-order solver.
643
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
644
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
645
+ model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
646
+ If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
647
+ return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
648
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
649
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
650
+ Returns:
651
+ x_t: A pytorch tensor. The approximated solution at time `t`.
652
+ """
653
+ if solver_type not in ['dpm_solver', 'taylor']:
654
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
655
+ if r1 is None:
656
+ r1 = 1. / 3.
657
+ if r2 is None:
658
+ r2 = 2. / 3.
659
+ ns = self.noise_schedule
660
+ dims = x.dim()
661
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
662
+ h = lambda_t - lambda_s
663
+ lambda_s1 = lambda_s + r1 * h
664
+ lambda_s2 = lambda_s + r2 * h
665
+ s1 = ns.inverse_lambda(lambda_s1)
666
+ s2 = ns.inverse_lambda(lambda_s2)
667
+ log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
668
+ sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(s2), ns.marginal_std(t)
669
+ alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
670
+
671
+ if self.predict_x0:
672
+ phi_11 = torch.expm1(-r1 * h)
673
+ phi_12 = torch.expm1(-r2 * h)
674
+ phi_1 = torch.expm1(-h)
675
+ phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
676
+ phi_2 = phi_1 / h + 1.
677
+ phi_3 = phi_2 / h - 0.5
678
+
679
+ if model_s is None:
680
+ model_s = self.model_fn(x, s)
681
+ if model_s1 is None:
682
+ x_s1 = (
683
+ expand_dims(sigma_s1 / sigma_s, dims) * x
684
+ - expand_dims(alpha_s1 * phi_11, dims) * model_s
685
+ )
686
+ model_s1 = self.model_fn(x_s1, s1)
687
+ x_s2 = (
688
+ expand_dims(sigma_s2 / sigma_s, dims) * x
689
+ - expand_dims(alpha_s2 * phi_12, dims) * model_s
690
+ + r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
691
+ )
692
+ model_s2 = self.model_fn(x_s2, s2)
693
+ if solver_type == 'dpm_solver':
694
+ x_t = (
695
+ expand_dims(sigma_t / sigma_s, dims) * x
696
+ - expand_dims(alpha_t * phi_1, dims) * model_s
697
+ + (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
698
+ )
699
+ elif solver_type == 'taylor':
700
+ D1_0 = (1. / r1) * (model_s1 - model_s)
701
+ D1_1 = (1. / r2) * (model_s2 - model_s)
702
+ D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
703
+ D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
704
+ x_t = (
705
+ expand_dims(sigma_t / sigma_s, dims) * x
706
+ - expand_dims(alpha_t * phi_1, dims) * model_s
707
+ + expand_dims(alpha_t * phi_2, dims) * D1
708
+ - expand_dims(alpha_t * phi_3, dims) * D2
709
+ )
710
+ else:
711
+ phi_11 = torch.expm1(r1 * h)
712
+ phi_12 = torch.expm1(r2 * h)
713
+ phi_1 = torch.expm1(h)
714
+ phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
715
+ phi_2 = phi_1 / h - 1.
716
+ phi_3 = phi_2 / h - 0.5
717
+
718
+ if model_s is None:
719
+ model_s = self.model_fn(x, s)
720
+ if model_s1 is None:
721
+ x_s1 = (
722
+ expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
723
+ - expand_dims(sigma_s1 * phi_11, dims) * model_s
724
+ )
725
+ model_s1 = self.model_fn(x_s1, s1)
726
+ x_s2 = (
727
+ expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
728
+ - expand_dims(sigma_s2 * phi_12, dims) * model_s
729
+ - r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
730
+ )
731
+ model_s2 = self.model_fn(x_s2, s2)
732
+ if solver_type == 'dpm_solver':
733
+ x_t = (
734
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
735
+ - expand_dims(sigma_t * phi_1, dims) * model_s
736
+ - (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
737
+ )
738
+ elif solver_type == 'taylor':
739
+ D1_0 = (1. / r1) * (model_s1 - model_s)
740
+ D1_1 = (1. / r2) * (model_s2 - model_s)
741
+ D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
742
+ D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
743
+ x_t = (
744
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
745
+ - expand_dims(sigma_t * phi_1, dims) * model_s
746
+ - expand_dims(sigma_t * phi_2, dims) * D1
747
+ - expand_dims(sigma_t * phi_3, dims) * D2
748
+ )
749
+
750
+ if return_intermediate:
751
+ return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
752
+ else:
753
+ return x_t
754
+
755
+ def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
756
+ """
757
+ Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
758
+
759
+ Args:
760
+ x: A pytorch tensor. The initial value at time `s`.
761
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
762
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
763
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
764
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
765
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
766
+ Returns:
767
+ x_t: A pytorch tensor. The approximated solution at time `t`.
768
+ """
769
+ if solver_type not in ['dpm_solver', 'taylor']:
770
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
771
+ ns = self.noise_schedule
772
+ dims = x.dim()
773
+ model_prev_1, model_prev_0 = model_prev_list
774
+ t_prev_1, t_prev_0 = t_prev_list
775
+ lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
776
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
777
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
778
+ alpha_t = torch.exp(log_alpha_t)
779
+
780
+ h_0 = lambda_prev_0 - lambda_prev_1
781
+ h = lambda_t - lambda_prev_0
782
+ r0 = h_0 / h
783
+ D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
784
+ if self.predict_x0:
785
+ if solver_type == 'dpm_solver':
786
+ x_t = (
787
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
788
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
789
+ - 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
790
+ )
791
+ elif solver_type == 'taylor':
792
+ x_t = (
793
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
794
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
795
+ + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
796
+ )
797
+ else:
798
+ if solver_type == 'dpm_solver':
799
+ x_t = (
800
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
801
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
802
+ - 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
803
+ )
804
+ elif solver_type == 'taylor':
805
+ x_t = (
806
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
807
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
808
+ - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
809
+ )
810
+ return x_t
811
+
812
+ def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
813
+ """
814
+ Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
815
+
816
+ Args:
817
+ x: A pytorch tensor. The initial value at time `s`.
818
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
819
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
820
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
821
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
822
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
823
+ Returns:
824
+ x_t: A pytorch tensor. The approximated solution at time `t`.
825
+ """
826
+ ns = self.noise_schedule
827
+ dims = x.dim()
828
+ model_prev_2, model_prev_1, model_prev_0 = model_prev_list
829
+ t_prev_2, t_prev_1, t_prev_0 = t_prev_list
830
+ lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
831
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
832
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
833
+ alpha_t = torch.exp(log_alpha_t)
834
+
835
+ h_1 = lambda_prev_1 - lambda_prev_2
836
+ h_0 = lambda_prev_0 - lambda_prev_1
837
+ h = lambda_t - lambda_prev_0
838
+ r0, r1 = h_0 / h, h_1 / h
839
+ D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
840
+ D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
841
+ D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
842
+ D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
843
+ if self.predict_x0:
844
+ x_t = (
845
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
846
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
847
+ + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
848
+ - expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h**2 - 0.5), dims) * D2
849
+ )
850
+ else:
851
+ x_t = (
852
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
853
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
854
+ - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
855
+ - expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h**2 - 0.5), dims) * D2
856
+ )
857
+ return x_t
858
+
859
+ def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None, r2=None):
860
+ """
861
+ Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
862
+
863
+ Args:
864
+ x: A pytorch tensor. The initial value at time `s`.
865
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
866
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
867
+ order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
868
+ return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
869
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
870
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
871
+ r1: A `float`. The hyperparameter of the second-order or third-order solver.
872
+ r2: A `float`. The hyperparameter of the third-order solver.
873
+ Returns:
874
+ x_t: A pytorch tensor. The approximated solution at time `t`.
875
+ """
876
+ if order == 1:
877
+ return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
878
+ elif order == 2:
879
+ return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1)
880
+ elif order == 3:
881
+ return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1, r2=r2)
882
+ else:
883
+ raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
884
+
885
+ def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
886
+ """
887
+ Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
888
+
889
+ Args:
890
+ x: A pytorch tensor. The initial value at time `s`.
891
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
892
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
893
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
894
+ order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
895
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
896
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
897
+ Returns:
898
+ x_t: A pytorch tensor. The approximated solution at time `t`.
899
+ """
900
+ if order == 1:
901
+ return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
902
+ elif order == 2:
903
+ return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
904
+ elif order == 3:
905
+ return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
906
+ else:
907
+ raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
908
+
909
+ def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, solver_type='dpm_solver'):
910
+ """
911
+ The adaptive step size solver based on singlestep DPM-Solver.
912
+
913
+ Args:
914
+ x: A pytorch tensor. The initial value at time `t_T`.
915
+ order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
916
+ t_T: A `float`. The starting time of the sampling (default is T).
917
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
918
+ h_init: A `float`. The initial step size (for logSNR).
919
+ atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
920
+ rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
921
+ theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
922
+ t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
923
+ current time and `t_0` is less than `t_err`. The default setting is 1e-5.
924
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
925
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
926
+ Returns:
927
+ x_0: A pytorch tensor. The approximated solution at time `t_0`.
928
+
929
+ [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
930
+ """
931
+ ns = self.noise_schedule
932
+ s = t_T * torch.ones((x.shape[0],)).to(x)
933
+ lambda_s = ns.marginal_lambda(s)
934
+ lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
935
+ h = h_init * torch.ones_like(s).to(x)
936
+ x_prev = x
937
+ nfe = 0
938
+ if order == 2:
939
+ r1 = 0.5
940
+ lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
941
+ higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, solver_type=solver_type, **kwargs)
942
+ elif order == 3:
943
+ r1, r2 = 1. / 3., 2. / 3.
944
+ lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, return_intermediate=True, solver_type=solver_type)
945
+ higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2, solver_type=solver_type, **kwargs)
946
+ else:
947
+ raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
948
+ while torch.abs((s - t_0)).mean() > t_err:
949
+ t = ns.inverse_lambda(lambda_s + h)
950
+ x_lower, lower_noise_kwargs = lower_update(x, s, t)
951
+ x_higher = higher_update(x, s, t, **lower_noise_kwargs)
952
+ delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
953
+ norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
954
+ E = norm_fn((x_higher - x_lower) / delta).max()
955
+ if torch.all(E <= 1.):
956
+ x = x_higher
957
+ s = t
958
+ x_prev = x_lower
959
+ lambda_s = ns.marginal_lambda(s)
960
+ h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
961
+ nfe += order
962
+ print('adaptive solver nfe', nfe)
963
+ return x
964
+
965
+ def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
966
+ method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
967
+ atol=0.0078, rtol=0.05,
968
+ ):
969
+ """
970
+ Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
971
+
972
+ =====================================================
973
+
974
+ We support the following algorithms for both noise prediction model and data prediction model:
975
+ - 'singlestep':
976
+ Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
977
+ We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
978
+ The total number of function evaluations (NFE) == `steps`.
979
+ Given a fixed NFE == `steps`, the sampling procedure is:
980
+ - If `order` == 1:
981
+ - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
982
+ - If `order` == 2:
983
+ - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
984
+ - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
985
+ - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
986
+ - If `order` == 3:
987
+ - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
988
+ - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
989
+ - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
990
+ - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
991
+ - 'multistep':
992
+ Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
993
+ We initialize the first `order` values by lower order multistep solvers.
994
+ Given a fixed NFE == `steps`, the sampling procedure is:
995
+ Denote K = steps.
996
+ - If `order` == 1:
997
+ - We use K steps of DPM-Solver-1 (i.e. DDIM).
998
+ - If `order` == 2:
999
+ - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
1000
+ - If `order` == 3:
1001
+ - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
1002
+ - 'singlestep_fixed':
1003
+ Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
1004
+ We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
1005
+ - 'adaptive':
1006
+ Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
1007
+ We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
1008
+ You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
1009
+ (NFE) and the sample quality.
1010
+ - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
1011
+ - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
1012
+
1013
+ =====================================================
1014
+
1015
+ Some advices for choosing the algorithm:
1016
+ - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
1017
+ Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
1018
+ e.g.
1019
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
1020
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
1021
+ skip_type='time_uniform', method='singlestep')
1022
+ - For **guided sampling with large guidance scale** by DPMs:
1023
+ Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
1024
+ e.g.
1025
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
1026
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
1027
+ skip_type='time_uniform', method='multistep')
1028
+
1029
+ We support three types of `skip_type`:
1030
+ - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
1031
+ - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
1032
+ - 'time_quadratic': quadratic time for the time steps.
1033
+
1034
+ =====================================================
1035
+ Args:
1036
+ x: A pytorch tensor. The initial value at time `t_start`
1037
+ e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
1038
+ steps: A `int`. The total number of function evaluations (NFE).
1039
+ t_start: A `float`. The starting time of the sampling.
1040
+ If `T` is None, we use self.noise_schedule.T (default is 1.0).
1041
+ t_end: A `float`. The ending time of the sampling.
1042
+ If `t_end` is None, we use 1. / self.noise_schedule.total_N.
1043
+ e.g. if total_N == 1000, we have `t_end` == 1e-3.
1044
+ For discrete-time DPMs:
1045
+ - We recommend `t_end` == 1. / self.noise_schedule.total_N.
1046
+ For continuous-time DPMs:
1047
+ - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
1048
+ order: A `int`. The order of DPM-Solver.
1049
+ skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
1050
+ method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
1051
+ denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
1052
+ Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
1053
+
1054
+ This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
1055
+ score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
1056
+ for diffusion models sampling by diffusion SDEs for low-resolutional images
1057
+ (such as CIFAR-10). However, we observed that such trick does not matter for
1058
+ high-resolutional images. As it needs an additional NFE, we do not recommend
1059
+ it for high-resolutional images.
1060
+ lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
1061
+ Only valid for `method=multistep` and `steps < 15`. We empirically find that
1062
+ this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
1063
+ (especially for steps <= 10). So we recommend to set it to be `True`.
1064
+ solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
1065
+ atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
1066
+ rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
1067
+ Returns:
1068
+ x_end: A pytorch tensor. The approximated solution at time `t_end`.
1069
+
1070
+ """
1071
+ t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
1072
+ t_T = self.noise_schedule.T if t_start is None else t_start
1073
+ device = x.device
1074
+ if method == 'adaptive':
1075
+ with torch.no_grad():
1076
+ x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol, solver_type=solver_type)
1077
+ elif method == 'multistep':
1078
+ assert steps >= order
1079
+ timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
1080
+ assert timesteps.shape[0] - 1 == steps
1081
+ with torch.no_grad():
1082
+ vec_t = timesteps[0].expand((x.shape[0]))
1083
+ model_prev_list = [self.model_fn(x, vec_t)]
1084
+ t_prev_list = [vec_t]
1085
+ # Init the first `order` values by lower order multistep DPM-Solver.
1086
+ for init_order in range(1, order):
1087
+ vec_t = timesteps[init_order].expand(x.shape[0])
1088
+ x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order, solver_type=solver_type)
1089
+ model_prev_list.append(self.model_fn(x, vec_t))
1090
+ t_prev_list.append(vec_t)
1091
+ # Compute the remaining values by `order`-th order multistep DPM-Solver.
1092
+ for step in range(order, steps + 1):
1093
+ vec_t = timesteps[step].expand(x.shape[0])
1094
+ if lower_order_final and steps < 15:
1095
+ step_order = min(order, steps + 1 - step)
1096
+ else:
1097
+ step_order = order
1098
+ x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order, solver_type=solver_type)
1099
+ for i in range(order - 1):
1100
+ t_prev_list[i] = t_prev_list[i + 1]
1101
+ model_prev_list[i] = model_prev_list[i + 1]
1102
+ t_prev_list[-1] = vec_t
1103
+ # We do not need to evaluate the final model value.
1104
+ if step < steps:
1105
+ model_prev_list[-1] = self.model_fn(x, vec_t)
1106
+ elif method in ['singlestep', 'singlestep_fixed']:
1107
+ if method == 'singlestep':
1108
+ timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order, skip_type=skip_type, t_T=t_T, t_0=t_0, device=device)
1109
+ elif method == 'singlestep_fixed':
1110
+ K = steps // order
1111
+ orders = [order,] * K
1112
+ timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
1113
+ for i, order in enumerate(orders):
1114
+ t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
1115
+ timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(), N=order, device=device)
1116
+ lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
1117
+ vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0])
1118
+ h = lambda_inner[-1] - lambda_inner[0]
1119
+ r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
1120
+ r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
1121
+ x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
1122
+ if denoise_to_zero:
1123
+ x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
1124
+ return x
1125
+
1126
+
1127
+
1128
+ #############################################################
1129
+ # other utility functions
1130
+ #############################################################
1131
+
1132
+ def interpolate_fn(x, xp, yp):
1133
+ """
1134
+ A piecewise linear function y = f(x), using xp and yp as keypoints.
1135
+ We implement f(x) in a differentiable way (i.e. applicable for autograd).
1136
+ The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
1137
+
1138
+ Args:
1139
+ x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
1140
+ xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
1141
+ yp: PyTorch tensor with shape [C, K].
1142
+ Returns:
1143
+ The function values f(x), with shape [N, C].
1144
+ """
1145
+ N, K = x.shape[0], xp.shape[1]
1146
+ all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
1147
+ sorted_all_x, x_indices = torch.sort(all_x, dim=2)
1148
+ x_idx = torch.argmin(x_indices, dim=2)
1149
+ cand_start_idx = x_idx - 1
1150
+ start_idx = torch.where(
1151
+ torch.eq(x_idx, 0),
1152
+ torch.tensor(1, device=x.device),
1153
+ torch.where(
1154
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
1155
+ ),
1156
+ )
1157
+ end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
1158
+ start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
1159
+ end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
1160
+ start_idx2 = torch.where(
1161
+ torch.eq(x_idx, 0),
1162
+ torch.tensor(0, device=x.device),
1163
+ torch.where(
1164
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
1165
+ ),
1166
+ )
1167
+ y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
1168
+ start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
1169
+ end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
1170
+ cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
1171
+ return cand
1172
+
1173
+
1174
+ def expand_dims(v, dims):
1175
+ """
1176
+ Expand the tensor `v` to the dim `dims`.
1177
+
1178
+ Args:
1179
+ `v`: a PyTorch tensor with shape [N].
1180
+ `dim`: a `int`.
1181
+ Returns:
1182
+ a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
1183
+ """
1184
+ return v[(...,) + (None,)*(dims - 1)]
stable_diffusion/ldm/models/diffusion/dpm_solver/sampler.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+
3
+ import torch
4
+
5
+ from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
6
+
7
+
8
+ class DPMSolverSampler(object):
9
+ def __init__(self, model, **kwargs):
10
+ super().__init__()
11
+ self.model = model
12
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
13
+ self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
14
+
15
+ def register_buffer(self, name, attr):
16
+ if type(attr) == torch.Tensor:
17
+ if attr.device != torch.device("cuda"):
18
+ attr = attr.to(torch.device("cuda"))
19
+ setattr(self, name, attr)
20
+
21
+ @torch.no_grad()
22
+ def sample(self,
23
+ S,
24
+ batch_size,
25
+ shape,
26
+ conditioning=None,
27
+ callback=None,
28
+ normals_sequence=None,
29
+ img_callback=None,
30
+ quantize_x0=False,
31
+ eta=0.,
32
+ mask=None,
33
+ x0=None,
34
+ temperature=1.,
35
+ noise_dropout=0.,
36
+ score_corrector=None,
37
+ corrector_kwargs=None,
38
+ verbose=True,
39
+ x_T=None,
40
+ log_every_t=100,
41
+ unconditional_guidance_scale=1.,
42
+ unconditional_conditioning=None,
43
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
44
+ **kwargs
45
+ ):
46
+ if conditioning is not None:
47
+ if isinstance(conditioning, dict):
48
+ cbs = conditioning[list(conditioning.keys())[0]].shape[0]
49
+ if cbs != batch_size:
50
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
51
+ else:
52
+ if conditioning.shape[0] != batch_size:
53
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
54
+
55
+ # sampling
56
+ C, H, W = shape
57
+ size = (batch_size, C, H, W)
58
+
59
+ # print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')
60
+
61
+ device = self.model.betas.device
62
+ if x_T is None:
63
+ img = torch.randn(size, device=device)
64
+ else:
65
+ img = x_T
66
+
67
+ ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
68
+
69
+ model_fn = model_wrapper(
70
+ lambda x, t, c: self.model.apply_model(x, t, c),
71
+ ns,
72
+ model_type="noise",
73
+ guidance_type="classifier-free",
74
+ condition=conditioning,
75
+ unconditional_condition=unconditional_conditioning,
76
+ guidance_scale=unconditional_guidance_scale,
77
+ )
78
+
79
+ dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
80
+ x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True)
81
+
82
+ return x.to(device), None
stable_diffusion/ldm/models/diffusion/plms.py ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+
3
+ import torch
4
+ import numpy as np
5
+ from tqdm import tqdm
6
+ from functools import partial
7
+
8
+ from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
9
+ from ldm.models.diffusion.sampling_util import norm_thresholding
10
+
11
+
12
+ class PLMSSampler(object):
13
+ def __init__(self, model, schedule="linear", **kwargs):
14
+ super().__init__()
15
+ self.model = model
16
+ self.ddpm_num_timesteps = model.num_timesteps
17
+ self.schedule = schedule
18
+
19
+ def register_buffer(self, name, attr):
20
+ if type(attr) == torch.Tensor:
21
+ if attr.device != torch.device("cuda"):
22
+ attr = attr.to(torch.device("cuda"))
23
+ setattr(self, name, attr)
24
+
25
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
26
+ if ddim_eta != 0:
27
+ raise ValueError('ddim_eta must be 0 for PLMS')
28
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
29
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
30
+ alphas_cumprod = self.model.alphas_cumprod
31
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
32
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
33
+
34
+ self.register_buffer('betas', to_torch(self.model.betas))
35
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
36
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
37
+
38
+ # calculations for diffusion q(x_t | x_{t-1}) and others
39
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
40
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
41
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
42
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
43
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
44
+
45
+ # ddim sampling parameters
46
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
47
+ ddim_timesteps=self.ddim_timesteps,
48
+ eta=ddim_eta,verbose=verbose)
49
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
50
+ self.register_buffer('ddim_alphas', ddim_alphas)
51
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
52
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
53
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
54
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
55
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
56
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
57
+
58
+ @torch.no_grad()
59
+ def sample(self,
60
+ S,
61
+ batch_size,
62
+ shape,
63
+ conditioning=None,
64
+ callback=None,
65
+ normals_sequence=None,
66
+ img_callback=None,
67
+ quantize_x0=False,
68
+ eta=0.,
69
+ mask=None,
70
+ x0=None,
71
+ temperature=1.,
72
+ noise_dropout=0.,
73
+ score_corrector=None,
74
+ corrector_kwargs=None,
75
+ verbose=True,
76
+ x_T=None,
77
+ log_every_t=100,
78
+ unconditional_guidance_scale=1.,
79
+ unconditional_conditioning=None,
80
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
81
+ dynamic_threshold=None,
82
+ **kwargs
83
+ ):
84
+ if conditioning is not None:
85
+ if isinstance(conditioning, dict):
86
+ ctmp = conditioning[list(conditioning.keys())[0]]
87
+ while isinstance(ctmp, list): ctmp = ctmp[0]
88
+ cbs = ctmp.shape[0]
89
+ if cbs != batch_size:
90
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
91
+ else:
92
+ if conditioning.shape[0] != batch_size:
93
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
94
+
95
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
96
+ # sampling
97
+ C, H, W = shape
98
+ size = (batch_size, C, H, W)
99
+ print(f'Data shape for PLMS sampling is {size}')
100
+
101
+ samples, intermediates = self.plms_sampling(conditioning, size,
102
+ callback=callback,
103
+ img_callback=img_callback,
104
+ quantize_denoised=quantize_x0,
105
+ mask=mask, x0=x0,
106
+ ddim_use_original_steps=False,
107
+ noise_dropout=noise_dropout,
108
+ temperature=temperature,
109
+ score_corrector=score_corrector,
110
+ corrector_kwargs=corrector_kwargs,
111
+ x_T=x_T,
112
+ log_every_t=log_every_t,
113
+ unconditional_guidance_scale=unconditional_guidance_scale,
114
+ unconditional_conditioning=unconditional_conditioning,
115
+ dynamic_threshold=dynamic_threshold,
116
+ )
117
+ return samples, intermediates
118
+
119
+ @torch.no_grad()
120
+ def plms_sampling(self, cond, shape,
121
+ x_T=None, ddim_use_original_steps=False,
122
+ callback=None, timesteps=None, quantize_denoised=False,
123
+ mask=None, x0=None, img_callback=None, log_every_t=100,
124
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
125
+ unconditional_guidance_scale=1., unconditional_conditioning=None,
126
+ dynamic_threshold=None):
127
+ device = self.model.betas.device
128
+ b = shape[0]
129
+ if x_T is None:
130
+ img = torch.randn(shape, device=device)
131
+ else:
132
+ img = x_T
133
+
134
+ if timesteps is None:
135
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
136
+ elif timesteps is not None and not ddim_use_original_steps:
137
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
138
+ timesteps = self.ddim_timesteps[:subset_end]
139
+
140
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
141
+ time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
142
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
143
+ print(f"Running PLMS Sampling with {total_steps} timesteps")
144
+
145
+ iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
146
+ old_eps = []
147
+
148
+ for i, step in enumerate(iterator):
149
+ index = total_steps - i - 1
150
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
151
+ ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
152
+
153
+ if mask is not None:
154
+ assert x0 is not None
155
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
156
+ img = img_orig * mask + (1. - mask) * img
157
+
158
+ outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
159
+ quantize_denoised=quantize_denoised, temperature=temperature,
160
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
161
+ corrector_kwargs=corrector_kwargs,
162
+ unconditional_guidance_scale=unconditional_guidance_scale,
163
+ unconditional_conditioning=unconditional_conditioning,
164
+ old_eps=old_eps, t_next=ts_next,
165
+ dynamic_threshold=dynamic_threshold)
166
+ img, pred_x0, e_t = outs
167
+ old_eps.append(e_t)
168
+ if len(old_eps) >= 4:
169
+ old_eps.pop(0)
170
+ if callback: callback(i)
171
+ if img_callback: img_callback(pred_x0, i)
172
+
173
+ if index % log_every_t == 0 or index == total_steps - 1:
174
+ intermediates['x_inter'].append(img)
175
+ intermediates['pred_x0'].append(pred_x0)
176
+
177
+ return img, intermediates
178
+
179
+ @torch.no_grad()
180
+ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
181
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
182
+ unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
183
+ dynamic_threshold=None):
184
+ b, *_, device = *x.shape, x.device
185
+
186
+ def get_model_output(x, t):
187
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
188
+ e_t = self.model.apply_model(x, t, c)
189
+ else:
190
+ x_in = torch.cat([x] * 2)
191
+ t_in = torch.cat([t] * 2)
192
+ if isinstance(c, dict):
193
+ assert isinstance(unconditional_conditioning, dict)
194
+ c_in = dict()
195
+ for k in c:
196
+ if isinstance(c[k], list):
197
+ c_in[k] = [torch.cat([
198
+ unconditional_conditioning[k][i],
199
+ c[k][i]]) for i in range(len(c[k]))]
200
+ else:
201
+ c_in[k] = torch.cat([
202
+ unconditional_conditioning[k],
203
+ c[k]])
204
+ else:
205
+ c_in = torch.cat([unconditional_conditioning, c])
206
+ e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
207
+ e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
208
+
209
+ if score_corrector is not None:
210
+ assert self.model.parameterization == "eps"
211
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
212
+
213
+ return e_t
214
+
215
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
216
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
217
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
218
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
219
+
220
+ def get_x_prev_and_pred_x0(e_t, index):
221
+ # select parameters corresponding to the currently considered timestep
222
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
223
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
224
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
225
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
226
+
227
+ # current prediction for x_0
228
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
229
+ if quantize_denoised:
230
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
231
+ if dynamic_threshold is not None:
232
+ pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
233
+ # direction pointing to x_t
234
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
235
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
236
+ if noise_dropout > 0.:
237
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
238
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
239
+ return x_prev, pred_x0
240
+
241
+ e_t = get_model_output(x, t)
242
+ if len(old_eps) == 0:
243
+ # Pseudo Improved Euler (2nd order)
244
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
245
+ e_t_next = get_model_output(x_prev, t_next)
246
+ e_t_prime = (e_t + e_t_next) / 2
247
+ elif len(old_eps) == 1:
248
+ # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
249
+ e_t_prime = (3 * e_t - old_eps[-1]) / 2
250
+ elif len(old_eps) == 2:
251
+ # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
252
+ e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
253
+ elif len(old_eps) >= 3:
254
+ # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
255
+ e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
256
+
257
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
258
+
259
+ return x_prev, pred_x0, e_t
stable_diffusion/ldm/models/diffusion/sampling_util.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+
4
+
5
+ def append_dims(x, target_dims):
6
+ """Appends dimensions to the end of a tensor until it has target_dims dimensions.
7
+ From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
8
+ dims_to_append = target_dims - x.ndim
9
+ if dims_to_append < 0:
10
+ raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
11
+ return x[(...,) + (None,) * dims_to_append]
12
+
13
+
14
+ def renorm_thresholding(x0, value):
15
+ # renorm
16
+ pred_max = x0.max()
17
+ pred_min = x0.min()
18
+ pred_x0 = (x0 - pred_min) / (pred_max - pred_min) # 0 ... 1
19
+ pred_x0 = 2 * pred_x0 - 1. # -1 ... 1
20
+
21
+ s = torch.quantile(
22
+ rearrange(pred_x0, 'b ... -> b (...)').abs(),
23
+ value,
24
+ dim=-1
25
+ )
26
+ s.clamp_(min=1.0)
27
+ s = s.view(-1, *((1,) * (pred_x0.ndim - 1)))
28
+
29
+ # clip by threshold
30
+ # pred_x0 = pred_x0.clamp(-s, s) / s # needs newer pytorch # TODO bring back to pure-gpu with min/max
31
+
32
+ # temporary hack: numpy on cpu
33
+ pred_x0 = np.clip(pred_x0.cpu().numpy(), -s.cpu().numpy(), s.cpu().numpy()) / s.cpu().numpy()
34
+ pred_x0 = torch.tensor(pred_x0).to(self.model.device)
35
+
36
+ # re.renorm
37
+ pred_x0 = (pred_x0 + 1.) / 2. # 0 ... 1
38
+ pred_x0 = (pred_max - pred_min) * pred_x0 + pred_min # orig range
39
+ return pred_x0
40
+
41
+
42
+ def norm_thresholding(x0, value):
43
+ s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
44
+ return x0 * (value / s)
45
+
46
+
47
+ def spatial_norm_thresholding(x0, value):
48
+ # b c h w
49
+ s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
50
+ return x0 * (value / s)
stable_diffusion/ldm/modules/attention.py ADDED
@@ -0,0 +1,269 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from inspect import isfunction
2
+ import math
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from torch import nn, einsum
6
+ from einops import rearrange, repeat
7
+
8
+ from ldm.modules.diffusionmodules.util import checkpoint
9
+
10
+
11
+ def exists(val):
12
+ return val is not None
13
+
14
+
15
+ def uniq(arr):
16
+ return{el: True for el in arr}.keys()
17
+
18
+
19
+ def default(val, d):
20
+ if exists(val):
21
+ return val
22
+ return d() if isfunction(d) else d
23
+
24
+
25
+ def max_neg_value(t):
26
+ return -torch.finfo(t.dtype).max
27
+
28
+
29
+ def init_(tensor):
30
+ dim = tensor.shape[-1]
31
+ std = 1 / math.sqrt(dim)
32
+ tensor.uniform_(-std, std)
33
+ return tensor
34
+
35
+
36
+ # feedforward
37
+ class GEGLU(nn.Module):
38
+ def __init__(self, dim_in, dim_out):
39
+ super().__init__()
40
+ self.proj = nn.Linear(dim_in, dim_out * 2)
41
+
42
+ def forward(self, x):
43
+ x, gate = self.proj(x).chunk(2, dim=-1)
44
+ return x * F.gelu(gate)
45
+
46
+
47
+ class FeedForward(nn.Module):
48
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
49
+ super().__init__()
50
+ inner_dim = int(dim * mult)
51
+ dim_out = default(dim_out, dim)
52
+ project_in = nn.Sequential(
53
+ nn.Linear(dim, inner_dim),
54
+ nn.GELU()
55
+ ) if not glu else GEGLU(dim, inner_dim)
56
+
57
+ self.net = nn.Sequential(
58
+ project_in,
59
+ nn.Dropout(dropout),
60
+ nn.Linear(inner_dim, dim_out)
61
+ )
62
+
63
+ def forward(self, x):
64
+ return self.net(x)
65
+
66
+
67
+ def zero_module(module):
68
+ """
69
+ Zero out the parameters of a module and return it.
70
+ """
71
+ for p in module.parameters():
72
+ p.detach().zero_()
73
+ return module
74
+
75
+
76
+ def Normalize(in_channels):
77
+ return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
78
+
79
+
80
+ class LinearAttention(nn.Module):
81
+ def __init__(self, dim, heads=4, dim_head=32):
82
+ super().__init__()
83
+ self.heads = heads
84
+ hidden_dim = dim_head * heads
85
+ self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
86
+ self.to_out = nn.Conv2d(hidden_dim, dim, 1)
87
+
88
+ def forward(self, x):
89
+ b, c, h, w = x.shape
90
+ qkv = self.to_qkv(x)
91
+ q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
92
+ k = k.softmax(dim=-1)
93
+ context = torch.einsum('bhdn,bhen->bhde', k, v)
94
+ out = torch.einsum('bhde,bhdn->bhen', context, q)
95
+ out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
96
+ return self.to_out(out)
97
+
98
+
99
+ class SpatialSelfAttention(nn.Module):
100
+ def __init__(self, in_channels):
101
+ super().__init__()
102
+ self.in_channels = in_channels
103
+
104
+ self.norm = Normalize(in_channels)
105
+ self.q = torch.nn.Conv2d(in_channels,
106
+ in_channels,
107
+ kernel_size=1,
108
+ stride=1,
109
+ padding=0)
110
+ self.k = torch.nn.Conv2d(in_channels,
111
+ in_channels,
112
+ kernel_size=1,
113
+ stride=1,
114
+ padding=0)
115
+ self.v = torch.nn.Conv2d(in_channels,
116
+ in_channels,
117
+ kernel_size=1,
118
+ stride=1,
119
+ padding=0)
120
+ self.proj_out = torch.nn.Conv2d(in_channels,
121
+ in_channels,
122
+ kernel_size=1,
123
+ stride=1,
124
+ padding=0)
125
+
126
+ def forward(self, x):
127
+ h_ = x
128
+ h_ = self.norm(h_)
129
+ q = self.q(h_)
130
+ k = self.k(h_)
131
+ v = self.v(h_)
132
+
133
+ # compute attention
134
+ b,c,h,w = q.shape
135
+ q = rearrange(q, 'b c h w -> b (h w) c')
136
+ k = rearrange(k, 'b c h w -> b c (h w)')
137
+ w_ = torch.einsum('bij,bjk->bik', q, k)
138
+
139
+ w_ = w_ * (int(c)**(-0.5))
140
+ w_ = torch.nn.functional.softmax(w_, dim=2)
141
+
142
+ # attend to values
143
+ v = rearrange(v, 'b c h w -> b c (h w)')
144
+ w_ = rearrange(w_, 'b i j -> b j i')
145
+ h_ = torch.einsum('bij,bjk->bik', v, w_)
146
+ h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
147
+ h_ = self.proj_out(h_)
148
+
149
+ return x+h_
150
+
151
+
152
+ class CrossAttention(nn.Module):
153
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
154
+ super().__init__()
155
+ inner_dim = dim_head * heads
156
+ context_dim = default(context_dim, query_dim)
157
+
158
+ self.scale = dim_head ** -0.5
159
+ self.heads = heads
160
+
161
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
162
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
163
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
164
+
165
+ # self.attn_soft = nn.Softmax(dim=-1)
166
+ # self.attn_soft = nn.Identity()
167
+ self.to_out = nn.Sequential(
168
+ nn.Linear(inner_dim, query_dim),
169
+ nn.Dropout(dropout)
170
+ )
171
+
172
+ def forward(self, x, context=None, mask=None):
173
+ h = self.heads
174
+
175
+ q = self.to_q(x)
176
+ context = default(context, x)
177
+ k = self.to_k(context)
178
+ v = self.to_v(context)
179
+
180
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
181
+
182
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
183
+
184
+ if exists(mask):
185
+ mask = rearrange(mask, 'b ... -> b (...)')
186
+ max_neg_value = -torch.finfo(sim.dtype).max
187
+ mask = repeat(mask, 'b j -> (b h) () j', h=h)
188
+ sim.masked_fill_(~mask, max_neg_value)
189
+
190
+ # attention, what we cannot get enough of
191
+ # attn = self.attn_soft(sim)
192
+ attn = sim.softmax(dim=-1)
193
+ # attn = self.attn_soft(attn)
194
+ out = einsum('b i j, b j d -> b i d', attn, v)
195
+ out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
196
+ return self.to_out(out)
197
+
198
+
199
+ class BasicTransformerBlock(nn.Module):
200
+ def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
201
+ disable_self_attn=False):
202
+ super().__init__()
203
+ self.disable_self_attn = disable_self_attn
204
+ self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
205
+ context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
206
+ self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
207
+ self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
208
+ heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
209
+ self.norm1 = nn.LayerNorm(dim)
210
+ self.norm2 = nn.LayerNorm(dim)
211
+ self.norm3 = nn.LayerNorm(dim)
212
+ self.checkpoint = checkpoint
213
+
214
+ def forward(self, x, context=None):
215
+ return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
216
+
217
+ def _forward(self, x, context=None):
218
+ x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
219
+ x = self.attn2(self.norm2(x), context=context) + x
220
+ x = self.ff(self.norm3(x)) + x
221
+ return x
222
+
223
+
224
+ class SpatialTransformer(nn.Module):
225
+ """
226
+ Transformer block for image-like data.
227
+ First, project the input (aka embedding)
228
+ and reshape to b, t, d.
229
+ Then apply standard transformer action.
230
+ Finally, reshape to image
231
+ """
232
+ def __init__(self, in_channels, n_heads, d_head,
233
+ depth=1, dropout=0., context_dim=None,
234
+ disable_self_attn=False):
235
+ super().__init__()
236
+ self.in_channels = in_channels
237
+ inner_dim = n_heads * d_head
238
+ self.norm = Normalize(in_channels)
239
+
240
+ self.proj_in = nn.Conv2d(in_channels,
241
+ inner_dim,
242
+ kernel_size=1,
243
+ stride=1,
244
+ padding=0)
245
+
246
+ self.transformer_blocks = nn.ModuleList(
247
+ [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim,
248
+ disable_self_attn=disable_self_attn)
249
+ for d in range(depth)]
250
+ )
251
+
252
+ self.proj_out = zero_module(nn.Conv2d(inner_dim,
253
+ in_channels,
254
+ kernel_size=1,
255
+ stride=1,
256
+ padding=0))
257
+
258
+ def forward(self, x, context=None):
259
+ # note: if no context is given, cross-attention defaults to self-attention
260
+ b, c, h, w = x.shape
261
+ x_in = x
262
+ x = self.norm(x)
263
+ x = self.proj_in(x)
264
+ x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
265
+ for block in self.transformer_blocks:
266
+ x = block(x, context=context)
267
+ x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
268
+ x = self.proj_out(x)
269
+ return x + x_in
stable_diffusion/ldm/modules/diffusionmodules/__init__.py ADDED
File without changes
stable_diffusion/ldm/modules/diffusionmodules/model.py ADDED
@@ -0,0 +1,835 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pytorch_diffusion + derived encoder decoder
2
+ import math
3
+ import torch
4
+ import torch.nn as nn
5
+ import numpy as np
6
+ from einops import rearrange
7
+
8
+ from ldm.util import instantiate_from_config
9
+ from ldm.modules.attention import LinearAttention
10
+
11
+
12
+ def get_timestep_embedding(timesteps, embedding_dim):
13
+ """
14
+ This matches the implementation in Denoising Diffusion Probabilistic Models:
15
+ From Fairseq.
16
+ Build sinusoidal embeddings.
17
+ This matches the implementation in tensor2tensor, but differs slightly
18
+ from the description in Section 3.5 of "Attention Is All You Need".
19
+ """
20
+ assert len(timesteps.shape) == 1
21
+
22
+ half_dim = embedding_dim // 2
23
+ emb = math.log(10000) / (half_dim - 1)
24
+ emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
25
+ emb = emb.to(device=timesteps.device)
26
+ emb = timesteps.float()[:, None] * emb[None, :]
27
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
28
+ if embedding_dim % 2 == 1: # zero pad
29
+ emb = torch.nn.functional.pad(emb, (0,1,0,0))
30
+ return emb
31
+
32
+
33
+ def nonlinearity(x):
34
+ # swish
35
+ return x*torch.sigmoid(x)
36
+
37
+
38
+ def Normalize(in_channels, num_groups=32):
39
+ return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
40
+
41
+
42
+ class Upsample(nn.Module):
43
+ def __init__(self, in_channels, with_conv):
44
+ super().__init__()
45
+ self.with_conv = with_conv
46
+ if self.with_conv:
47
+ self.conv = torch.nn.Conv2d(in_channels,
48
+ in_channels,
49
+ kernel_size=3,
50
+ stride=1,
51
+ padding=1)
52
+
53
+ def forward(self, x):
54
+ x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
55
+ if self.with_conv:
56
+ x = self.conv(x)
57
+ return x
58
+
59
+
60
+ class Downsample(nn.Module):
61
+ def __init__(self, in_channels, with_conv):
62
+ super().__init__()
63
+ self.with_conv = with_conv
64
+ if self.with_conv:
65
+ # no asymmetric padding in torch conv, must do it ourselves
66
+ self.conv = torch.nn.Conv2d(in_channels,
67
+ in_channels,
68
+ kernel_size=3,
69
+ stride=2,
70
+ padding=0)
71
+
72
+ def forward(self, x):
73
+ if self.with_conv:
74
+ pad = (0,1,0,1)
75
+ x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
76
+ x = self.conv(x)
77
+ else:
78
+ x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
79
+ return x
80
+
81
+
82
+ class ResnetBlock(nn.Module):
83
+ def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
84
+ dropout, temb_channels=512):
85
+ super().__init__()
86
+ self.in_channels = in_channels
87
+ out_channels = in_channels if out_channels is None else out_channels
88
+ self.out_channels = out_channels
89
+ self.use_conv_shortcut = conv_shortcut
90
+
91
+ self.norm1 = Normalize(in_channels)
92
+ self.conv1 = torch.nn.Conv2d(in_channels,
93
+ out_channels,
94
+ kernel_size=3,
95
+ stride=1,
96
+ padding=1)
97
+ if temb_channels > 0:
98
+ self.temb_proj = torch.nn.Linear(temb_channels,
99
+ out_channels)
100
+ self.norm2 = Normalize(out_channels)
101
+ self.dropout = torch.nn.Dropout(dropout)
102
+ self.conv2 = torch.nn.Conv2d(out_channels,
103
+ out_channels,
104
+ kernel_size=3,
105
+ stride=1,
106
+ padding=1)
107
+ if self.in_channels != self.out_channels:
108
+ if self.use_conv_shortcut:
109
+ self.conv_shortcut = torch.nn.Conv2d(in_channels,
110
+ out_channels,
111
+ kernel_size=3,
112
+ stride=1,
113
+ padding=1)
114
+ else:
115
+ self.nin_shortcut = torch.nn.Conv2d(in_channels,
116
+ out_channels,
117
+ kernel_size=1,
118
+ stride=1,
119
+ padding=0)
120
+
121
+ def forward(self, x, temb):
122
+ h = x
123
+ h = self.norm1(h)
124
+ h = nonlinearity(h)
125
+ h = self.conv1(h)
126
+
127
+ if temb is not None:
128
+ h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
129
+
130
+ h = self.norm2(h)
131
+ h = nonlinearity(h)
132
+ h = self.dropout(h)
133
+ h = self.conv2(h)
134
+
135
+ if self.in_channels != self.out_channels:
136
+ if self.use_conv_shortcut:
137
+ x = self.conv_shortcut(x)
138
+ else:
139
+ x = self.nin_shortcut(x)
140
+
141
+ return x+h
142
+
143
+
144
+ class LinAttnBlock(LinearAttention):
145
+ """to match AttnBlock usage"""
146
+ def __init__(self, in_channels):
147
+ super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
148
+
149
+
150
+ class AttnBlock(nn.Module):
151
+ def __init__(self, in_channels):
152
+ super().__init__()
153
+ self.in_channels = in_channels
154
+
155
+ self.norm = Normalize(in_channels)
156
+ self.q = torch.nn.Conv2d(in_channels,
157
+ in_channels,
158
+ kernel_size=1,
159
+ stride=1,
160
+ padding=0)
161
+ self.k = torch.nn.Conv2d(in_channels,
162
+ in_channels,
163
+ kernel_size=1,
164
+ stride=1,
165
+ padding=0)
166
+ self.v = torch.nn.Conv2d(in_channels,
167
+ in_channels,
168
+ kernel_size=1,
169
+ stride=1,
170
+ padding=0)
171
+ self.proj_out = torch.nn.Conv2d(in_channels,
172
+ in_channels,
173
+ kernel_size=1,
174
+ stride=1,
175
+ padding=0)
176
+
177
+
178
+ def forward(self, x):
179
+ h_ = x
180
+ h_ = self.norm(h_)
181
+ q = self.q(h_)
182
+ k = self.k(h_)
183
+ v = self.v(h_)
184
+
185
+ # compute attention
186
+ b,c,h,w = q.shape
187
+ q = q.reshape(b,c,h*w)
188
+ q = q.permute(0,2,1) # b,hw,c
189
+ k = k.reshape(b,c,h*w) # b,c,hw
190
+ w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
191
+ w_ = w_ * (int(c)**(-0.5))
192
+ w_ = torch.nn.functional.softmax(w_, dim=2)
193
+
194
+ # attend to values
195
+ v = v.reshape(b,c,h*w)
196
+ w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
197
+ h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
198
+ h_ = h_.reshape(b,c,h,w)
199
+
200
+ h_ = self.proj_out(h_)
201
+
202
+ return x+h_
203
+
204
+
205
+ def make_attn(in_channels, attn_type="vanilla"):
206
+ assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
207
+ print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
208
+ if attn_type == "vanilla":
209
+ return AttnBlock(in_channels)
210
+ elif attn_type == "none":
211
+ return nn.Identity(in_channels)
212
+ else:
213
+ return LinAttnBlock(in_channels)
214
+
215
+
216
+ class Model(nn.Module):
217
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
218
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
219
+ resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
220
+ super().__init__()
221
+ if use_linear_attn: attn_type = "linear"
222
+ self.ch = ch
223
+ self.temb_ch = self.ch*4
224
+ self.num_resolutions = len(ch_mult)
225
+ self.num_res_blocks = num_res_blocks
226
+ self.resolution = resolution
227
+ self.in_channels = in_channels
228
+
229
+ self.use_timestep = use_timestep
230
+ if self.use_timestep:
231
+ # timestep embedding
232
+ self.temb = nn.Module()
233
+ self.temb.dense = nn.ModuleList([
234
+ torch.nn.Linear(self.ch,
235
+ self.temb_ch),
236
+ torch.nn.Linear(self.temb_ch,
237
+ self.temb_ch),
238
+ ])
239
+
240
+ # downsampling
241
+ self.conv_in = torch.nn.Conv2d(in_channels,
242
+ self.ch,
243
+ kernel_size=3,
244
+ stride=1,
245
+ padding=1)
246
+
247
+ curr_res = resolution
248
+ in_ch_mult = (1,)+tuple(ch_mult)
249
+ self.down = nn.ModuleList()
250
+ for i_level in range(self.num_resolutions):
251
+ block = nn.ModuleList()
252
+ attn = nn.ModuleList()
253
+ block_in = ch*in_ch_mult[i_level]
254
+ block_out = ch*ch_mult[i_level]
255
+ for i_block in range(self.num_res_blocks):
256
+ block.append(ResnetBlock(in_channels=block_in,
257
+ out_channels=block_out,
258
+ temb_channels=self.temb_ch,
259
+ dropout=dropout))
260
+ block_in = block_out
261
+ if curr_res in attn_resolutions:
262
+ attn.append(make_attn(block_in, attn_type=attn_type))
263
+ down = nn.Module()
264
+ down.block = block
265
+ down.attn = attn
266
+ if i_level != self.num_resolutions-1:
267
+ down.downsample = Downsample(block_in, resamp_with_conv)
268
+ curr_res = curr_res // 2
269
+ self.down.append(down)
270
+
271
+ # middle
272
+ self.mid = nn.Module()
273
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
274
+ out_channels=block_in,
275
+ temb_channels=self.temb_ch,
276
+ dropout=dropout)
277
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
278
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
279
+ out_channels=block_in,
280
+ temb_channels=self.temb_ch,
281
+ dropout=dropout)
282
+
283
+ # upsampling
284
+ self.up = nn.ModuleList()
285
+ for i_level in reversed(range(self.num_resolutions)):
286
+ block = nn.ModuleList()
287
+ attn = nn.ModuleList()
288
+ block_out = ch*ch_mult[i_level]
289
+ skip_in = ch*ch_mult[i_level]
290
+ for i_block in range(self.num_res_blocks+1):
291
+ if i_block == self.num_res_blocks:
292
+ skip_in = ch*in_ch_mult[i_level]
293
+ block.append(ResnetBlock(in_channels=block_in+skip_in,
294
+ out_channels=block_out,
295
+ temb_channels=self.temb_ch,
296
+ dropout=dropout))
297
+ block_in = block_out
298
+ if curr_res in attn_resolutions:
299
+ attn.append(make_attn(block_in, attn_type=attn_type))
300
+ up = nn.Module()
301
+ up.block = block
302
+ up.attn = attn
303
+ if i_level != 0:
304
+ up.upsample = Upsample(block_in, resamp_with_conv)
305
+ curr_res = curr_res * 2
306
+ self.up.insert(0, up) # prepend to get consistent order
307
+
308
+ # end
309
+ self.norm_out = Normalize(block_in)
310
+ self.conv_out = torch.nn.Conv2d(block_in,
311
+ out_ch,
312
+ kernel_size=3,
313
+ stride=1,
314
+ padding=1)
315
+
316
+ def forward(self, x, t=None, context=None):
317
+ #assert x.shape[2] == x.shape[3] == self.resolution
318
+ if context is not None:
319
+ # assume aligned context, cat along channel axis
320
+ x = torch.cat((x, context), dim=1)
321
+ if self.use_timestep:
322
+ # timestep embedding
323
+ assert t is not None
324
+ temb = get_timestep_embedding(t, self.ch)
325
+ temb = self.temb.dense[0](temb)
326
+ temb = nonlinearity(temb)
327
+ temb = self.temb.dense[1](temb)
328
+ else:
329
+ temb = None
330
+
331
+ # downsampling
332
+ hs = [self.conv_in(x)]
333
+ for i_level in range(self.num_resolutions):
334
+ for i_block in range(self.num_res_blocks):
335
+ h = self.down[i_level].block[i_block](hs[-1], temb)
336
+ if len(self.down[i_level].attn) > 0:
337
+ h = self.down[i_level].attn[i_block](h)
338
+ hs.append(h)
339
+ if i_level != self.num_resolutions-1:
340
+ hs.append(self.down[i_level].downsample(hs[-1]))
341
+
342
+ # middle
343
+ h = hs[-1]
344
+ h = self.mid.block_1(h, temb)
345
+ h = self.mid.attn_1(h)
346
+ h = self.mid.block_2(h, temb)
347
+
348
+ # upsampling
349
+ for i_level in reversed(range(self.num_resolutions)):
350
+ for i_block in range(self.num_res_blocks+1):
351
+ h = self.up[i_level].block[i_block](
352
+ torch.cat([h, hs.pop()], dim=1), temb)
353
+ if len(self.up[i_level].attn) > 0:
354
+ h = self.up[i_level].attn[i_block](h)
355
+ if i_level != 0:
356
+ h = self.up[i_level].upsample(h)
357
+
358
+ # end
359
+ h = self.norm_out(h)
360
+ h = nonlinearity(h)
361
+ h = self.conv_out(h)
362
+ return h
363
+
364
+ def get_last_layer(self):
365
+ return self.conv_out.weight
366
+
367
+
368
+ class Encoder(nn.Module):
369
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
370
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
371
+ resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
372
+ **ignore_kwargs):
373
+ super().__init__()
374
+ if use_linear_attn: attn_type = "linear"
375
+ self.ch = ch
376
+ self.temb_ch = 0
377
+ self.num_resolutions = len(ch_mult)
378
+ self.num_res_blocks = num_res_blocks
379
+ self.resolution = resolution
380
+ self.in_channels = in_channels
381
+
382
+ # downsampling
383
+ self.conv_in = torch.nn.Conv2d(in_channels,
384
+ self.ch,
385
+ kernel_size=3,
386
+ stride=1,
387
+ padding=1)
388
+
389
+ curr_res = resolution
390
+ in_ch_mult = (1,)+tuple(ch_mult)
391
+ self.in_ch_mult = in_ch_mult
392
+ self.down = nn.ModuleList()
393
+ for i_level in range(self.num_resolutions):
394
+ block = nn.ModuleList()
395
+ attn = nn.ModuleList()
396
+ block_in = ch*in_ch_mult[i_level]
397
+ block_out = ch*ch_mult[i_level]
398
+ for i_block in range(self.num_res_blocks):
399
+ block.append(ResnetBlock(in_channels=block_in,
400
+ out_channels=block_out,
401
+ temb_channels=self.temb_ch,
402
+ dropout=dropout))
403
+ block_in = block_out
404
+ if curr_res in attn_resolutions:
405
+ attn.append(make_attn(block_in, attn_type=attn_type))
406
+ down = nn.Module()
407
+ down.block = block
408
+ down.attn = attn
409
+ if i_level != self.num_resolutions-1:
410
+ down.downsample = Downsample(block_in, resamp_with_conv)
411
+ curr_res = curr_res // 2
412
+ self.down.append(down)
413
+
414
+ # middle
415
+ self.mid = nn.Module()
416
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
417
+ out_channels=block_in,
418
+ temb_channels=self.temb_ch,
419
+ dropout=dropout)
420
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
421
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
422
+ out_channels=block_in,
423
+ temb_channels=self.temb_ch,
424
+ dropout=dropout)
425
+
426
+ # end
427
+ self.norm_out = Normalize(block_in)
428
+ self.conv_out = torch.nn.Conv2d(block_in,
429
+ 2*z_channels if double_z else z_channels,
430
+ kernel_size=3,
431
+ stride=1,
432
+ padding=1)
433
+
434
+ def forward(self, x):
435
+ # timestep embedding
436
+ temb = None
437
+
438
+ # downsampling
439
+ hs = [self.conv_in(x)]
440
+ for i_level in range(self.num_resolutions):
441
+ for i_block in range(self.num_res_blocks):
442
+ h = self.down[i_level].block[i_block](hs[-1], temb)
443
+ if len(self.down[i_level].attn) > 0:
444
+ h = self.down[i_level].attn[i_block](h)
445
+ hs.append(h)
446
+ if i_level != self.num_resolutions-1:
447
+ hs.append(self.down[i_level].downsample(hs[-1]))
448
+
449
+ # middle
450
+ h = hs[-1]
451
+ h = self.mid.block_1(h, temb)
452
+ h = self.mid.attn_1(h)
453
+ h = self.mid.block_2(h, temb)
454
+
455
+ # end
456
+ h = self.norm_out(h)
457
+ h = nonlinearity(h)
458
+ h = self.conv_out(h)
459
+ return h
460
+
461
+
462
+ class Decoder(nn.Module):
463
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
464
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
465
+ resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
466
+ attn_type="vanilla", **ignorekwargs):
467
+ super().__init__()
468
+ if use_linear_attn: attn_type = "linear"
469
+ self.ch = ch
470
+ self.temb_ch = 0
471
+ self.num_resolutions = len(ch_mult)
472
+ self.num_res_blocks = num_res_blocks
473
+ self.resolution = resolution
474
+ self.in_channels = in_channels
475
+ self.give_pre_end = give_pre_end
476
+ self.tanh_out = tanh_out
477
+
478
+ # compute in_ch_mult, block_in and curr_res at lowest res
479
+ in_ch_mult = (1,)+tuple(ch_mult)
480
+ block_in = ch*ch_mult[self.num_resolutions-1]
481
+ curr_res = resolution // 2**(self.num_resolutions-1)
482
+ self.z_shape = (1,z_channels,curr_res,curr_res)
483
+ print("Working with z of shape {} = {} dimensions.".format(
484
+ self.z_shape, np.prod(self.z_shape)))
485
+
486
+ # z to block_in
487
+ self.conv_in = torch.nn.Conv2d(z_channels,
488
+ block_in,
489
+ kernel_size=3,
490
+ stride=1,
491
+ padding=1)
492
+
493
+ # middle
494
+ self.mid = nn.Module()
495
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
496
+ out_channels=block_in,
497
+ temb_channels=self.temb_ch,
498
+ dropout=dropout)
499
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
500
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
501
+ out_channels=block_in,
502
+ temb_channels=self.temb_ch,
503
+ dropout=dropout)
504
+
505
+ # upsampling
506
+ self.up = nn.ModuleList()
507
+ for i_level in reversed(range(self.num_resolutions)):
508
+ block = nn.ModuleList()
509
+ attn = nn.ModuleList()
510
+ block_out = ch*ch_mult[i_level]
511
+ for i_block in range(self.num_res_blocks+1):
512
+ block.append(ResnetBlock(in_channels=block_in,
513
+ out_channels=block_out,
514
+ temb_channels=self.temb_ch,
515
+ dropout=dropout))
516
+ block_in = block_out
517
+ if curr_res in attn_resolutions:
518
+ attn.append(make_attn(block_in, attn_type=attn_type))
519
+ up = nn.Module()
520
+ up.block = block
521
+ up.attn = attn
522
+ if i_level != 0:
523
+ up.upsample = Upsample(block_in, resamp_with_conv)
524
+ curr_res = curr_res * 2
525
+ self.up.insert(0, up) # prepend to get consistent order
526
+
527
+ # end
528
+ self.norm_out = Normalize(block_in)
529
+ self.conv_out = torch.nn.Conv2d(block_in,
530
+ out_ch,
531
+ kernel_size=3,
532
+ stride=1,
533
+ padding=1)
534
+
535
+ def forward(self, z):
536
+ #assert z.shape[1:] == self.z_shape[1:]
537
+ self.last_z_shape = z.shape
538
+
539
+ # timestep embedding
540
+ temb = None
541
+
542
+ # z to block_in
543
+ h = self.conv_in(z)
544
+
545
+ # middle
546
+ h = self.mid.block_1(h, temb)
547
+ h = self.mid.attn_1(h)
548
+ h = self.mid.block_2(h, temb)
549
+
550
+ # upsampling
551
+ for i_level in reversed(range(self.num_resolutions)):
552
+ for i_block in range(self.num_res_blocks+1):
553
+ h = self.up[i_level].block[i_block](h, temb)
554
+ if len(self.up[i_level].attn) > 0:
555
+ h = self.up[i_level].attn[i_block](h)
556
+ if i_level != 0:
557
+ h = self.up[i_level].upsample(h)
558
+
559
+ # end
560
+ if self.give_pre_end:
561
+ return h
562
+
563
+ h = self.norm_out(h)
564
+ h = nonlinearity(h)
565
+ h = self.conv_out(h)
566
+ if self.tanh_out:
567
+ h = torch.tanh(h)
568
+ return h
569
+
570
+
571
+ class SimpleDecoder(nn.Module):
572
+ def __init__(self, in_channels, out_channels, *args, **kwargs):
573
+ super().__init__()
574
+ self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
575
+ ResnetBlock(in_channels=in_channels,
576
+ out_channels=2 * in_channels,
577
+ temb_channels=0, dropout=0.0),
578
+ ResnetBlock(in_channels=2 * in_channels,
579
+ out_channels=4 * in_channels,
580
+ temb_channels=0, dropout=0.0),
581
+ ResnetBlock(in_channels=4 * in_channels,
582
+ out_channels=2 * in_channels,
583
+ temb_channels=0, dropout=0.0),
584
+ nn.Conv2d(2*in_channels, in_channels, 1),
585
+ Upsample(in_channels, with_conv=True)])
586
+ # end
587
+ self.norm_out = Normalize(in_channels)
588
+ self.conv_out = torch.nn.Conv2d(in_channels,
589
+ out_channels,
590
+ kernel_size=3,
591
+ stride=1,
592
+ padding=1)
593
+
594
+ def forward(self, x):
595
+ for i, layer in enumerate(self.model):
596
+ if i in [1,2,3]:
597
+ x = layer(x, None)
598
+ else:
599
+ x = layer(x)
600
+
601
+ h = self.norm_out(x)
602
+ h = nonlinearity(h)
603
+ x = self.conv_out(h)
604
+ return x
605
+
606
+
607
+ class UpsampleDecoder(nn.Module):
608
+ def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
609
+ ch_mult=(2,2), dropout=0.0):
610
+ super().__init__()
611
+ # upsampling
612
+ self.temb_ch = 0
613
+ self.num_resolutions = len(ch_mult)
614
+ self.num_res_blocks = num_res_blocks
615
+ block_in = in_channels
616
+ curr_res = resolution // 2 ** (self.num_resolutions - 1)
617
+ self.res_blocks = nn.ModuleList()
618
+ self.upsample_blocks = nn.ModuleList()
619
+ for i_level in range(self.num_resolutions):
620
+ res_block = []
621
+ block_out = ch * ch_mult[i_level]
622
+ for i_block in range(self.num_res_blocks + 1):
623
+ res_block.append(ResnetBlock(in_channels=block_in,
624
+ out_channels=block_out,
625
+ temb_channels=self.temb_ch,
626
+ dropout=dropout))
627
+ block_in = block_out
628
+ self.res_blocks.append(nn.ModuleList(res_block))
629
+ if i_level != self.num_resolutions - 1:
630
+ self.upsample_blocks.append(Upsample(block_in, True))
631
+ curr_res = curr_res * 2
632
+
633
+ # end
634
+ self.norm_out = Normalize(block_in)
635
+ self.conv_out = torch.nn.Conv2d(block_in,
636
+ out_channels,
637
+ kernel_size=3,
638
+ stride=1,
639
+ padding=1)
640
+
641
+ def forward(self, x):
642
+ # upsampling
643
+ h = x
644
+ for k, i_level in enumerate(range(self.num_resolutions)):
645
+ for i_block in range(self.num_res_blocks + 1):
646
+ h = self.res_blocks[i_level][i_block](h, None)
647
+ if i_level != self.num_resolutions - 1:
648
+ h = self.upsample_blocks[k](h)
649
+ h = self.norm_out(h)
650
+ h = nonlinearity(h)
651
+ h = self.conv_out(h)
652
+ return h
653
+
654
+
655
+ class LatentRescaler(nn.Module):
656
+ def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
657
+ super().__init__()
658
+ # residual block, interpolate, residual block
659
+ self.factor = factor
660
+ self.conv_in = nn.Conv2d(in_channels,
661
+ mid_channels,
662
+ kernel_size=3,
663
+ stride=1,
664
+ padding=1)
665
+ self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
666
+ out_channels=mid_channels,
667
+ temb_channels=0,
668
+ dropout=0.0) for _ in range(depth)])
669
+ self.attn = AttnBlock(mid_channels)
670
+ self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
671
+ out_channels=mid_channels,
672
+ temb_channels=0,
673
+ dropout=0.0) for _ in range(depth)])
674
+
675
+ self.conv_out = nn.Conv2d(mid_channels,
676
+ out_channels,
677
+ kernel_size=1,
678
+ )
679
+
680
+ def forward(self, x):
681
+ x = self.conv_in(x)
682
+ for block in self.res_block1:
683
+ x = block(x, None)
684
+ x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
685
+ x = self.attn(x)
686
+ for block in self.res_block2:
687
+ x = block(x, None)
688
+ x = self.conv_out(x)
689
+ return x
690
+
691
+
692
+ class MergedRescaleEncoder(nn.Module):
693
+ def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
694
+ attn_resolutions, dropout=0.0, resamp_with_conv=True,
695
+ ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
696
+ super().__init__()
697
+ intermediate_chn = ch * ch_mult[-1]
698
+ self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
699
+ z_channels=intermediate_chn, double_z=False, resolution=resolution,
700
+ attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
701
+ out_ch=None)
702
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
703
+ mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
704
+
705
+ def forward(self, x):
706
+ x = self.encoder(x)
707
+ x = self.rescaler(x)
708
+ return x
709
+
710
+
711
+ class MergedRescaleDecoder(nn.Module):
712
+ def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
713
+ dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
714
+ super().__init__()
715
+ tmp_chn = z_channels*ch_mult[-1]
716
+ self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
717
+ resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
718
+ ch_mult=ch_mult, resolution=resolution, ch=ch)
719
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
720
+ out_channels=tmp_chn, depth=rescale_module_depth)
721
+
722
+ def forward(self, x):
723
+ x = self.rescaler(x)
724
+ x = self.decoder(x)
725
+ return x
726
+
727
+
728
+ class Upsampler(nn.Module):
729
+ def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
730
+ super().__init__()
731
+ assert out_size >= in_size
732
+ num_blocks = int(np.log2(out_size//in_size))+1
733
+ factor_up = 1.+ (out_size % in_size)
734
+ print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
735
+ self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
736
+ out_channels=in_channels)
737
+ self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
738
+ attn_resolutions=[], in_channels=None, ch=in_channels,
739
+ ch_mult=[ch_mult for _ in range(num_blocks)])
740
+
741
+ def forward(self, x):
742
+ x = self.rescaler(x)
743
+ x = self.decoder(x)
744
+ return x
745
+
746
+
747
+ class Resize(nn.Module):
748
+ def __init__(self, in_channels=None, learned=False, mode="bilinear"):
749
+ super().__init__()
750
+ self.with_conv = learned
751
+ self.mode = mode
752
+ if self.with_conv:
753
+ print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
754
+ raise NotImplementedError()
755
+ assert in_channels is not None
756
+ # no asymmetric padding in torch conv, must do it ourselves
757
+ self.conv = torch.nn.Conv2d(in_channels,
758
+ in_channels,
759
+ kernel_size=4,
760
+ stride=2,
761
+ padding=1)
762
+
763
+ def forward(self, x, scale_factor=1.0):
764
+ if scale_factor==1.0:
765
+ return x
766
+ else:
767
+ x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
768
+ return x
769
+
770
+ class FirstStagePostProcessor(nn.Module):
771
+
772
+ def __init__(self, ch_mult:list, in_channels,
773
+ pretrained_model:nn.Module=None,
774
+ reshape=False,
775
+ n_channels=None,
776
+ dropout=0.,
777
+ pretrained_config=None):
778
+ super().__init__()
779
+ if pretrained_config is None:
780
+ assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
781
+ self.pretrained_model = pretrained_model
782
+ else:
783
+ assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
784
+ self.instantiate_pretrained(pretrained_config)
785
+
786
+ self.do_reshape = reshape
787
+
788
+ if n_channels is None:
789
+ n_channels = self.pretrained_model.encoder.ch
790
+
791
+ self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
792
+ self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
793
+ stride=1,padding=1)
794
+
795
+ blocks = []
796
+ downs = []
797
+ ch_in = n_channels
798
+ for m in ch_mult:
799
+ blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
800
+ ch_in = m * n_channels
801
+ downs.append(Downsample(ch_in, with_conv=False))
802
+
803
+ self.model = nn.ModuleList(blocks)
804
+ self.downsampler = nn.ModuleList(downs)
805
+
806
+
807
+ def instantiate_pretrained(self, config):
808
+ model = instantiate_from_config(config)
809
+ self.pretrained_model = model.eval()
810
+ # self.pretrained_model.train = False
811
+ for param in self.pretrained_model.parameters():
812
+ param.requires_grad = False
813
+
814
+
815
+ @torch.no_grad()
816
+ def encode_with_pretrained(self,x):
817
+ c = self.pretrained_model.encode(x)
818
+ if isinstance(c, DiagonalGaussianDistribution):
819
+ c = c.mode()
820
+ return c
821
+
822
+ def forward(self,x):
823
+ z_fs = self.encode_with_pretrained(x)
824
+ z = self.proj_norm(z_fs)
825
+ z = self.proj(z)
826
+ z = nonlinearity(z)
827
+
828
+ for submodel, downmodel in zip(self.model,self.downsampler):
829
+ z = submodel(z,temb=None)
830
+ z = downmodel(z)
831
+
832
+ if self.do_reshape:
833
+ z = rearrange(z,'b c h w -> b (h w) c')
834
+ return z
835
+
stable_diffusion/ldm/modules/diffusionmodules/openaimodel.py ADDED
@@ -0,0 +1,1001 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import abstractmethod
2
+ from functools import partial
3
+ import math
4
+ from typing import Iterable
5
+
6
+ import numpy as np
7
+ import torch as th
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+
11
+ from ldm.modules.diffusionmodules.util import (
12
+ checkpoint,
13
+ conv_nd,
14
+ linear,
15
+ avg_pool_nd,
16
+ zero_module,
17
+ normalization,
18
+ timestep_embedding,
19
+ )
20
+ from ldm.modules.attention import SpatialTransformer
21
+ from ldm.util import exists
22
+
23
+
24
+ # dummy replace
25
+ def convert_module_to_f16(x):
26
+ pass
27
+
28
+ def convert_module_to_f32(x):
29
+ pass
30
+
31
+
32
+ ## go
33
+ class AttentionPool2d(nn.Module):
34
+ """
35
+ Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
36
+ """
37
+
38
+ def __init__(
39
+ self,
40
+ spacial_dim: int,
41
+ embed_dim: int,
42
+ num_heads_channels: int,
43
+ output_dim: int = None,
44
+ ):
45
+ super().__init__()
46
+ self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
47
+ self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
48
+ self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
49
+ self.num_heads = embed_dim // num_heads_channels
50
+ self.attention = QKVAttention(self.num_heads)
51
+
52
+ def forward(self, x):
53
+ b, c, *_spatial = x.shape
54
+ x = x.reshape(b, c, -1) # NC(HW)
55
+ x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
56
+ x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
57
+ x = self.qkv_proj(x)
58
+ x = self.attention(x)
59
+ x = self.c_proj(x)
60
+ return x[:, :, 0]
61
+
62
+
63
+ class TimestepBlock(nn.Module):
64
+ """
65
+ Any module where forward() takes timestep embeddings as a second argument.
66
+ """
67
+
68
+ @abstractmethod
69
+ def forward(self, x, emb):
70
+ """
71
+ Apply the module to `x` given `emb` timestep embeddings.
72
+ """
73
+
74
+
75
+ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
76
+ """
77
+ A sequential module that passes timestep embeddings to the children that
78
+ support it as an extra input.
79
+ """
80
+
81
+ def forward(self, x, emb, context=None):
82
+ for layer in self:
83
+ if isinstance(layer, TimestepBlock):
84
+ x = layer(x, emb)
85
+ elif isinstance(layer, SpatialTransformer):
86
+ x = layer(x, context)
87
+ else:
88
+ x = layer(x)
89
+ return x
90
+
91
+
92
+ class Upsample(nn.Module):
93
+ """
94
+ An upsampling layer with an optional convolution.
95
+ :param channels: channels in the inputs and outputs.
96
+ :param use_conv: a bool determining if a convolution is applied.
97
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
98
+ upsampling occurs in the inner-two dimensions.
99
+ """
100
+
101
+ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
102
+ super().__init__()
103
+ self.channels = channels
104
+ self.out_channels = out_channels or channels
105
+ self.use_conv = use_conv
106
+ self.dims = dims
107
+ if use_conv:
108
+ self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
109
+
110
+ def forward(self, x):
111
+ assert x.shape[1] == self.channels
112
+ if self.dims == 3:
113
+ x = F.interpolate(
114
+ x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
115
+ )
116
+ else:
117
+ x = F.interpolate(x, scale_factor=2, mode="nearest")
118
+ if self.use_conv:
119
+ x = self.conv(x)
120
+ return x
121
+
122
+ class TransposedUpsample(nn.Module):
123
+ 'Learned 2x upsampling without padding'
124
+ def __init__(self, channels, out_channels=None, ks=5):
125
+ super().__init__()
126
+ self.channels = channels
127
+ self.out_channels = out_channels or channels
128
+
129
+ self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
130
+
131
+ def forward(self,x):
132
+ return self.up(x)
133
+
134
+
135
+ class Downsample(nn.Module):
136
+ """
137
+ A downsampling layer with an optional convolution.
138
+ :param channels: channels in the inputs and outputs.
139
+ :param use_conv: a bool determining if a convolution is applied.
140
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
141
+ downsampling occurs in the inner-two dimensions.
142
+ """
143
+
144
+ def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
145
+ super().__init__()
146
+ self.channels = channels
147
+ self.out_channels = out_channels or channels
148
+ self.use_conv = use_conv
149
+ self.dims = dims
150
+ stride = 2 if dims != 3 else (1, 2, 2)
151
+ if use_conv:
152
+ self.op = conv_nd(
153
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
154
+ )
155
+ else:
156
+ assert self.channels == self.out_channels
157
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
158
+
159
+ def forward(self, x):
160
+ assert x.shape[1] == self.channels
161
+ return self.op(x)
162
+
163
+
164
+ class ResBlock(TimestepBlock):
165
+ """
166
+ A residual block that can optionally change the number of channels.
167
+ :param channels: the number of input channels.
168
+ :param emb_channels: the number of timestep embedding channels.
169
+ :param dropout: the rate of dropout.
170
+ :param out_channels: if specified, the number of out channels.
171
+ :param use_conv: if True and out_channels is specified, use a spatial
172
+ convolution instead of a smaller 1x1 convolution to change the
173
+ channels in the skip connection.
174
+ :param dims: determines if the signal is 1D, 2D, or 3D.
175
+ :param use_checkpoint: if True, use gradient checkpointing on this module.
176
+ :param up: if True, use this block for upsampling.
177
+ :param down: if True, use this block for downsampling.
178
+ """
179
+
180
+ def __init__(
181
+ self,
182
+ channels,
183
+ emb_channels,
184
+ dropout,
185
+ out_channels=None,
186
+ use_conv=False,
187
+ use_scale_shift_norm=False,
188
+ dims=2,
189
+ use_checkpoint=False,
190
+ up=False,
191
+ down=False,
192
+ ):
193
+ super().__init__()
194
+ self.channels = channels
195
+ self.emb_channels = emb_channels
196
+ self.dropout = dropout
197
+ self.out_channels = out_channels or channels
198
+ self.use_conv = use_conv
199
+ self.use_checkpoint = use_checkpoint
200
+ self.use_scale_shift_norm = use_scale_shift_norm
201
+
202
+ self.in_layers = nn.Sequential(
203
+ normalization(channels),
204
+ nn.SiLU(),
205
+ conv_nd(dims, channels, self.out_channels, 3, padding=1),
206
+ )
207
+
208
+ self.updown = up or down
209
+
210
+ if up:
211
+ self.h_upd = Upsample(channels, False, dims)
212
+ self.x_upd = Upsample(channels, False, dims)
213
+ elif down:
214
+ self.h_upd = Downsample(channels, False, dims)
215
+ self.x_upd = Downsample(channels, False, dims)
216
+ else:
217
+ self.h_upd = self.x_upd = nn.Identity()
218
+
219
+ self.emb_layers = nn.Sequential(
220
+ nn.SiLU(),
221
+ linear(
222
+ emb_channels,
223
+ 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
224
+ ),
225
+ )
226
+ self.out_layers = nn.Sequential(
227
+ normalization(self.out_channels),
228
+ nn.SiLU(),
229
+ nn.Dropout(p=dropout),
230
+ zero_module(
231
+ conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
232
+ ),
233
+ )
234
+
235
+ if self.out_channels == channels:
236
+ self.skip_connection = nn.Identity()
237
+ elif use_conv:
238
+ self.skip_connection = conv_nd(
239
+ dims, channels, self.out_channels, 3, padding=1
240
+ )
241
+ else:
242
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
243
+
244
+ def forward(self, x, emb):
245
+ """
246
+ Apply the block to a Tensor, conditioned on a timestep embedding.
247
+ :param x: an [N x C x ...] Tensor of features.
248
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
249
+ :return: an [N x C x ...] Tensor of outputs.
250
+ """
251
+ return checkpoint(
252
+ self._forward, (x, emb), self.parameters(), self.use_checkpoint
253
+ )
254
+
255
+
256
+ def _forward(self, x, emb):
257
+ if self.updown:
258
+ in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
259
+ h = in_rest(x)
260
+ h = self.h_upd(h)
261
+ x = self.x_upd(x)
262
+ h = in_conv(h)
263
+ else:
264
+ h = self.in_layers(x)
265
+ emb_out = self.emb_layers(emb).type(h.dtype)
266
+ while len(emb_out.shape) < len(h.shape):
267
+ emb_out = emb_out[..., None]
268
+ if self.use_scale_shift_norm:
269
+ out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
270
+ scale, shift = th.chunk(emb_out, 2, dim=1)
271
+ h = out_norm(h) * (1 + scale) + shift
272
+ h = out_rest(h)
273
+ else:
274
+ h = h + emb_out
275
+ h = self.out_layers(h)
276
+ return self.skip_connection(x) + h
277
+
278
+
279
+ class AttentionBlock(nn.Module):
280
+ """
281
+ An attention block that allows spatial positions to attend to each other.
282
+ Originally ported from here, but adapted to the N-d case.
283
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
284
+ """
285
+
286
+ def __init__(
287
+ self,
288
+ channels,
289
+ num_heads=1,
290
+ num_head_channels=-1,
291
+ use_checkpoint=False,
292
+ use_new_attention_order=False,
293
+ ):
294
+ super().__init__()
295
+ self.channels = channels
296
+ if num_head_channels == -1:
297
+ self.num_heads = num_heads
298
+ else:
299
+ assert (
300
+ channels % num_head_channels == 0
301
+ ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
302
+ self.num_heads = channels // num_head_channels
303
+ self.use_checkpoint = use_checkpoint
304
+ self.norm = normalization(channels)
305
+ self.qkv = conv_nd(1, channels, channels * 3, 1)
306
+ if use_new_attention_order:
307
+ # split qkv before split heads
308
+ self.attention = QKVAttention(self.num_heads)
309
+ else:
310
+ # split heads before split qkv
311
+ self.attention = QKVAttentionLegacy(self.num_heads)
312
+
313
+ self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
314
+
315
+ def forward(self, x):
316
+ return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
317
+ #return pt_checkpoint(self._forward, x) # pytorch
318
+
319
+ def _forward(self, x):
320
+ b, c, *spatial = x.shape
321
+ x = x.reshape(b, c, -1)
322
+ qkv = self.qkv(self.norm(x))
323
+ h = self.attention(qkv)
324
+ h = self.proj_out(h)
325
+ return (x + h).reshape(b, c, *spatial)
326
+
327
+
328
+ def count_flops_attn(model, _x, y):
329
+ """
330
+ A counter for the `thop` package to count the operations in an
331
+ attention operation.
332
+ Meant to be used like:
333
+ macs, params = thop.profile(
334
+ model,
335
+ inputs=(inputs, timestamps),
336
+ custom_ops={QKVAttention: QKVAttention.count_flops},
337
+ )
338
+ """
339
+ b, c, *spatial = y[0].shape
340
+ num_spatial = int(np.prod(spatial))
341
+ # We perform two matmuls with the same number of ops.
342
+ # The first computes the weight matrix, the second computes
343
+ # the combination of the value vectors.
344
+ matmul_ops = 2 * b * (num_spatial ** 2) * c
345
+ model.total_ops += th.DoubleTensor([matmul_ops])
346
+
347
+
348
+ class QKVAttentionLegacy(nn.Module):
349
+ """
350
+ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
351
+ """
352
+
353
+ def __init__(self, n_heads):
354
+ super().__init__()
355
+ self.n_heads = n_heads
356
+
357
+ def forward(self, qkv):
358
+ """
359
+ Apply QKV attention.
360
+ :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
361
+ :return: an [N x (H * C) x T] tensor after attention.
362
+ """
363
+ bs, width, length = qkv.shape
364
+ assert width % (3 * self.n_heads) == 0
365
+ ch = width // (3 * self.n_heads)
366
+ q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
367
+ scale = 1 / math.sqrt(math.sqrt(ch))
368
+ weight = th.einsum(
369
+ "bct,bcs->bts", q * scale, k * scale
370
+ ) # More stable with f16 than dividing afterwards
371
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
372
+ a = th.einsum("bts,bcs->bct", weight, v)
373
+ return a.reshape(bs, -1, length)
374
+
375
+ @staticmethod
376
+ def count_flops(model, _x, y):
377
+ return count_flops_attn(model, _x, y)
378
+
379
+
380
+ class QKVAttention(nn.Module):
381
+ """
382
+ A module which performs QKV attention and splits in a different order.
383
+ """
384
+
385
+ def __init__(self, n_heads):
386
+ super().__init__()
387
+ self.n_heads = n_heads
388
+
389
+ def forward(self, qkv):
390
+ """
391
+ Apply QKV attention.
392
+ :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
393
+ :return: an [N x (H * C) x T] tensor after attention.
394
+ """
395
+ bs, width, length = qkv.shape
396
+ assert width % (3 * self.n_heads) == 0
397
+ ch = width // (3 * self.n_heads)
398
+ q, k, v = qkv.chunk(3, dim=1)
399
+ scale = 1 / math.sqrt(math.sqrt(ch))
400
+ weight = th.einsum(
401
+ "bct,bcs->bts",
402
+ (q * scale).view(bs * self.n_heads, ch, length),
403
+ (k * scale).view(bs * self.n_heads, ch, length),
404
+ ) # More stable with f16 than dividing afterwards
405
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
406
+ a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
407
+ return a.reshape(bs, -1, length)
408
+
409
+ @staticmethod
410
+ def count_flops(model, _x, y):
411
+ return count_flops_attn(model, _x, y)
412
+
413
+
414
+ class UNetModel(nn.Module):
415
+ """
416
+ The full UNet model with attention and timestep embedding.
417
+ :param in_channels: channels in the input Tensor.
418
+ :param model_channels: base channel count for the model.
419
+ :param out_channels: channels in the output Tensor.
420
+ :param num_res_blocks: number of residual blocks per downsample.
421
+ :param attention_resolutions: a collection of downsample rates at which
422
+ attention will take place. May be a set, list, or tuple.
423
+ For example, if this contains 4, then at 4x downsampling, attention
424
+ will be used.
425
+ :param dropout: the dropout probability.
426
+ :param channel_mult: channel multiplier for each level of the UNet.
427
+ :param conv_resample: if True, use learned convolutions for upsampling and
428
+ downsampling.
429
+ :param dims: determines if the signal is 1D, 2D, or 3D.
430
+ :param num_classes: if specified (as an int), then this model will be
431
+ class-conditional with `num_classes` classes.
432
+ :param use_checkpoint: use gradient checkpointing to reduce memory usage.
433
+ :param num_heads: the number of attention heads in each attention layer.
434
+ :param num_heads_channels: if specified, ignore num_heads and instead use
435
+ a fixed channel width per attention head.
436
+ :param num_heads_upsample: works with num_heads to set a different number
437
+ of heads for upsampling. Deprecated.
438
+ :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
439
+ :param resblock_updown: use residual blocks for up/downsampling.
440
+ :param use_new_attention_order: use a different attention pattern for potentially
441
+ increased efficiency.
442
+ """
443
+
444
+ def __init__(
445
+ self,
446
+ image_size,
447
+ in_channels,
448
+ model_channels,
449
+ out_channels,
450
+ num_res_blocks,
451
+ attention_resolutions,
452
+ dropout=0,
453
+ channel_mult=(1, 2, 4, 8),
454
+ conv_resample=True,
455
+ dims=2,
456
+ num_classes=None,
457
+ use_checkpoint=False,
458
+ use_fp16=False,
459
+ num_heads=-1,
460
+ num_head_channels=-1,
461
+ num_heads_upsample=-1,
462
+ use_scale_shift_norm=False,
463
+ resblock_updown=False,
464
+ use_new_attention_order=False,
465
+ use_spatial_transformer=False, # custom transformer support
466
+ transformer_depth=1, # custom transformer support
467
+ context_dim=None, # custom transformer support
468
+ n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
469
+ legacy=True,
470
+ disable_self_attentions=None,
471
+ num_attention_blocks=None
472
+ ):
473
+ super().__init__()
474
+ if use_spatial_transformer:
475
+ assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
476
+
477
+ if context_dim is not None:
478
+ assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
479
+ from omegaconf.listconfig import ListConfig
480
+ if type(context_dim) == ListConfig:
481
+ context_dim = list(context_dim)
482
+
483
+ if num_heads_upsample == -1:
484
+ num_heads_upsample = num_heads
485
+
486
+ if num_heads == -1:
487
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
488
+
489
+ if num_head_channels == -1:
490
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
491
+
492
+ self.image_size = image_size
493
+ self.in_channels = in_channels
494
+ self.model_channels = model_channels
495
+ self.out_channels = out_channels
496
+ if isinstance(num_res_blocks, int):
497
+ self.num_res_blocks = len(channel_mult) * [num_res_blocks]
498
+ else:
499
+ if len(num_res_blocks) != len(channel_mult):
500
+ raise ValueError("provide num_res_blocks either as an int (globally constant) or "
501
+ "as a list/tuple (per-level) with the same length as channel_mult")
502
+ self.num_res_blocks = num_res_blocks
503
+ #self.num_res_blocks = num_res_blocks
504
+ if disable_self_attentions is not None:
505
+ # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
506
+ assert len(disable_self_attentions) == len(channel_mult)
507
+ if num_attention_blocks is not None:
508
+ assert len(num_attention_blocks) == len(self.num_res_blocks)
509
+ assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
510
+ print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
511
+ f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
512
+ f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
513
+ f"attention will still not be set.") # todo: convert to warning
514
+
515
+ self.attention_resolutions = attention_resolutions
516
+ self.dropout = dropout
517
+ self.channel_mult = channel_mult
518
+ self.conv_resample = conv_resample
519
+ self.num_classes = num_classes
520
+ self.use_checkpoint = use_checkpoint
521
+ self.dtype = th.float16 if use_fp16 else th.float32
522
+ self.num_heads = num_heads
523
+ self.num_head_channels = num_head_channels
524
+ self.num_heads_upsample = num_heads_upsample
525
+ self.predict_codebook_ids = n_embed is not None
526
+ self.dim_heads = []
527
+ time_embed_dim = model_channels * 4
528
+ self.time_embed = nn.Sequential(
529
+ linear(model_channels, time_embed_dim),
530
+ nn.SiLU(),
531
+ linear(time_embed_dim, time_embed_dim),
532
+ )
533
+
534
+ if self.num_classes is not None:
535
+ self.label_emb = nn.Embedding(num_classes, time_embed_dim)
536
+
537
+ self.input_blocks = nn.ModuleList(
538
+ [
539
+ TimestepEmbedSequential(
540
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
541
+ )
542
+ ]
543
+ )
544
+ self._feature_size = model_channels
545
+ input_block_chans = [model_channels]
546
+ ch = model_channels
547
+ ds = 1
548
+ for level, mult in enumerate(channel_mult):
549
+ for nr in range(self.num_res_blocks[level]):
550
+ layers = [
551
+ ResBlock(
552
+ ch,
553
+ time_embed_dim,
554
+ dropout,
555
+ out_channels=mult * model_channels,
556
+ dims=dims,
557
+ use_checkpoint=use_checkpoint,
558
+ use_scale_shift_norm=use_scale_shift_norm,
559
+ )
560
+ ]
561
+ ch = mult * model_channels
562
+ if ds in attention_resolutions:
563
+ if num_head_channels == -1:
564
+ dim_head = ch // num_heads
565
+ else:
566
+ num_heads = ch // num_head_channels
567
+ dim_head = num_head_channels
568
+ if legacy:
569
+ #num_heads = 1
570
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
571
+ if exists(disable_self_attentions):
572
+ disabled_sa = disable_self_attentions[level]
573
+ else:
574
+ disabled_sa = False
575
+
576
+ if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
577
+ self.dim_heads.append(dim_head)
578
+ layers.append(
579
+ AttentionBlock(
580
+ ch,
581
+ use_checkpoint=use_checkpoint,
582
+ num_heads=num_heads,
583
+ num_head_channels=dim_head,
584
+ use_new_attention_order=use_new_attention_order,
585
+ ) if not use_spatial_transformer else SpatialTransformer(
586
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
587
+ disable_self_attn=disabled_sa
588
+ )
589
+ )
590
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
591
+ self._feature_size += ch
592
+ input_block_chans.append(ch)
593
+ if level != len(channel_mult) - 1:
594
+ out_ch = ch
595
+ self.input_blocks.append(
596
+ TimestepEmbedSequential(
597
+ ResBlock(
598
+ ch,
599
+ time_embed_dim,
600
+ dropout,
601
+ out_channels=out_ch,
602
+ dims=dims,
603
+ use_checkpoint=use_checkpoint,
604
+ use_scale_shift_norm=use_scale_shift_norm,
605
+ down=True,
606
+ )
607
+ if resblock_updown
608
+ else Downsample(
609
+ ch, conv_resample, dims=dims, out_channels=out_ch
610
+ )
611
+ )
612
+ )
613
+ ch = out_ch
614
+ input_block_chans.append(ch)
615
+ ds *= 2
616
+ self._feature_size += ch
617
+
618
+ if num_head_channels == -1:
619
+ dim_head = ch // num_heads
620
+ else:
621
+ num_heads = ch // num_head_channels
622
+ dim_head = num_head_channels
623
+ if legacy:
624
+ #num_heads = 1
625
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
626
+ print(dim_head)
627
+ print('legacy')
628
+ self.dim_heads.append(dim_head)
629
+ self.middle_block = TimestepEmbedSequential(
630
+ ResBlock(
631
+ ch,
632
+ time_embed_dim,
633
+ dropout,
634
+ dims=dims,
635
+ use_checkpoint=use_checkpoint,
636
+ use_scale_shift_norm=use_scale_shift_norm,
637
+ ),
638
+ AttentionBlock(
639
+ ch,
640
+ use_checkpoint=use_checkpoint,
641
+ num_heads=num_heads,
642
+ num_head_channels=dim_head,
643
+ use_new_attention_order=use_new_attention_order,
644
+ ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
645
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
646
+ ),
647
+ ResBlock(
648
+ ch,
649
+ time_embed_dim,
650
+ dropout,
651
+ dims=dims,
652
+ use_checkpoint=use_checkpoint,
653
+ use_scale_shift_norm=use_scale_shift_norm,
654
+ ),
655
+ )
656
+ self._feature_size += ch
657
+
658
+ self.output_blocks = nn.ModuleList([])
659
+ for level, mult in list(enumerate(channel_mult))[::-1]:
660
+ for i in range(self.num_res_blocks[level] + 1):
661
+ ich = input_block_chans.pop()
662
+ layers = [
663
+ ResBlock(
664
+ ch + ich,
665
+ time_embed_dim,
666
+ dropout,
667
+ out_channels=model_channels * mult,
668
+ dims=dims,
669
+ use_checkpoint=use_checkpoint,
670
+ use_scale_shift_norm=use_scale_shift_norm,
671
+ )
672
+ ]
673
+ ch = model_channels * mult
674
+ if ds in attention_resolutions:
675
+ if num_head_channels == -1:
676
+ dim_head = ch // num_heads
677
+ else:
678
+ num_heads = ch // num_head_channels
679
+ dim_head = num_head_channels
680
+ if legacy:
681
+ #num_heads = 1
682
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
683
+ if exists(disable_self_attentions):
684
+ disabled_sa = disable_self_attentions[level]
685
+ else:
686
+ disabled_sa = False
687
+
688
+ if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
689
+ self.dim_heads.append(dim_head)
690
+ layers.append(
691
+ AttentionBlock(
692
+ ch,
693
+ use_checkpoint=use_checkpoint,
694
+ num_heads=num_heads_upsample,
695
+ num_head_channels=dim_head,
696
+ use_new_attention_order=use_new_attention_order,
697
+ ) if not use_spatial_transformer else SpatialTransformer(
698
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
699
+ disable_self_attn=disabled_sa
700
+ )
701
+ )
702
+ if level and i == self.num_res_blocks[level]:
703
+ out_ch = ch
704
+ layers.append(
705
+ ResBlock(
706
+ ch,
707
+ time_embed_dim,
708
+ dropout,
709
+ out_channels=out_ch,
710
+ dims=dims,
711
+ use_checkpoint=use_checkpoint,
712
+ use_scale_shift_norm=use_scale_shift_norm,
713
+ up=True,
714
+ )
715
+ if resblock_updown
716
+ else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
717
+ )
718
+ ds //= 2
719
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
720
+ self._feature_size += ch
721
+
722
+ self.out = nn.Sequential(
723
+ normalization(ch),
724
+ nn.SiLU(),
725
+ zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
726
+ )
727
+ if self.predict_codebook_ids:
728
+ self.id_predictor = nn.Sequential(
729
+ normalization(ch),
730
+ conv_nd(dims, model_channels, n_embed, 1),
731
+ #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
732
+ )
733
+
734
+ def convert_to_fp16(self):
735
+ """
736
+ Convert the torso of the model to float16.
737
+ """
738
+ self.input_blocks.apply(convert_module_to_f16)
739
+ self.middle_block.apply(convert_module_to_f16)
740
+ self.output_blocks.apply(convert_module_to_f16)
741
+
742
+ def convert_to_fp32(self):
743
+ """
744
+ Convert the torso of the model to float32.
745
+ """
746
+ self.input_blocks.apply(convert_module_to_f32)
747
+ self.middle_block.apply(convert_module_to_f32)
748
+ self.output_blocks.apply(convert_module_to_f32)
749
+
750
+ def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
751
+ """
752
+ Apply the model to an input batch.
753
+ :param x: an [N x C x ...] Tensor of inputs.
754
+ :param timesteps: a 1-D batch of timesteps.
755
+ :param context: conditioning plugged in via crossattn
756
+ :param y: an [N] Tensor of labels, if class-conditional.
757
+ :return: an [N x C x ...] Tensor of outputs.
758
+ """
759
+ assert (y is not None) == (
760
+ self.num_classes is not None
761
+ ), "must specify y if and only if the model is class-conditional"
762
+ hs = []
763
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
764
+ emb = self.time_embed(t_emb)
765
+
766
+ if self.num_classes is not None:
767
+ assert y.shape == (x.shape[0],)
768
+ emb = emb + self.label_emb(y)
769
+
770
+ h = x.type(self.dtype)
771
+ for module in self.input_blocks:
772
+ h = module(h, emb, context)
773
+ hs.append(h)
774
+ h = self.middle_block(h, emb, context)
775
+ for module in self.output_blocks:
776
+ h = th.cat([h, hs.pop()], dim=1)
777
+ h = module(h, emb, context)
778
+ h = h.type(x.dtype)
779
+ if self.predict_codebook_ids:
780
+ return self.id_predictor(h)
781
+ else:
782
+ return self.out(h)
783
+
784
+
785
+ class EncoderUNetModel(nn.Module):
786
+ """
787
+ The half UNet model with attention and timestep embedding.
788
+ For usage, see UNet.
789
+ """
790
+
791
+ def __init__(
792
+ self,
793
+ image_size,
794
+ in_channels,
795
+ model_channels,
796
+ out_channels,
797
+ num_res_blocks,
798
+ attention_resolutions,
799
+ dropout=0,
800
+ channel_mult=(1, 2, 4, 8),
801
+ conv_resample=True,
802
+ dims=2,
803
+ use_checkpoint=False,
804
+ use_fp16=False,
805
+ num_heads=1,
806
+ num_head_channels=-1,
807
+ num_heads_upsample=-1,
808
+ use_scale_shift_norm=False,
809
+ resblock_updown=False,
810
+ use_new_attention_order=False,
811
+ pool="adaptive",
812
+ *args,
813
+ **kwargs
814
+ ):
815
+ super().__init__()
816
+
817
+ if num_heads_upsample == -1:
818
+ num_heads_upsample = num_heads
819
+
820
+ self.in_channels = in_channels
821
+ self.model_channels = model_channels
822
+ self.out_channels = out_channels
823
+ self.num_res_blocks = num_res_blocks
824
+ self.attention_resolutions = attention_resolutions
825
+ self.dropout = dropout
826
+ self.channel_mult = channel_mult
827
+ self.conv_resample = conv_resample
828
+ self.use_checkpoint = use_checkpoint
829
+ self.dtype = th.float16 if use_fp16 else th.float32
830
+ self.num_heads = num_heads
831
+ self.num_head_channels = num_head_channels
832
+ self.num_heads_upsample = num_heads_upsample
833
+
834
+ time_embed_dim = model_channels * 4
835
+ self.time_embed = nn.Sequential(
836
+ linear(model_channels, time_embed_dim),
837
+ nn.SiLU(),
838
+ linear(time_embed_dim, time_embed_dim),
839
+ )
840
+
841
+ self.input_blocks = nn.ModuleList(
842
+ [
843
+ TimestepEmbedSequential(
844
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
845
+ )
846
+ ]
847
+ )
848
+ self._feature_size = model_channels
849
+ input_block_chans = [model_channels]
850
+ ch = model_channels
851
+ ds = 1
852
+ for level, mult in enumerate(channel_mult):
853
+ for _ in range(num_res_blocks):
854
+ layers = [
855
+ ResBlock(
856
+ ch,
857
+ time_embed_dim,
858
+ dropout,
859
+ out_channels=mult * model_channels,
860
+ dims=dims,
861
+ use_checkpoint=use_checkpoint,
862
+ use_scale_shift_norm=use_scale_shift_norm,
863
+ )
864
+ ]
865
+ ch = mult * model_channels
866
+ if ds in attention_resolutions:
867
+ layers.append(
868
+ AttentionBlock(
869
+ ch,
870
+ use_checkpoint=use_checkpoint,
871
+ num_heads=num_heads,
872
+ num_head_channels=num_head_channels,
873
+ use_new_attention_order=use_new_attention_order,
874
+ )
875
+ )
876
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
877
+ self._feature_size += ch
878
+ input_block_chans.append(ch)
879
+ if level != len(channel_mult) - 1:
880
+ out_ch = ch
881
+ self.input_blocks.append(
882
+ TimestepEmbedSequential(
883
+ ResBlock(
884
+ ch,
885
+ time_embed_dim,
886
+ dropout,
887
+ out_channels=out_ch,
888
+ dims=dims,
889
+ use_checkpoint=use_checkpoint,
890
+ use_scale_shift_norm=use_scale_shift_norm,
891
+ down=True,
892
+ )
893
+ if resblock_updown
894
+ else Downsample(
895
+ ch, conv_resample, dims=dims, out_channels=out_ch
896
+ )
897
+ )
898
+ )
899
+ ch = out_ch
900
+ input_block_chans.append(ch)
901
+ ds *= 2
902
+ self._feature_size += ch
903
+
904
+ self.middle_block = TimestepEmbedSequential(
905
+ ResBlock(
906
+ ch,
907
+ time_embed_dim,
908
+ dropout,
909
+ dims=dims,
910
+ use_checkpoint=use_checkpoint,
911
+ use_scale_shift_norm=use_scale_shift_norm,
912
+ ),
913
+ AttentionBlock(
914
+ ch,
915
+ use_checkpoint=use_checkpoint,
916
+ num_heads=num_heads,
917
+ num_head_channels=num_head_channels,
918
+ use_new_attention_order=use_new_attention_order,
919
+ ),
920
+ ResBlock(
921
+ ch,
922
+ time_embed_dim,
923
+ dropout,
924
+ dims=dims,
925
+ use_checkpoint=use_checkpoint,
926
+ use_scale_shift_norm=use_scale_shift_norm,
927
+ ),
928
+ )
929
+ self._feature_size += ch
930
+ self.pool = pool
931
+ if pool == "adaptive":
932
+ self.out = nn.Sequential(
933
+ normalization(ch),
934
+ nn.SiLU(),
935
+ nn.AdaptiveAvgPool2d((1, 1)),
936
+ zero_module(conv_nd(dims, ch, out_channels, 1)),
937
+ nn.Flatten(),
938
+ )
939
+ elif pool == "attention":
940
+ assert num_head_channels != -1
941
+ self.out = nn.Sequential(
942
+ normalization(ch),
943
+ nn.SiLU(),
944
+ AttentionPool2d(
945
+ (image_size // ds), ch, num_head_channels, out_channels
946
+ ),
947
+ )
948
+ elif pool == "spatial":
949
+ self.out = nn.Sequential(
950
+ nn.Linear(self._feature_size, 2048),
951
+ nn.ReLU(),
952
+ nn.Linear(2048, self.out_channels),
953
+ )
954
+ elif pool == "spatial_v2":
955
+ self.out = nn.Sequential(
956
+ nn.Linear(self._feature_size, 2048),
957
+ normalization(2048),
958
+ nn.SiLU(),
959
+ nn.Linear(2048, self.out_channels),
960
+ )
961
+ else:
962
+ raise NotImplementedError(f"Unexpected {pool} pooling")
963
+
964
+ def convert_to_fp16(self):
965
+ """
966
+ Convert the torso of the model to float16.
967
+ """
968
+ self.input_blocks.apply(convert_module_to_f16)
969
+ self.middle_block.apply(convert_module_to_f16)
970
+
971
+ def convert_to_fp32(self):
972
+ """
973
+ Convert the torso of the model to float32.
974
+ """
975
+ self.input_blocks.apply(convert_module_to_f32)
976
+ self.middle_block.apply(convert_module_to_f32)
977
+
978
+ def forward(self, x, timesteps):
979
+ """
980
+ Apply the model to an input batch.
981
+ :param x: an [N x C x ...] Tensor of inputs.
982
+ :param timesteps: a 1-D batch of timesteps.
983
+ :return: an [N x K] Tensor of outputs.
984
+ """
985
+ emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
986
+
987
+ results = []
988
+ h = x.type(self.dtype)
989
+ for module in self.input_blocks:
990
+ h = module(h, emb)
991
+ if self.pool.startswith("spatial"):
992
+ results.append(h.type(x.dtype).mean(dim=(2, 3)))
993
+ h = self.middle_block(h, emb)
994
+ if self.pool.startswith("spatial"):
995
+ results.append(h.type(x.dtype).mean(dim=(2, 3)))
996
+ h = th.cat(results, axis=-1)
997
+ return self.out(h)
998
+ else:
999
+ h = h.type(x.dtype)
1000
+ return self.out(h)
1001
+
stable_diffusion/ldm/modules/diffusionmodules/util.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # adopted from
2
+ # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
3
+ # and
4
+ # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
5
+ # and
6
+ # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
7
+ #
8
+ # thanks!
9
+
10
+
11
+ import os
12
+ import math
13
+ import torch
14
+ import torch.nn as nn
15
+ import numpy as np
16
+ from einops import repeat
17
+
18
+ from ldm.util import instantiate_from_config
19
+
20
+
21
+ def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
22
+ if schedule == "linear":
23
+ betas = (
24
+ torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
25
+ )
26
+
27
+ elif schedule == "cosine":
28
+ timesteps = (
29
+ torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
30
+ )
31
+ alphas = timesteps / (1 + cosine_s) * np.pi / 2
32
+ alphas = torch.cos(alphas).pow(2)
33
+ alphas = alphas / alphas[0]
34
+ betas = 1 - alphas[1:] / alphas[:-1]
35
+ betas = np.clip(betas, a_min=0, a_max=0.999)
36
+
37
+ elif schedule == "sqrt_linear":
38
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
39
+ elif schedule == "sqrt":
40
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
41
+ else:
42
+ raise ValueError(f"schedule '{schedule}' unknown.")
43
+ return betas.numpy()
44
+
45
+
46
+ def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
47
+ if ddim_discr_method == 'uniform':
48
+ c = num_ddpm_timesteps // num_ddim_timesteps
49
+ ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
50
+ elif ddim_discr_method == 'quad':
51
+ ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
52
+ else:
53
+ raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
54
+
55
+ # assert ddim_timesteps.shape[0] == num_ddim_timesteps
56
+ # add one to get the final alpha values right (the ones from first scale to data during sampling)
57
+ steps_out = ddim_timesteps + 1
58
+ if verbose:
59
+ print(f'Selected timesteps for ddim sampler: {steps_out}')
60
+ return steps_out
61
+
62
+
63
+ def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
64
+ # select alphas for computing the variance schedule
65
+ alphas = alphacums[ddim_timesteps]
66
+ alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
67
+
68
+ # according the the formula provided in https://arxiv.org/abs/2010.02502
69
+ sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
70
+ if verbose:
71
+ print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
72
+ print(f'For the chosen value of eta, which is {eta}, '
73
+ f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
74
+ return sigmas, alphas, alphas_prev
75
+
76
+
77
+ def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
78
+ """
79
+ Create a beta schedule that discretizes the given alpha_t_bar function,
80
+ which defines the cumulative product of (1-beta) over time from t = [0,1].
81
+ :param num_diffusion_timesteps: the number of betas to produce.
82
+ :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
83
+ produces the cumulative product of (1-beta) up to that
84
+ part of the diffusion process.
85
+ :param max_beta: the maximum beta to use; use values lower than 1 to
86
+ prevent singularities.
87
+ """
88
+ betas = []
89
+ for i in range(num_diffusion_timesteps):
90
+ t1 = i / num_diffusion_timesteps
91
+ t2 = (i + 1) / num_diffusion_timesteps
92
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
93
+ return np.array(betas)
94
+
95
+
96
+ def extract_into_tensor(a, t, x_shape):
97
+ b, *_ = t.shape
98
+ out = a.gather(-1, t)
99
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
100
+
101
+
102
+ def checkpoint(func, inputs, params, flag):
103
+ """
104
+ Evaluate a function without caching intermediate activations, allowing for
105
+ reduced memory at the expense of extra compute in the backward pass.
106
+ :param func: the function to evaluate.
107
+ :param inputs: the argument sequence to pass to `func`.
108
+ :param params: a sequence of parameters `func` depends on but does not
109
+ explicitly take as arguments.
110
+ :param flag: if False, disable gradient checkpointing.
111
+ """
112
+ if flag:
113
+ args = tuple(inputs) + tuple(params)
114
+ return CheckpointFunction.apply(func, len(inputs), *args)
115
+ else:
116
+ return func(*inputs)
117
+
118
+
119
+ class CheckpointFunction(torch.autograd.Function):
120
+ @staticmethod
121
+ def forward(ctx, run_function, length, *args):
122
+ ctx.run_function = run_function
123
+ ctx.input_tensors = list(args[:length])
124
+ ctx.input_params = list(args[length:])
125
+
126
+ with torch.no_grad():
127
+ output_tensors = ctx.run_function(*ctx.input_tensors)
128
+ return output_tensors
129
+
130
+ @staticmethod
131
+ def backward(ctx, *output_grads):
132
+ ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
133
+ with torch.enable_grad():
134
+ # Fixes a bug where the first op in run_function modifies the
135
+ # Tensor storage in place, which is not allowed for detach()'d
136
+ # Tensors.
137
+ shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
138
+ output_tensors = ctx.run_function(*shallow_copies)
139
+ input_grads = torch.autograd.grad(
140
+ output_tensors,
141
+ ctx.input_tensors + ctx.input_params,
142
+ output_grads,
143
+ allow_unused=True,
144
+ )
145
+ del ctx.input_tensors
146
+ del ctx.input_params
147
+ del output_tensors
148
+ return (None, None) + input_grads
149
+
150
+
151
+ def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
152
+ """
153
+ Create sinusoidal timestep embeddings.
154
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
155
+ These may be fractional.
156
+ :param dim: the dimension of the output.
157
+ :param max_period: controls the minimum frequency of the embeddings.
158
+ :return: an [N x dim] Tensor of positional embeddings.
159
+ """
160
+ if not repeat_only:
161
+ half = dim // 2
162
+ freqs = torch.exp(
163
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
164
+ ).to(device=timesteps.device)
165
+ args = timesteps[:, None].float() * freqs[None]
166
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
167
+ if dim % 2:
168
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
169
+ else:
170
+ embedding = repeat(timesteps, 'b -> b d', d=dim)
171
+ return embedding
172
+
173
+
174
+ def zero_module(module):
175
+ """
176
+ Zero out the parameters of a module and return it.
177
+ """
178
+ for p in module.parameters():
179
+ p.detach().zero_()
180
+ return module
181
+
182
+
183
+ def scale_module(module, scale):
184
+ """
185
+ Scale the parameters of a module and return it.
186
+ """
187
+ for p in module.parameters():
188
+ p.detach().mul_(scale)
189
+ return module
190
+
191
+
192
+ def mean_flat(tensor):
193
+ """
194
+ Take the mean over all non-batch dimensions.
195
+ """
196
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
197
+
198
+
199
+ def normalization(channels):
200
+ """
201
+ Make a standard normalization layer.
202
+ :param channels: number of input channels.
203
+ :return: an nn.Module for normalization.
204
+ """
205
+ return GroupNorm32(32, channels)
206
+
207
+
208
+ # PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
209
+ class SiLU(nn.Module):
210
+ def forward(self, x):
211
+ return x * torch.sigmoid(x)
212
+
213
+
214
+ class GroupNorm32(nn.GroupNorm):
215
+ def forward(self, x):
216
+ return super().forward(x.float()).type(x.dtype)
217
+
218
+ def conv_nd(dims, *args, **kwargs):
219
+ """
220
+ Create a 1D, 2D, or 3D convolution module.
221
+ """
222
+ if dims == 1:
223
+ return nn.Conv1d(*args, **kwargs)
224
+ elif dims == 2:
225
+ return nn.Conv2d(*args, **kwargs)
226
+ elif dims == 3:
227
+ return nn.Conv3d(*args, **kwargs)
228
+ raise ValueError(f"unsupported dimensions: {dims}")
229
+
230
+
231
+ def linear(*args, **kwargs):
232
+ """
233
+ Create a linear module.
234
+ """
235
+ return nn.Linear(*args, **kwargs)
236
+
237
+
238
+ def avg_pool_nd(dims, *args, **kwargs):
239
+ """
240
+ Create a 1D, 2D, or 3D average pooling module.
241
+ """
242
+ if dims == 1:
243
+ return nn.AvgPool1d(*args, **kwargs)
244
+ elif dims == 2:
245
+ return nn.AvgPool2d(*args, **kwargs)
246
+ elif dims == 3:
247
+ return nn.AvgPool3d(*args, **kwargs)
248
+ raise ValueError(f"unsupported dimensions: {dims}")
249
+
250
+
251
+ class HybridConditioner(nn.Module):
252
+
253
+ def __init__(self, c_concat_config, c_crossattn_config):
254
+ super().__init__()
255
+ self.concat_conditioner = instantiate_from_config(c_concat_config)
256
+ self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
257
+
258
+ def forward(self, c_concat, c_crossattn):
259
+ c_concat = self.concat_conditioner(c_concat)
260
+ c_crossattn = self.crossattn_conditioner(c_crossattn)
261
+ return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
262
+
263
+
264
+ def noise_like(shape, device, repeat=False):
265
+ repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
266
+ noise = lambda: torch.randn(shape, device=device)
267
+ return repeat_noise() if repeat else noise()
stable_diffusion/ldm/modules/distributions/__init__.py ADDED
File without changes
stable_diffusion/ldm/modules/distributions/distributions.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+
4
+
5
+ class AbstractDistribution:
6
+ def sample(self):
7
+ raise NotImplementedError()
8
+
9
+ def mode(self):
10
+ raise NotImplementedError()
11
+
12
+
13
+ class DiracDistribution(AbstractDistribution):
14
+ def __init__(self, value):
15
+ self.value = value
16
+
17
+ def sample(self):
18
+ return self.value
19
+
20
+ def mode(self):
21
+ return self.value
22
+
23
+
24
+ class DiagonalGaussianDistribution(object):
25
+ def __init__(self, parameters, deterministic=False):
26
+ self.parameters = parameters
27
+ self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
28
+ self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
29
+ self.deterministic = deterministic
30
+ self.std = torch.exp(0.5 * self.logvar)
31
+ self.var = torch.exp(self.logvar)
32
+ if self.deterministic:
33
+ self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
34
+
35
+ def sample(self):
36
+ x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
37
+ return x
38
+
39
+ def kl(self, other=None):
40
+ if self.deterministic:
41
+ return torch.Tensor([0.])
42
+ else:
43
+ if other is None:
44
+ return 0.5 * torch.sum(torch.pow(self.mean, 2)
45
+ + self.var - 1.0 - self.logvar,
46
+ dim=[1, 2, 3])
47
+ else:
48
+ return 0.5 * torch.sum(
49
+ torch.pow(self.mean - other.mean, 2) / other.var
50
+ + self.var / other.var - 1.0 - self.logvar + other.logvar,
51
+ dim=[1, 2, 3])
52
+
53
+ def nll(self, sample, dims=[1,2,3]):
54
+ if self.deterministic:
55
+ return torch.Tensor([0.])
56
+ logtwopi = np.log(2.0 * np.pi)
57
+ return 0.5 * torch.sum(
58
+ logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
59
+ dim=dims)
60
+
61
+ def mode(self):
62
+ return self.mean
63
+
64
+
65
+ def normal_kl(mean1, logvar1, mean2, logvar2):
66
+ """
67
+ source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
68
+ Compute the KL divergence between two gaussians.
69
+ Shapes are automatically broadcasted, so batches can be compared to
70
+ scalars, among other use cases.
71
+ """
72
+ tensor = None
73
+ for obj in (mean1, logvar1, mean2, logvar2):
74
+ if isinstance(obj, torch.Tensor):
75
+ tensor = obj
76
+ break
77
+ assert tensor is not None, "at least one argument must be a Tensor"
78
+
79
+ # Force variances to be Tensors. Broadcasting helps convert scalars to
80
+ # Tensors, but it does not work for torch.exp().
81
+ logvar1, logvar2 = [
82
+ x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
83
+ for x in (logvar1, logvar2)
84
+ ]
85
+
86
+ return 0.5 * (
87
+ -1.0
88
+ + logvar2
89
+ - logvar1
90
+ + torch.exp(logvar1 - logvar2)
91
+ + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
92
+ )
stable_diffusion/ldm/modules/ema.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+
5
+ class LitEma(nn.Module):
6
+ def __init__(self, model, decay=0.9999, use_num_upates=True):
7
+ super().__init__()
8
+ if decay < 0.0 or decay > 1.0:
9
+ raise ValueError('Decay must be between 0 and 1')
10
+
11
+ self.m_name2s_name = {}
12
+ self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
13
+ self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
14
+ else torch.tensor(-1,dtype=torch.int))
15
+
16
+ for name, p in model.named_parameters():
17
+ if p.requires_grad:
18
+ #remove as '.'-character is not allowed in buffers
19
+ s_name = name.replace('.','')
20
+ self.m_name2s_name.update({name:s_name})
21
+ self.register_buffer(s_name,p.clone().detach().data)
22
+
23
+ self.collected_params = []
24
+
25
+ def forward(self,model):
26
+ decay = self.decay
27
+
28
+ if self.num_updates >= 0:
29
+ self.num_updates += 1
30
+ decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
31
+
32
+ one_minus_decay = 1.0 - decay
33
+
34
+ with torch.no_grad():
35
+ m_param = dict(model.named_parameters())
36
+ shadow_params = dict(self.named_buffers())
37
+
38
+ for key in m_param:
39
+ if m_param[key].requires_grad:
40
+ sname = self.m_name2s_name[key]
41
+ shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
42
+ shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
43
+ else:
44
+ assert not key in self.m_name2s_name
45
+
46
+ def copy_to(self, model):
47
+ m_param = dict(model.named_parameters())
48
+ shadow_params = dict(self.named_buffers())
49
+ for key in m_param:
50
+ if m_param[key].requires_grad:
51
+ m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
52
+ else:
53
+ assert not key in self.m_name2s_name
54
+
55
+ def store(self, parameters):
56
+ """
57
+ Save the current parameters for restoring later.
58
+ Args:
59
+ parameters: Iterable of `torch.nn.Parameter`; the parameters to be
60
+ temporarily stored.
61
+ """
62
+ self.collected_params = [param.clone() for param in parameters]
63
+
64
+ def restore(self, parameters):
65
+ """
66
+ Restore the parameters stored with the `store` method.
67
+ Useful to validate the model with EMA parameters without affecting the
68
+ original optimization process. Store the parameters before the
69
+ `copy_to` method. After validation (or model saving), use this to
70
+ restore the former parameters.
71
+ Args:
72
+ parameters: Iterable of `torch.nn.Parameter`; the parameters to be
73
+ updated with the stored parameters.
74
+ """
75
+ for c_param, param in zip(self.collected_params, parameters):
76
+ param.data.copy_(c_param.data)
stable_diffusion/ldm/modules/encoders/__init__.py ADDED
File without changes
stable_diffusion/ldm/modules/encoders/modules.py ADDED
@@ -0,0 +1,425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import numpy as np
4
+ from functools import partial
5
+ import kornia
6
+
7
+ from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
8
+ from ldm.util import default
9
+ import clip
10
+
11
+
12
+ class AbstractEncoder(nn.Module):
13
+ def __init__(self):
14
+ super().__init__()
15
+
16
+ def encode(self, *args, **kwargs):
17
+ raise NotImplementedError
18
+
19
+ class IdentityEncoder(AbstractEncoder):
20
+
21
+ def encode(self, x):
22
+ return x
23
+
24
+
25
+ class ClassEmbedder(nn.Module):
26
+ def __init__(self, embed_dim, n_classes=1000, key='class'):
27
+ super().__init__()
28
+ self.key = key
29
+ self.embedding = nn.Embedding(n_classes, embed_dim)
30
+
31
+ def forward(self, batch, key=None):
32
+ if key is None:
33
+ key = self.key
34
+ # this is for use in crossattn
35
+ c = batch[key][:, None]
36
+ c = self.embedding(c)
37
+ return c
38
+
39
+
40
+ class TransformerEmbedder(AbstractEncoder):
41
+ """Some transformer encoder layers"""
42
+ def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
43
+ super().__init__()
44
+ self.device = device
45
+ self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
46
+ attn_layers=Encoder(dim=n_embed, depth=n_layer))
47
+
48
+ def forward(self, tokens):
49
+ tokens = tokens.to(self.device) # meh
50
+ z = self.transformer(tokens, return_embeddings=True)
51
+ return z
52
+
53
+ def encode(self, x):
54
+ return self(x)
55
+
56
+
57
+ class BERTTokenizer(AbstractEncoder):
58
+ """ Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
59
+ def __init__(self, device="cuda", vq_interface=True, max_length=77):
60
+ super().__init__()
61
+ from transformers import BertTokenizerFast # TODO: add to reuquirements
62
+ self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
63
+ self.device = device
64
+ self.vq_interface = vq_interface
65
+ self.max_length = max_length
66
+
67
+ def forward(self, text):
68
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
69
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
70
+ tokens = batch_encoding["input_ids"].to(self.device)
71
+ return tokens
72
+
73
+ @torch.no_grad()
74
+ def encode(self, text):
75
+ tokens = self(text)
76
+ if not self.vq_interface:
77
+ return tokens
78
+ return None, None, [None, None, tokens]
79
+
80
+ def decode(self, text):
81
+ return text
82
+
83
+
84
+ class BERTEmbedder(AbstractEncoder):
85
+ """Uses the BERT tokenizr model and add some transformer encoder layers"""
86
+ def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
87
+ device="cuda",use_tokenizer=True, embedding_dropout=0.0):
88
+ super().__init__()
89
+ self.use_tknz_fn = use_tokenizer
90
+ if self.use_tknz_fn:
91
+ self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
92
+ self.device = device
93
+ self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
94
+ attn_layers=Encoder(dim=n_embed, depth=n_layer),
95
+ emb_dropout=embedding_dropout)
96
+
97
+ def forward(self, text):
98
+ if self.use_tknz_fn:
99
+ tokens = self.tknz_fn(text)#.to(self.device)
100
+ else:
101
+ tokens = text
102
+ z = self.transformer(tokens, return_embeddings=True)
103
+ return z
104
+
105
+ def encode(self, text):
106
+ # output of length 77
107
+ return self(text)
108
+
109
+
110
+ from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
111
+
112
+ def disabled_train(self, mode=True):
113
+ """Overwrite model.train with this function to make sure train/eval mode
114
+ does not change anymore."""
115
+ return self
116
+
117
+
118
+ class FrozenT5Embedder(AbstractEncoder):
119
+ """Uses the T5 transformer encoder for text"""
120
+ def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
121
+ super().__init__()
122
+ self.tokenizer = T5Tokenizer.from_pretrained(version)
123
+ self.transformer = T5EncoderModel.from_pretrained(version)
124
+ self.device = device
125
+ self.max_length = max_length # TODO: typical value?
126
+ self.freeze()
127
+
128
+ def freeze(self):
129
+ self.transformer = self.transformer.eval()
130
+ #self.train = disabled_train
131
+ for param in self.parameters():
132
+ param.requires_grad = False
133
+
134
+ def forward(self, text):
135
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
136
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
137
+ tokens = batch_encoding["input_ids"].to(self.device)
138
+ outputs = self.transformer(input_ids=tokens)
139
+
140
+ z = outputs.last_hidden_state
141
+ return z
142
+
143
+ def encode(self, text):
144
+ return self(text)
145
+
146
+ from ldm.thirdp.psp.id_loss import IDFeatures
147
+ import kornia.augmentation as K
148
+
149
+ class FrozenFaceEncoder(AbstractEncoder):
150
+ def __init__(self, model_path, augment=False):
151
+ super().__init__()
152
+ self.loss_fn = IDFeatures(model_path)
153
+ # face encoder is frozen
154
+ for p in self.loss_fn.parameters():
155
+ p.requires_grad = False
156
+ # Mapper is trainable
157
+ self.mapper = torch.nn.Linear(512, 768)
158
+ p = 0.25
159
+ if augment:
160
+ self.augment = K.AugmentationSequential(
161
+ K.RandomHorizontalFlip(p=0.5),
162
+ K.RandomEqualize(p=p),
163
+ K.RandomPlanckianJitter(p=p),
164
+ K.RandomPlasmaBrightness(p=p),
165
+ K.RandomPlasmaContrast(p=p),
166
+ K.ColorJiggle(0.02, 0.2, 0.2, p=p),
167
+ )
168
+ else:
169
+ self.augment = False
170
+
171
+ def forward(self, img):
172
+ if isinstance(img, list):
173
+ # Uncondition
174
+ return torch.zeros((1, 1, 768), device=self.mapper.weight.device)
175
+
176
+ if self.augment is not None:
177
+ # Transforms require 0-1
178
+ img = self.augment((img + 1)/2)
179
+ img = 2*img - 1
180
+
181
+ feat = self.loss_fn(img, crop=True)
182
+ feat = self.mapper(feat.unsqueeze(1))
183
+ return feat
184
+
185
+ def encode(self, img):
186
+ return self(img)
187
+
188
+ class FrozenCLIPEmbedder(AbstractEncoder):
189
+ """Uses the CLIP transformer encoder for text (from huggingface)"""
190
+ def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): # clip-vit-base-patch32
191
+ super().__init__()
192
+ self.tokenizer = CLIPTokenizer.from_pretrained(version)
193
+ self.transformer = CLIPTextModel.from_pretrained(version)
194
+ self.device = device
195
+ self.max_length = max_length # TODO: typical value?
196
+ self.freeze()
197
+
198
+ def freeze(self):
199
+ self.transformer = self.transformer.eval()
200
+ #self.train = disabled_train
201
+ for param in self.parameters():
202
+ param.requires_grad = False
203
+
204
+ def forward(self, text):
205
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
206
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
207
+ tokens = batch_encoding["input_ids"].to(self.device)
208
+ outputs = self.transformer(input_ids=tokens)
209
+
210
+ z = outputs.last_hidden_state
211
+ return z
212
+
213
+ def encode(self, text):
214
+ return self(text)
215
+
216
+ import torch.nn.functional as F
217
+ from transformers import CLIPVisionModel
218
+ class ClipImageProjector(AbstractEncoder):
219
+ """
220
+ Uses the CLIP image encoder.
221
+ """
222
+ def __init__(self, version="openai/clip-vit-large-patch14", max_length=77): # clip-vit-base-patch32
223
+ super().__init__()
224
+ self.model = CLIPVisionModel.from_pretrained(version)
225
+ self.model.train()
226
+ self.max_length = max_length # TODO: typical value?
227
+ self.antialias = True
228
+ self.mapper = torch.nn.Linear(1024, 768)
229
+ self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
230
+ self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
231
+ null_cond = self.get_null_cond(version, max_length)
232
+ self.register_buffer('null_cond', null_cond)
233
+
234
+ @torch.no_grad()
235
+ def get_null_cond(self, version, max_length):
236
+ device = self.mean.device
237
+ embedder = FrozenCLIPEmbedder(version=version, device=device, max_length=max_length)
238
+ null_cond = embedder([""])
239
+ return null_cond
240
+
241
+ def preprocess(self, x):
242
+ # Expects inputs in the range -1, 1
243
+ x = kornia.geometry.resize(x, (224, 224),
244
+ interpolation='bicubic',align_corners=True,
245
+ antialias=self.antialias)
246
+ x = (x + 1.) / 2.
247
+ # renormalize according to clip
248
+ x = kornia.enhance.normalize(x, self.mean, self.std)
249
+ return x
250
+
251
+ def forward(self, x):
252
+ if isinstance(x, list):
253
+ return self.null_cond
254
+ # x is assumed to be in range [-1,1]
255
+ x = self.preprocess(x)
256
+ outputs = self.model(pixel_values=x)
257
+ last_hidden_state = outputs.last_hidden_state
258
+ last_hidden_state = self.mapper(last_hidden_state)
259
+ return F.pad(last_hidden_state, [0,0, 0,self.max_length-last_hidden_state.shape[1], 0,0])
260
+
261
+ def encode(self, im):
262
+ return self(im)
263
+
264
+ class ProjectedFrozenCLIPEmbedder(AbstractEncoder):
265
+ def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): # clip-vit-base-patch32
266
+ super().__init__()
267
+ self.embedder = FrozenCLIPEmbedder(version=version, device=device, max_length=max_length)
268
+ self.projection = torch.nn.Linear(768, 768)
269
+
270
+ def forward(self, text):
271
+ z = self.embedder(text)
272
+ return self.projection(z)
273
+
274
+ def encode(self, text):
275
+ return self(text)
276
+
277
+ class FrozenCLIPImageEmbedder(AbstractEncoder):
278
+ """
279
+ Uses the CLIP image encoder.
280
+ Not actually frozen... If you want that set cond_stage_trainable=False in cfg
281
+ """
282
+ def __init__(
283
+ self,
284
+ model='ViT-L/14',
285
+ jit=False,
286
+ device='cpu',
287
+ antialias=False,
288
+ ):
289
+ super().__init__()
290
+ self.model, _ = clip.load(name=model, device=device, jit=jit)
291
+ # We don't use the text part so delete it
292
+ del self.model.transformer
293
+ self.antialias = antialias
294
+ self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
295
+ self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
296
+
297
+ def preprocess(self, x):
298
+ # Expects inputs in the range -1, 1
299
+ x = kornia.geometry.resize(x, (224, 224),
300
+ interpolation='bicubic',align_corners=True,
301
+ antialias=self.antialias)
302
+ x = (x + 1.) / 2.
303
+ # renormalize according to clip
304
+ x = kornia.enhance.normalize(x, self.mean, self.std)
305
+ return x
306
+
307
+ def forward(self, x):
308
+ # x is assumed to be in range [-1,1]
309
+ if isinstance(x, list):
310
+ # [""] denotes condition dropout for ucg
311
+ device = self.model.visual.conv1.weight.device
312
+ return torch.zeros(1, 768, device=device)
313
+ return self.model.encode_image(self.preprocess(x)).float()
314
+
315
+ def encode(self, im):
316
+ return self(im).unsqueeze(1)
317
+
318
+ class SpatialRescaler(nn.Module):
319
+ def __init__(self,
320
+ n_stages=1,
321
+ method='bilinear',
322
+ multiplier=0.5,
323
+ in_channels=3,
324
+ out_channels=None,
325
+ bias=False):
326
+ super().__init__()
327
+ self.n_stages = n_stages
328
+ assert self.n_stages >= 0
329
+ assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
330
+ self.multiplier = multiplier
331
+ self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
332
+ self.remap_output = out_channels is not None
333
+ if self.remap_output:
334
+ print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
335
+ self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
336
+
337
+ def forward(self,x):
338
+ for stage in range(self.n_stages):
339
+ x = self.interpolator(x, scale_factor=self.multiplier)
340
+
341
+
342
+ if self.remap_output:
343
+ x = self.channel_mapper(x)
344
+ return x
345
+
346
+ def encode(self, x):
347
+ return self(x)
348
+
349
+
350
+ from ldm.util import instantiate_from_config
351
+ from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
352
+
353
+
354
+ class LowScaleEncoder(nn.Module):
355
+ def __init__(self, model_config, linear_start, linear_end, timesteps=1000, max_noise_level=250, output_size=64,
356
+ scale_factor=1.0):
357
+ super().__init__()
358
+ self.max_noise_level = max_noise_level
359
+ self.model = instantiate_from_config(model_config)
360
+ self.augmentation_schedule = self.register_schedule(timesteps=timesteps, linear_start=linear_start,
361
+ linear_end=linear_end)
362
+ self.out_size = output_size
363
+ self.scale_factor = scale_factor
364
+
365
+ def register_schedule(self, beta_schedule="linear", timesteps=1000,
366
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
367
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
368
+ cosine_s=cosine_s)
369
+ alphas = 1. - betas
370
+ alphas_cumprod = np.cumprod(alphas, axis=0)
371
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
372
+
373
+ timesteps, = betas.shape
374
+ self.num_timesteps = int(timesteps)
375
+ self.linear_start = linear_start
376
+ self.linear_end = linear_end
377
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
378
+
379
+ to_torch = partial(torch.tensor, dtype=torch.float32)
380
+
381
+ self.register_buffer('betas', to_torch(betas))
382
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
383
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
384
+
385
+ # calculations for diffusion q(x_t | x_{t-1}) and others
386
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
387
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
388
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
389
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
390
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
391
+
392
+ def q_sample(self, x_start, t, noise=None):
393
+ noise = default(noise, lambda: torch.randn_like(x_start))
394
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
395
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
396
+
397
+ def forward(self, x):
398
+ z = self.model.encode(x).sample()
399
+ z = z * self.scale_factor
400
+ noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
401
+ z = self.q_sample(z, noise_level)
402
+ if self.out_size is not None:
403
+ z = torch.nn.functional.interpolate(z, size=self.out_size, mode="nearest") # TODO: experiment with mode
404
+ # z = z.repeat_interleave(2, -2).repeat_interleave(2, -1)
405
+ return z, noise_level
406
+
407
+ def decode(self, z):
408
+ z = z / self.scale_factor
409
+ return self.model.decode(z)
410
+
411
+
412
+ if __name__ == "__main__":
413
+ from ldm.util import count_params
414
+ sentences = ["a hedgehog drinking a whiskey", "der mond ist aufgegangen", "Ein Satz mit vielen Sonderzeichen: äöü ß ?! : 'xx-y/@s'"]
415
+ model = FrozenT5Embedder(version="google/t5-v1_1-xl").cuda()
416
+ count_params(model, True)
417
+ z = model(sentences)
418
+ print(z.shape)
419
+
420
+ model = FrozenCLIPEmbedder().cuda()
421
+ count_params(model, True)
422
+ z = model(sentences)
423
+ print(z.shape)
424
+
425
+ print("done.")
stable_diffusion/ldm/modules/evaluate/adm_evaluator.py ADDED
@@ -0,0 +1,676 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import io
3
+ import os
4
+ import random
5
+ import warnings
6
+ import zipfile
7
+ from abc import ABC, abstractmethod
8
+ from contextlib import contextmanager
9
+ from functools import partial
10
+ from multiprocessing import cpu_count
11
+ from multiprocessing.pool import ThreadPool
12
+ from typing import Iterable, Optional, Tuple
13
+ import yaml
14
+
15
+ import numpy as np
16
+ import requests
17
+ import tensorflow.compat.v1 as tf
18
+ from scipy import linalg
19
+ from tqdm.auto import tqdm
20
+
21
+ INCEPTION_V3_URL = "https://openaipublic.blob.core.windows.net/diffusion/jul-2021/ref_batches/classify_image_graph_def.pb"
22
+ INCEPTION_V3_PATH = "classify_image_graph_def.pb"
23
+
24
+ FID_POOL_NAME = "pool_3:0"
25
+ FID_SPATIAL_NAME = "mixed_6/conv:0"
26
+
27
+ REQUIREMENTS = f"This script has the following requirements: \n" \
28
+ 'tensorflow-gpu>=2.0' + "\n" + 'scipy' + "\n" + "requests" + "\n" + "tqdm"
29
+
30
+
31
+ def main():
32
+ parser = argparse.ArgumentParser()
33
+ parser.add_argument("--ref_batch", help="path to reference batch npz file")
34
+ parser.add_argument("--sample_batch", help="path to sample batch npz file")
35
+ args = parser.parse_args()
36
+
37
+ config = tf.ConfigProto(
38
+ allow_soft_placement=True # allows DecodeJpeg to run on CPU in Inception graph
39
+ )
40
+ config.gpu_options.allow_growth = True
41
+ evaluator = Evaluator(tf.Session(config=config))
42
+
43
+ print("warming up TensorFlow...")
44
+ # This will cause TF to print a bunch of verbose stuff now rather
45
+ # than after the next print(), to help prevent confusion.
46
+ evaluator.warmup()
47
+
48
+ print("computing reference batch activations...")
49
+ ref_acts = evaluator.read_activations(args.ref_batch)
50
+ print("computing/reading reference batch statistics...")
51
+ ref_stats, ref_stats_spatial = evaluator.read_statistics(args.ref_batch, ref_acts)
52
+
53
+ print("computing sample batch activations...")
54
+ sample_acts = evaluator.read_activations(args.sample_batch)
55
+ print("computing/reading sample batch statistics...")
56
+ sample_stats, sample_stats_spatial = evaluator.read_statistics(args.sample_batch, sample_acts)
57
+
58
+ print("Computing evaluations...")
59
+ is_ = evaluator.compute_inception_score(sample_acts[0])
60
+ print("Inception Score:", is_)
61
+ fid = sample_stats.frechet_distance(ref_stats)
62
+ print("FID:", fid)
63
+ sfid = sample_stats_spatial.frechet_distance(ref_stats_spatial)
64
+ print("sFID:", sfid)
65
+ prec, recall = evaluator.compute_prec_recall(ref_acts[0], sample_acts[0])
66
+ print("Precision:", prec)
67
+ print("Recall:", recall)
68
+
69
+ savepath = '/'.join(args.sample_batch.split('/')[:-1])
70
+ results_file = os.path.join(savepath,'evaluation_metrics.yaml')
71
+ print(f'Saving evaluation results to "{results_file}"')
72
+
73
+ results = {
74
+ 'IS': is_,
75
+ 'FID': fid,
76
+ 'sFID': sfid,
77
+ 'Precision:':prec,
78
+ 'Recall': recall
79
+ }
80
+
81
+ with open(results_file, 'w') as f:
82
+ yaml.dump(results, f, default_flow_style=False)
83
+
84
+ class InvalidFIDException(Exception):
85
+ pass
86
+
87
+
88
+ class FIDStatistics:
89
+ def __init__(self, mu: np.ndarray, sigma: np.ndarray):
90
+ self.mu = mu
91
+ self.sigma = sigma
92
+
93
+ def frechet_distance(self, other, eps=1e-6):
94
+ """
95
+ Compute the Frechet distance between two sets of statistics.
96
+ """
97
+ # https://github.com/bioinf-jku/TTUR/blob/73ab375cdf952a12686d9aa7978567771084da42/fid.py#L132
98
+ mu1, sigma1 = self.mu, self.sigma
99
+ mu2, sigma2 = other.mu, other.sigma
100
+
101
+ mu1 = np.atleast_1d(mu1)
102
+ mu2 = np.atleast_1d(mu2)
103
+
104
+ sigma1 = np.atleast_2d(sigma1)
105
+ sigma2 = np.atleast_2d(sigma2)
106
+
107
+ assert (
108
+ mu1.shape == mu2.shape
109
+ ), f"Training and test mean vectors have different lengths: {mu1.shape}, {mu2.shape}"
110
+ assert (
111
+ sigma1.shape == sigma2.shape
112
+ ), f"Training and test covariances have different dimensions: {sigma1.shape}, {sigma2.shape}"
113
+
114
+ diff = mu1 - mu2
115
+
116
+ # product might be almost singular
117
+ covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
118
+ if not np.isfinite(covmean).all():
119
+ msg = (
120
+ "fid calculation produces singular product; adding %s to diagonal of cov estimates"
121
+ % eps
122
+ )
123
+ warnings.warn(msg)
124
+ offset = np.eye(sigma1.shape[0]) * eps
125
+ covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
126
+
127
+ # numerical error might give slight imaginary component
128
+ if np.iscomplexobj(covmean):
129
+ if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
130
+ m = np.max(np.abs(covmean.imag))
131
+ raise ValueError("Imaginary component {}".format(m))
132
+ covmean = covmean.real
133
+
134
+ tr_covmean = np.trace(covmean)
135
+
136
+ return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean
137
+
138
+
139
+ class Evaluator:
140
+ def __init__(
141
+ self,
142
+ session,
143
+ batch_size=64,
144
+ softmax_batch_size=512,
145
+ ):
146
+ self.sess = session
147
+ self.batch_size = batch_size
148
+ self.softmax_batch_size = softmax_batch_size
149
+ self.manifold_estimator = ManifoldEstimator(session)
150
+ with self.sess.graph.as_default():
151
+ self.image_input = tf.placeholder(tf.float32, shape=[None, None, None, 3])
152
+ self.softmax_input = tf.placeholder(tf.float32, shape=[None, 2048])
153
+ self.pool_features, self.spatial_features = _create_feature_graph(self.image_input)
154
+ self.softmax = _create_softmax_graph(self.softmax_input)
155
+
156
+ def warmup(self):
157
+ self.compute_activations(np.zeros([1, 8, 64, 64, 3]))
158
+
159
+ def read_activations(self, npz_path: str) -> Tuple[np.ndarray, np.ndarray]:
160
+ with open_npz_array(npz_path, "arr_0") as reader:
161
+ return self.compute_activations(reader.read_batches(self.batch_size))
162
+
163
+ def compute_activations(self, batches: Iterable[np.ndarray],silent=False) -> Tuple[np.ndarray, np.ndarray]:
164
+ """
165
+ Compute image features for downstream evals.
166
+
167
+ :param batches: a iterator over NHWC numpy arrays in [0, 255].
168
+ :return: a tuple of numpy arrays of shape [N x X], where X is a feature
169
+ dimension. The tuple is (pool_3, spatial).
170
+ """
171
+ preds = []
172
+ spatial_preds = []
173
+ it = batches if silent else tqdm(batches)
174
+ for batch in it:
175
+ batch = batch.astype(np.float32)
176
+ pred, spatial_pred = self.sess.run(
177
+ [self.pool_features, self.spatial_features], {self.image_input: batch}
178
+ )
179
+ preds.append(pred.reshape([pred.shape[0], -1]))
180
+ spatial_preds.append(spatial_pred.reshape([spatial_pred.shape[0], -1]))
181
+ return (
182
+ np.concatenate(preds, axis=0),
183
+ np.concatenate(spatial_preds, axis=0),
184
+ )
185
+
186
+ def read_statistics(
187
+ self, npz_path: str, activations: Tuple[np.ndarray, np.ndarray]
188
+ ) -> Tuple[FIDStatistics, FIDStatistics]:
189
+ obj = np.load(npz_path)
190
+ if "mu" in list(obj.keys()):
191
+ return FIDStatistics(obj["mu"], obj["sigma"]), FIDStatistics(
192
+ obj["mu_s"], obj["sigma_s"]
193
+ )
194
+ return tuple(self.compute_statistics(x) for x in activations)
195
+
196
+ def compute_statistics(self, activations: np.ndarray) -> FIDStatistics:
197
+ mu = np.mean(activations, axis=0)
198
+ sigma = np.cov(activations, rowvar=False)
199
+ return FIDStatistics(mu, sigma)
200
+
201
+ def compute_inception_score(self, activations: np.ndarray, split_size: int = 5000) -> float:
202
+ softmax_out = []
203
+ for i in range(0, len(activations), self.softmax_batch_size):
204
+ acts = activations[i : i + self.softmax_batch_size]
205
+ softmax_out.append(self.sess.run(self.softmax, feed_dict={self.softmax_input: acts}))
206
+ preds = np.concatenate(softmax_out, axis=0)
207
+ # https://github.com/openai/improved-gan/blob/4f5d1ec5c16a7eceb206f42bfc652693601e1d5c/inception_score/model.py#L46
208
+ scores = []
209
+ for i in range(0, len(preds), split_size):
210
+ part = preds[i : i + split_size]
211
+ kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0)))
212
+ kl = np.mean(np.sum(kl, 1))
213
+ scores.append(np.exp(kl))
214
+ return float(np.mean(scores))
215
+
216
+ def compute_prec_recall(
217
+ self, activations_ref: np.ndarray, activations_sample: np.ndarray
218
+ ) -> Tuple[float, float]:
219
+ radii_1 = self.manifold_estimator.manifold_radii(activations_ref)
220
+ radii_2 = self.manifold_estimator.manifold_radii(activations_sample)
221
+ pr = self.manifold_estimator.evaluate_pr(
222
+ activations_ref, radii_1, activations_sample, radii_2
223
+ )
224
+ return (float(pr[0][0]), float(pr[1][0]))
225
+
226
+
227
+ class ManifoldEstimator:
228
+ """
229
+ A helper for comparing manifolds of feature vectors.
230
+
231
+ Adapted from https://github.com/kynkaat/improved-precision-and-recall-metric/blob/f60f25e5ad933a79135c783fcda53de30f42c9b9/precision_recall.py#L57
232
+ """
233
+
234
+ def __init__(
235
+ self,
236
+ session,
237
+ row_batch_size=10000,
238
+ col_batch_size=10000,
239
+ nhood_sizes=(3,),
240
+ clamp_to_percentile=None,
241
+ eps=1e-5,
242
+ ):
243
+ """
244
+ Estimate the manifold of given feature vectors.
245
+
246
+ :param session: the TensorFlow session.
247
+ :param row_batch_size: row batch size to compute pairwise distances
248
+ (parameter to trade-off between memory usage and performance).
249
+ :param col_batch_size: column batch size to compute pairwise distances.
250
+ :param nhood_sizes: number of neighbors used to estimate the manifold.
251
+ :param clamp_to_percentile: prune hyperspheres that have radius larger than
252
+ the given percentile.
253
+ :param eps: small number for numerical stability.
254
+ """
255
+ self.distance_block = DistanceBlock(session)
256
+ self.row_batch_size = row_batch_size
257
+ self.col_batch_size = col_batch_size
258
+ self.nhood_sizes = nhood_sizes
259
+ self.num_nhoods = len(nhood_sizes)
260
+ self.clamp_to_percentile = clamp_to_percentile
261
+ self.eps = eps
262
+
263
+ def warmup(self):
264
+ feats, radii = (
265
+ np.zeros([1, 2048], dtype=np.float32),
266
+ np.zeros([1, 1], dtype=np.float32),
267
+ )
268
+ self.evaluate_pr(feats, radii, feats, radii)
269
+
270
+ def manifold_radii(self, features: np.ndarray) -> np.ndarray:
271
+ num_images = len(features)
272
+
273
+ # Estimate manifold of features by calculating distances to k-NN of each sample.
274
+ radii = np.zeros([num_images, self.num_nhoods], dtype=np.float32)
275
+ distance_batch = np.zeros([self.row_batch_size, num_images], dtype=np.float32)
276
+ seq = np.arange(max(self.nhood_sizes) + 1, dtype=np.int32)
277
+
278
+ for begin1 in range(0, num_images, self.row_batch_size):
279
+ end1 = min(begin1 + self.row_batch_size, num_images)
280
+ row_batch = features[begin1:end1]
281
+
282
+ for begin2 in range(0, num_images, self.col_batch_size):
283
+ end2 = min(begin2 + self.col_batch_size, num_images)
284
+ col_batch = features[begin2:end2]
285
+
286
+ # Compute distances between batches.
287
+ distance_batch[
288
+ 0 : end1 - begin1, begin2:end2
289
+ ] = self.distance_block.pairwise_distances(row_batch, col_batch)
290
+
291
+ # Find the k-nearest neighbor from the current batch.
292
+ radii[begin1:end1, :] = np.concatenate(
293
+ [
294
+ x[:, self.nhood_sizes]
295
+ for x in _numpy_partition(distance_batch[0 : end1 - begin1, :], seq, axis=1)
296
+ ],
297
+ axis=0,
298
+ )
299
+
300
+ if self.clamp_to_percentile is not None:
301
+ max_distances = np.percentile(radii, self.clamp_to_percentile, axis=0)
302
+ radii[radii > max_distances] = 0
303
+ return radii
304
+
305
+ def evaluate(self, features: np.ndarray, radii: np.ndarray, eval_features: np.ndarray):
306
+ """
307
+ Evaluate if new feature vectors are at the manifold.
308
+ """
309
+ num_eval_images = eval_features.shape[0]
310
+ num_ref_images = radii.shape[0]
311
+ distance_batch = np.zeros([self.row_batch_size, num_ref_images], dtype=np.float32)
312
+ batch_predictions = np.zeros([num_eval_images, self.num_nhoods], dtype=np.int32)
313
+ max_realism_score = np.zeros([num_eval_images], dtype=np.float32)
314
+ nearest_indices = np.zeros([num_eval_images], dtype=np.int32)
315
+
316
+ for begin1 in range(0, num_eval_images, self.row_batch_size):
317
+ end1 = min(begin1 + self.row_batch_size, num_eval_images)
318
+ feature_batch = eval_features[begin1:end1]
319
+
320
+ for begin2 in range(0, num_ref_images, self.col_batch_size):
321
+ end2 = min(begin2 + self.col_batch_size, num_ref_images)
322
+ ref_batch = features[begin2:end2]
323
+
324
+ distance_batch[
325
+ 0 : end1 - begin1, begin2:end2
326
+ ] = self.distance_block.pairwise_distances(feature_batch, ref_batch)
327
+
328
+ # From the minibatch of new feature vectors, determine if they are in the estimated manifold.
329
+ # If a feature vector is inside a hypersphere of some reference sample, then
330
+ # the new sample lies at the estimated manifold.
331
+ # The radii of the hyperspheres are determined from distances of neighborhood size k.
332
+ samples_in_manifold = distance_batch[0 : end1 - begin1, :, None] <= radii
333
+ batch_predictions[begin1:end1] = np.any(samples_in_manifold, axis=1).astype(np.int32)
334
+
335
+ max_realism_score[begin1:end1] = np.max(
336
+ radii[:, 0] / (distance_batch[0 : end1 - begin1, :] + self.eps), axis=1
337
+ )
338
+ nearest_indices[begin1:end1] = np.argmin(distance_batch[0 : end1 - begin1, :], axis=1)
339
+
340
+ return {
341
+ "fraction": float(np.mean(batch_predictions)),
342
+ "batch_predictions": batch_predictions,
343
+ "max_realisim_score": max_realism_score,
344
+ "nearest_indices": nearest_indices,
345
+ }
346
+
347
+ def evaluate_pr(
348
+ self,
349
+ features_1: np.ndarray,
350
+ radii_1: np.ndarray,
351
+ features_2: np.ndarray,
352
+ radii_2: np.ndarray,
353
+ ) -> Tuple[np.ndarray, np.ndarray]:
354
+ """
355
+ Evaluate precision and recall efficiently.
356
+
357
+ :param features_1: [N1 x D] feature vectors for reference batch.
358
+ :param radii_1: [N1 x K1] radii for reference vectors.
359
+ :param features_2: [N2 x D] feature vectors for the other batch.
360
+ :param radii_2: [N x K2] radii for other vectors.
361
+ :return: a tuple of arrays for (precision, recall):
362
+ - precision: an np.ndarray of length K1
363
+ - recall: an np.ndarray of length K2
364
+ """
365
+ features_1_status = np.zeros([len(features_1), radii_2.shape[1]], dtype=np.bool)
366
+ features_2_status = np.zeros([len(features_2), radii_1.shape[1]], dtype=np.bool)
367
+ for begin_1 in range(0, len(features_1), self.row_batch_size):
368
+ end_1 = begin_1 + self.row_batch_size
369
+ batch_1 = features_1[begin_1:end_1]
370
+ for begin_2 in range(0, len(features_2), self.col_batch_size):
371
+ end_2 = begin_2 + self.col_batch_size
372
+ batch_2 = features_2[begin_2:end_2]
373
+ batch_1_in, batch_2_in = self.distance_block.less_thans(
374
+ batch_1, radii_1[begin_1:end_1], batch_2, radii_2[begin_2:end_2]
375
+ )
376
+ features_1_status[begin_1:end_1] |= batch_1_in
377
+ features_2_status[begin_2:end_2] |= batch_2_in
378
+ return (
379
+ np.mean(features_2_status.astype(np.float64), axis=0),
380
+ np.mean(features_1_status.astype(np.float64), axis=0),
381
+ )
382
+
383
+
384
+ class DistanceBlock:
385
+ """
386
+ Calculate pairwise distances between vectors.
387
+
388
+ Adapted from https://github.com/kynkaat/improved-precision-and-recall-metric/blob/f60f25e5ad933a79135c783fcda53de30f42c9b9/precision_recall.py#L34
389
+ """
390
+
391
+ def __init__(self, session):
392
+ self.session = session
393
+
394
+ # Initialize TF graph to calculate pairwise distances.
395
+ with session.graph.as_default():
396
+ self._features_batch1 = tf.placeholder(tf.float32, shape=[None, None])
397
+ self._features_batch2 = tf.placeholder(tf.float32, shape=[None, None])
398
+ distance_block_16 = _batch_pairwise_distances(
399
+ tf.cast(self._features_batch1, tf.float16),
400
+ tf.cast(self._features_batch2, tf.float16),
401
+ )
402
+ self.distance_block = tf.cond(
403
+ tf.reduce_all(tf.math.is_finite(distance_block_16)),
404
+ lambda: tf.cast(distance_block_16, tf.float32),
405
+ lambda: _batch_pairwise_distances(self._features_batch1, self._features_batch2),
406
+ )
407
+
408
+ # Extra logic for less thans.
409
+ self._radii1 = tf.placeholder(tf.float32, shape=[None, None])
410
+ self._radii2 = tf.placeholder(tf.float32, shape=[None, None])
411
+ dist32 = tf.cast(self.distance_block, tf.float32)[..., None]
412
+ self._batch_1_in = tf.math.reduce_any(dist32 <= self._radii2, axis=1)
413
+ self._batch_2_in = tf.math.reduce_any(dist32 <= self._radii1[:, None], axis=0)
414
+
415
+ def pairwise_distances(self, U, V):
416
+ """
417
+ Evaluate pairwise distances between two batches of feature vectors.
418
+ """
419
+ return self.session.run(
420
+ self.distance_block,
421
+ feed_dict={self._features_batch1: U, self._features_batch2: V},
422
+ )
423
+
424
+ def less_thans(self, batch_1, radii_1, batch_2, radii_2):
425
+ return self.session.run(
426
+ [self._batch_1_in, self._batch_2_in],
427
+ feed_dict={
428
+ self._features_batch1: batch_1,
429
+ self._features_batch2: batch_2,
430
+ self._radii1: radii_1,
431
+ self._radii2: radii_2,
432
+ },
433
+ )
434
+
435
+
436
+ def _batch_pairwise_distances(U, V):
437
+ """
438
+ Compute pairwise distances between two batches of feature vectors.
439
+ """
440
+ with tf.variable_scope("pairwise_dist_block"):
441
+ # Squared norms of each row in U and V.
442
+ norm_u = tf.reduce_sum(tf.square(U), 1)
443
+ norm_v = tf.reduce_sum(tf.square(V), 1)
444
+
445
+ # norm_u as a column and norm_v as a row vectors.
446
+ norm_u = tf.reshape(norm_u, [-1, 1])
447
+ norm_v = tf.reshape(norm_v, [1, -1])
448
+
449
+ # Pairwise squared Euclidean distances.
450
+ D = tf.maximum(norm_u - 2 * tf.matmul(U, V, False, True) + norm_v, 0.0)
451
+
452
+ return D
453
+
454
+
455
+ class NpzArrayReader(ABC):
456
+ @abstractmethod
457
+ def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
458
+ pass
459
+
460
+ @abstractmethod
461
+ def remaining(self) -> int:
462
+ pass
463
+
464
+ def read_batches(self, batch_size: int) -> Iterable[np.ndarray]:
465
+ def gen_fn():
466
+ while True:
467
+ batch = self.read_batch(batch_size)
468
+ if batch is None:
469
+ break
470
+ yield batch
471
+
472
+ rem = self.remaining()
473
+ num_batches = rem // batch_size + int(rem % batch_size != 0)
474
+ return BatchIterator(gen_fn, num_batches)
475
+
476
+
477
+ class BatchIterator:
478
+ def __init__(self, gen_fn, length):
479
+ self.gen_fn = gen_fn
480
+ self.length = length
481
+
482
+ def __len__(self):
483
+ return self.length
484
+
485
+ def __iter__(self):
486
+ return self.gen_fn()
487
+
488
+
489
+ class StreamingNpzArrayReader(NpzArrayReader):
490
+ def __init__(self, arr_f, shape, dtype):
491
+ self.arr_f = arr_f
492
+ self.shape = shape
493
+ self.dtype = dtype
494
+ self.idx = 0
495
+
496
+ def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
497
+ if self.idx >= self.shape[0]:
498
+ return None
499
+
500
+ bs = min(batch_size, self.shape[0] - self.idx)
501
+ self.idx += bs
502
+
503
+ if self.dtype.itemsize == 0:
504
+ return np.ndarray([bs, *self.shape[1:]], dtype=self.dtype)
505
+
506
+ read_count = bs * np.prod(self.shape[1:])
507
+ read_size = int(read_count * self.dtype.itemsize)
508
+ data = _read_bytes(self.arr_f, read_size, "array data")
509
+ return np.frombuffer(data, dtype=self.dtype).reshape([bs, *self.shape[1:]])
510
+
511
+ def remaining(self) -> int:
512
+ return max(0, self.shape[0] - self.idx)
513
+
514
+
515
+ class MemoryNpzArrayReader(NpzArrayReader):
516
+ def __init__(self, arr):
517
+ self.arr = arr
518
+ self.idx = 0
519
+
520
+ @classmethod
521
+ def load(cls, path: str, arr_name: str):
522
+ with open(path, "rb") as f:
523
+ arr = np.load(f)[arr_name]
524
+ return cls(arr)
525
+
526
+ def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
527
+ if self.idx >= self.arr.shape[0]:
528
+ return None
529
+
530
+ res = self.arr[self.idx : self.idx + batch_size]
531
+ self.idx += batch_size
532
+ return res
533
+
534
+ def remaining(self) -> int:
535
+ return max(0, self.arr.shape[0] - self.idx)
536
+
537
+
538
+ @contextmanager
539
+ def open_npz_array(path: str, arr_name: str) -> NpzArrayReader:
540
+ with _open_npy_file(path, arr_name) as arr_f:
541
+ version = np.lib.format.read_magic(arr_f)
542
+ if version == (1, 0):
543
+ header = np.lib.format.read_array_header_1_0(arr_f)
544
+ elif version == (2, 0):
545
+ header = np.lib.format.read_array_header_2_0(arr_f)
546
+ else:
547
+ yield MemoryNpzArrayReader.load(path, arr_name)
548
+ return
549
+ shape, fortran, dtype = header
550
+ if fortran or dtype.hasobject:
551
+ yield MemoryNpzArrayReader.load(path, arr_name)
552
+ else:
553
+ yield StreamingNpzArrayReader(arr_f, shape, dtype)
554
+
555
+
556
+ def _read_bytes(fp, size, error_template="ran out of data"):
557
+ """
558
+ Copied from: https://github.com/numpy/numpy/blob/fb215c76967739268de71aa4bda55dd1b062bc2e/numpy/lib/format.py#L788-L886
559
+
560
+ Read from file-like object until size bytes are read.
561
+ Raises ValueError if not EOF is encountered before size bytes are read.
562
+ Non-blocking objects only supported if they derive from io objects.
563
+ Required as e.g. ZipExtFile in python 2.6 can return less data than
564
+ requested.
565
+ """
566
+ data = bytes()
567
+ while True:
568
+ # io files (default in python3) return None or raise on
569
+ # would-block, python2 file will truncate, probably nothing can be
570
+ # done about that. note that regular files can't be non-blocking
571
+ try:
572
+ r = fp.read(size - len(data))
573
+ data += r
574
+ if len(r) == 0 or len(data) == size:
575
+ break
576
+ except io.BlockingIOError:
577
+ pass
578
+ if len(data) != size:
579
+ msg = "EOF: reading %s, expected %d bytes got %d"
580
+ raise ValueError(msg % (error_template, size, len(data)))
581
+ else:
582
+ return data
583
+
584
+
585
+ @contextmanager
586
+ def _open_npy_file(path: str, arr_name: str):
587
+ with open(path, "rb") as f:
588
+ with zipfile.ZipFile(f, "r") as zip_f:
589
+ if f"{arr_name}.npy" not in zip_f.namelist():
590
+ raise ValueError(f"missing {arr_name} in npz file")
591
+ with zip_f.open(f"{arr_name}.npy", "r") as arr_f:
592
+ yield arr_f
593
+
594
+
595
+ def _download_inception_model():
596
+ if os.path.exists(INCEPTION_V3_PATH):
597
+ return
598
+ print("downloading InceptionV3 model...")
599
+ with requests.get(INCEPTION_V3_URL, stream=True) as r:
600
+ r.raise_for_status()
601
+ tmp_path = INCEPTION_V3_PATH + ".tmp"
602
+ with open(tmp_path, "wb") as f:
603
+ for chunk in tqdm(r.iter_content(chunk_size=8192)):
604
+ f.write(chunk)
605
+ os.rename(tmp_path, INCEPTION_V3_PATH)
606
+
607
+
608
+ def _create_feature_graph(input_batch):
609
+ _download_inception_model()
610
+ prefix = f"{random.randrange(2**32)}_{random.randrange(2**32)}"
611
+ with open(INCEPTION_V3_PATH, "rb") as f:
612
+ graph_def = tf.GraphDef()
613
+ graph_def.ParseFromString(f.read())
614
+ pool3, spatial = tf.import_graph_def(
615
+ graph_def,
616
+ input_map={f"ExpandDims:0": input_batch},
617
+ return_elements=[FID_POOL_NAME, FID_SPATIAL_NAME],
618
+ name=prefix,
619
+ )
620
+ _update_shapes(pool3)
621
+ spatial = spatial[..., :7]
622
+ return pool3, spatial
623
+
624
+
625
+ def _create_softmax_graph(input_batch):
626
+ _download_inception_model()
627
+ prefix = f"{random.randrange(2**32)}_{random.randrange(2**32)}"
628
+ with open(INCEPTION_V3_PATH, "rb") as f:
629
+ graph_def = tf.GraphDef()
630
+ graph_def.ParseFromString(f.read())
631
+ (matmul,) = tf.import_graph_def(
632
+ graph_def, return_elements=[f"softmax/logits/MatMul"], name=prefix
633
+ )
634
+ w = matmul.inputs[1]
635
+ logits = tf.matmul(input_batch, w)
636
+ return tf.nn.softmax(logits)
637
+
638
+
639
+ def _update_shapes(pool3):
640
+ # https://github.com/bioinf-jku/TTUR/blob/73ab375cdf952a12686d9aa7978567771084da42/fid.py#L50-L63
641
+ ops = pool3.graph.get_operations()
642
+ for op in ops:
643
+ for o in op.outputs:
644
+ shape = o.get_shape()
645
+ if shape._dims is not None: # pylint: disable=protected-access
646
+ # shape = [s.value for s in shape] TF 1.x
647
+ shape = [s for s in shape] # TF 2.x
648
+ new_shape = []
649
+ for j, s in enumerate(shape):
650
+ if s == 1 and j == 0:
651
+ new_shape.append(None)
652
+ else:
653
+ new_shape.append(s)
654
+ o.__dict__["_shape_val"] = tf.TensorShape(new_shape)
655
+ return pool3
656
+
657
+
658
+ def _numpy_partition(arr, kth, **kwargs):
659
+ num_workers = min(cpu_count(), len(arr))
660
+ chunk_size = len(arr) // num_workers
661
+ extra = len(arr) % num_workers
662
+
663
+ start_idx = 0
664
+ batches = []
665
+ for i in range(num_workers):
666
+ size = chunk_size + (1 if i < extra else 0)
667
+ batches.append(arr[start_idx : start_idx + size])
668
+ start_idx += size
669
+
670
+ with ThreadPool(num_workers) as pool:
671
+ return list(pool.map(partial(np.partition, kth=kth, **kwargs), batches))
672
+
673
+
674
+ if __name__ == "__main__":
675
+ print(REQUIREMENTS)
676
+ main()
stable_diffusion/ldm/modules/evaluate/evaluate_perceptualsim.py ADDED
@@ -0,0 +1,630 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import glob
3
+ import os
4
+ from tqdm import tqdm
5
+ from collections import namedtuple
6
+
7
+ import numpy as np
8
+ import torch
9
+ import torchvision.transforms as transforms
10
+ from torchvision import models
11
+ from PIL import Image
12
+
13
+ from ldm.modules.evaluate.ssim import ssim
14
+
15
+
16
+ transform = transforms.Compose([transforms.ToTensor()])
17
+
18
+ def normalize_tensor(in_feat, eps=1e-10):
19
+ norm_factor = torch.sqrt(torch.sum(in_feat ** 2, dim=1)).view(
20
+ in_feat.size()[0], 1, in_feat.size()[2], in_feat.size()[3]
21
+ )
22
+ return in_feat / (norm_factor.expand_as(in_feat) + eps)
23
+
24
+
25
+ def cos_sim(in0, in1):
26
+ in0_norm = normalize_tensor(in0)
27
+ in1_norm = normalize_tensor(in1)
28
+ N = in0.size()[0]
29
+ X = in0.size()[2]
30
+ Y = in0.size()[3]
31
+
32
+ return torch.mean(
33
+ torch.mean(
34
+ torch.sum(in0_norm * in1_norm, dim=1).view(N, 1, X, Y), dim=2
35
+ ).view(N, 1, 1, Y),
36
+ dim=3,
37
+ ).view(N)
38
+
39
+
40
+ class squeezenet(torch.nn.Module):
41
+ def __init__(self, requires_grad=False, pretrained=True):
42
+ super(squeezenet, self).__init__()
43
+ pretrained_features = models.squeezenet1_1(
44
+ pretrained=pretrained
45
+ ).features
46
+ self.slice1 = torch.nn.Sequential()
47
+ self.slice2 = torch.nn.Sequential()
48
+ self.slice3 = torch.nn.Sequential()
49
+ self.slice4 = torch.nn.Sequential()
50
+ self.slice5 = torch.nn.Sequential()
51
+ self.slice6 = torch.nn.Sequential()
52
+ self.slice7 = torch.nn.Sequential()
53
+ self.N_slices = 7
54
+ for x in range(2):
55
+ self.slice1.add_module(str(x), pretrained_features[x])
56
+ for x in range(2, 5):
57
+ self.slice2.add_module(str(x), pretrained_features[x])
58
+ for x in range(5, 8):
59
+ self.slice3.add_module(str(x), pretrained_features[x])
60
+ for x in range(8, 10):
61
+ self.slice4.add_module(str(x), pretrained_features[x])
62
+ for x in range(10, 11):
63
+ self.slice5.add_module(str(x), pretrained_features[x])
64
+ for x in range(11, 12):
65
+ self.slice6.add_module(str(x), pretrained_features[x])
66
+ for x in range(12, 13):
67
+ self.slice7.add_module(str(x), pretrained_features[x])
68
+ if not requires_grad:
69
+ for param in self.parameters():
70
+ param.requires_grad = False
71
+
72
+ def forward(self, X):
73
+ h = self.slice1(X)
74
+ h_relu1 = h
75
+ h = self.slice2(h)
76
+ h_relu2 = h
77
+ h = self.slice3(h)
78
+ h_relu3 = h
79
+ h = self.slice4(h)
80
+ h_relu4 = h
81
+ h = self.slice5(h)
82
+ h_relu5 = h
83
+ h = self.slice6(h)
84
+ h_relu6 = h
85
+ h = self.slice7(h)
86
+ h_relu7 = h
87
+ vgg_outputs = namedtuple(
88
+ "SqueezeOutputs",
89
+ ["relu1", "relu2", "relu3", "relu4", "relu5", "relu6", "relu7"],
90
+ )
91
+ out = vgg_outputs(
92
+ h_relu1, h_relu2, h_relu3, h_relu4, h_relu5, h_relu6, h_relu7
93
+ )
94
+
95
+ return out
96
+
97
+
98
+ class alexnet(torch.nn.Module):
99
+ def __init__(self, requires_grad=False, pretrained=True):
100
+ super(alexnet, self).__init__()
101
+ alexnet_pretrained_features = models.alexnet(
102
+ pretrained=pretrained
103
+ ).features
104
+ self.slice1 = torch.nn.Sequential()
105
+ self.slice2 = torch.nn.Sequential()
106
+ self.slice3 = torch.nn.Sequential()
107
+ self.slice4 = torch.nn.Sequential()
108
+ self.slice5 = torch.nn.Sequential()
109
+ self.N_slices = 5
110
+ for x in range(2):
111
+ self.slice1.add_module(str(x), alexnet_pretrained_features[x])
112
+ for x in range(2, 5):
113
+ self.slice2.add_module(str(x), alexnet_pretrained_features[x])
114
+ for x in range(5, 8):
115
+ self.slice3.add_module(str(x), alexnet_pretrained_features[x])
116
+ for x in range(8, 10):
117
+ self.slice4.add_module(str(x), alexnet_pretrained_features[x])
118
+ for x in range(10, 12):
119
+ self.slice5.add_module(str(x), alexnet_pretrained_features[x])
120
+ if not requires_grad:
121
+ for param in self.parameters():
122
+ param.requires_grad = False
123
+
124
+ def forward(self, X):
125
+ h = self.slice1(X)
126
+ h_relu1 = h
127
+ h = self.slice2(h)
128
+ h_relu2 = h
129
+ h = self.slice3(h)
130
+ h_relu3 = h
131
+ h = self.slice4(h)
132
+ h_relu4 = h
133
+ h = self.slice5(h)
134
+ h_relu5 = h
135
+ alexnet_outputs = namedtuple(
136
+ "AlexnetOutputs", ["relu1", "relu2", "relu3", "relu4", "relu5"]
137
+ )
138
+ out = alexnet_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5)
139
+
140
+ return out
141
+
142
+
143
+ class vgg16(torch.nn.Module):
144
+ def __init__(self, requires_grad=False, pretrained=True):
145
+ super(vgg16, self).__init__()
146
+ vgg_pretrained_features = models.vgg16(pretrained=pretrained).features
147
+ self.slice1 = torch.nn.Sequential()
148
+ self.slice2 = torch.nn.Sequential()
149
+ self.slice3 = torch.nn.Sequential()
150
+ self.slice4 = torch.nn.Sequential()
151
+ self.slice5 = torch.nn.Sequential()
152
+ self.N_slices = 5
153
+ for x in range(4):
154
+ self.slice1.add_module(str(x), vgg_pretrained_features[x])
155
+ for x in range(4, 9):
156
+ self.slice2.add_module(str(x), vgg_pretrained_features[x])
157
+ for x in range(9, 16):
158
+ self.slice3.add_module(str(x), vgg_pretrained_features[x])
159
+ for x in range(16, 23):
160
+ self.slice4.add_module(str(x), vgg_pretrained_features[x])
161
+ for x in range(23, 30):
162
+ self.slice5.add_module(str(x), vgg_pretrained_features[x])
163
+ if not requires_grad:
164
+ for param in self.parameters():
165
+ param.requires_grad = False
166
+
167
+ def forward(self, X):
168
+ h = self.slice1(X)
169
+ h_relu1_2 = h
170
+ h = self.slice2(h)
171
+ h_relu2_2 = h
172
+ h = self.slice3(h)
173
+ h_relu3_3 = h
174
+ h = self.slice4(h)
175
+ h_relu4_3 = h
176
+ h = self.slice5(h)
177
+ h_relu5_3 = h
178
+ vgg_outputs = namedtuple(
179
+ "VggOutputs",
180
+ ["relu1_2", "relu2_2", "relu3_3", "relu4_3", "relu5_3"],
181
+ )
182
+ out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
183
+
184
+ return out
185
+
186
+
187
+ class resnet(torch.nn.Module):
188
+ def __init__(self, requires_grad=False, pretrained=True, num=18):
189
+ super(resnet, self).__init__()
190
+ if num == 18:
191
+ self.net = models.resnet18(pretrained=pretrained)
192
+ elif num == 34:
193
+ self.net = models.resnet34(pretrained=pretrained)
194
+ elif num == 50:
195
+ self.net = models.resnet50(pretrained=pretrained)
196
+ elif num == 101:
197
+ self.net = models.resnet101(pretrained=pretrained)
198
+ elif num == 152:
199
+ self.net = models.resnet152(pretrained=pretrained)
200
+ self.N_slices = 5
201
+
202
+ self.conv1 = self.net.conv1
203
+ self.bn1 = self.net.bn1
204
+ self.relu = self.net.relu
205
+ self.maxpool = self.net.maxpool
206
+ self.layer1 = self.net.layer1
207
+ self.layer2 = self.net.layer2
208
+ self.layer3 = self.net.layer3
209
+ self.layer4 = self.net.layer4
210
+
211
+ def forward(self, X):
212
+ h = self.conv1(X)
213
+ h = self.bn1(h)
214
+ h = self.relu(h)
215
+ h_relu1 = h
216
+ h = self.maxpool(h)
217
+ h = self.layer1(h)
218
+ h_conv2 = h
219
+ h = self.layer2(h)
220
+ h_conv3 = h
221
+ h = self.layer3(h)
222
+ h_conv4 = h
223
+ h = self.layer4(h)
224
+ h_conv5 = h
225
+
226
+ outputs = namedtuple(
227
+ "Outputs", ["relu1", "conv2", "conv3", "conv4", "conv5"]
228
+ )
229
+ out = outputs(h_relu1, h_conv2, h_conv3, h_conv4, h_conv5)
230
+
231
+ return out
232
+
233
+ # Off-the-shelf deep network
234
+ class PNet(torch.nn.Module):
235
+ """Pre-trained network with all channels equally weighted by default"""
236
+
237
+ def __init__(self, pnet_type="vgg", pnet_rand=False, use_gpu=True):
238
+ super(PNet, self).__init__()
239
+
240
+ self.use_gpu = use_gpu
241
+
242
+ self.pnet_type = pnet_type
243
+ self.pnet_rand = pnet_rand
244
+
245
+ self.shift = torch.Tensor([-0.030, -0.088, -0.188]).view(1, 3, 1, 1)
246
+ self.scale = torch.Tensor([0.458, 0.448, 0.450]).view(1, 3, 1, 1)
247
+
248
+ if self.pnet_type in ["vgg", "vgg16"]:
249
+ self.net = vgg16(pretrained=not self.pnet_rand, requires_grad=False)
250
+ elif self.pnet_type == "alex":
251
+ self.net = alexnet(
252
+ pretrained=not self.pnet_rand, requires_grad=False
253
+ )
254
+ elif self.pnet_type[:-2] == "resnet":
255
+ self.net = resnet(
256
+ pretrained=not self.pnet_rand,
257
+ requires_grad=False,
258
+ num=int(self.pnet_type[-2:]),
259
+ )
260
+ elif self.pnet_type == "squeeze":
261
+ self.net = squeezenet(
262
+ pretrained=not self.pnet_rand, requires_grad=False
263
+ )
264
+
265
+ self.L = self.net.N_slices
266
+
267
+ if use_gpu:
268
+ self.net.cuda()
269
+ self.shift = self.shift.cuda()
270
+ self.scale = self.scale.cuda()
271
+
272
+ def forward(self, in0, in1, retPerLayer=False):
273
+ in0_sc = (in0 - self.shift.expand_as(in0)) / self.scale.expand_as(in0)
274
+ in1_sc = (in1 - self.shift.expand_as(in0)) / self.scale.expand_as(in0)
275
+
276
+ outs0 = self.net.forward(in0_sc)
277
+ outs1 = self.net.forward(in1_sc)
278
+
279
+ if retPerLayer:
280
+ all_scores = []
281
+ for (kk, out0) in enumerate(outs0):
282
+ cur_score = 1.0 - cos_sim(outs0[kk], outs1[kk])
283
+ if kk == 0:
284
+ val = 1.0 * cur_score
285
+ else:
286
+ val = val + cur_score
287
+ if retPerLayer:
288
+ all_scores += [cur_score]
289
+
290
+ if retPerLayer:
291
+ return (val, all_scores)
292
+ else:
293
+ return val
294
+
295
+
296
+
297
+
298
+ # The SSIM metric
299
+ def ssim_metric(img1, img2, mask=None):
300
+ return ssim(img1, img2, mask=mask, size_average=False)
301
+
302
+
303
+ # The PSNR metric
304
+ def psnr(img1, img2, mask=None,reshape=False):
305
+ b = img1.size(0)
306
+ if not (mask is None):
307
+ b = img1.size(0)
308
+ mse_err = (img1 - img2).pow(2) * mask
309
+ if reshape:
310
+ mse_err = mse_err.reshape(b, -1).sum(dim=1) / (
311
+ 3 * mask.reshape(b, -1).sum(dim=1).clamp(min=1)
312
+ )
313
+ else:
314
+ mse_err = mse_err.view(b, -1).sum(dim=1) / (
315
+ 3 * mask.view(b, -1).sum(dim=1).clamp(min=1)
316
+ )
317
+ else:
318
+ if reshape:
319
+ mse_err = (img1 - img2).pow(2).reshape(b, -1).mean(dim=1)
320
+ else:
321
+ mse_err = (img1 - img2).pow(2).view(b, -1).mean(dim=1)
322
+
323
+ psnr = 10 * (1 / mse_err).log10()
324
+ return psnr
325
+
326
+
327
+ # The perceptual similarity metric
328
+ def perceptual_sim(img1, img2, vgg16):
329
+ # First extract features
330
+ dist = vgg16(img1 * 2 - 1, img2 * 2 - 1)
331
+
332
+ return dist
333
+
334
+ def load_img(img_name, size=None):
335
+ try:
336
+ img = Image.open(img_name)
337
+
338
+ if type(size) == int:
339
+ img = img.resize((size, size))
340
+ elif size is not None:
341
+ img = img.resize((size[1], size[0]))
342
+
343
+ img = transform(img).cuda()
344
+ img = img.unsqueeze(0)
345
+ except Exception as e:
346
+ print("Failed at loading %s " % img_name)
347
+ print(e)
348
+ img = torch.zeros(1, 3, 256, 256).cuda()
349
+ raise
350
+ return img
351
+
352
+
353
+ def compute_perceptual_similarity(folder, pred_img, tgt_img, take_every_other):
354
+
355
+ # Load VGG16 for feature similarity
356
+ vgg16 = PNet().to("cuda")
357
+ vgg16.eval()
358
+ vgg16.cuda()
359
+
360
+ values_percsim = []
361
+ values_ssim = []
362
+ values_psnr = []
363
+ folders = os.listdir(folder)
364
+ for i, f in tqdm(enumerate(sorted(folders))):
365
+ pred_imgs = glob.glob(folder + f + "/" + pred_img)
366
+ tgt_imgs = glob.glob(folder + f + "/" + tgt_img)
367
+ assert len(tgt_imgs) == 1
368
+
369
+ perc_sim = 10000
370
+ ssim_sim = -10
371
+ psnr_sim = -10
372
+ for p_img in pred_imgs:
373
+ t_img = load_img(tgt_imgs[0])
374
+ p_img = load_img(p_img, size=t_img.shape[2:])
375
+ t_perc_sim = perceptual_sim(p_img, t_img, vgg16).item()
376
+ perc_sim = min(perc_sim, t_perc_sim)
377
+
378
+ ssim_sim = max(ssim_sim, ssim_metric(p_img, t_img).item())
379
+ psnr_sim = max(psnr_sim, psnr(p_img, t_img).item())
380
+
381
+ values_percsim += [perc_sim]
382
+ values_ssim += [ssim_sim]
383
+ values_psnr += [psnr_sim]
384
+
385
+ if take_every_other:
386
+ n_valuespercsim = []
387
+ n_valuesssim = []
388
+ n_valuespsnr = []
389
+ for i in range(0, len(values_percsim) // 2):
390
+ n_valuespercsim += [
391
+ min(values_percsim[2 * i], values_percsim[2 * i + 1])
392
+ ]
393
+ n_valuespsnr += [max(values_psnr[2 * i], values_psnr[2 * i + 1])]
394
+ n_valuesssim += [max(values_ssim[2 * i], values_ssim[2 * i + 1])]
395
+
396
+ values_percsim = n_valuespercsim
397
+ values_ssim = n_valuesssim
398
+ values_psnr = n_valuespsnr
399
+
400
+ avg_percsim = np.mean(np.array(values_percsim))
401
+ std_percsim = np.std(np.array(values_percsim))
402
+
403
+ avg_psnr = np.mean(np.array(values_psnr))
404
+ std_psnr = np.std(np.array(values_psnr))
405
+
406
+ avg_ssim = np.mean(np.array(values_ssim))
407
+ std_ssim = np.std(np.array(values_ssim))
408
+
409
+ return {
410
+ "Perceptual similarity": (avg_percsim, std_percsim),
411
+ "PSNR": (avg_psnr, std_psnr),
412
+ "SSIM": (avg_ssim, std_ssim),
413
+ }
414
+
415
+
416
+ def compute_perceptual_similarity_from_list(pred_imgs_list, tgt_imgs_list,
417
+ take_every_other,
418
+ simple_format=True):
419
+
420
+ # Load VGG16 for feature similarity
421
+ vgg16 = PNet().to("cuda")
422
+ vgg16.eval()
423
+ vgg16.cuda()
424
+
425
+ values_percsim = []
426
+ values_ssim = []
427
+ values_psnr = []
428
+ equal_count = 0
429
+ ambig_count = 0
430
+ for i, tgt_img in enumerate(tqdm(tgt_imgs_list)):
431
+ pred_imgs = pred_imgs_list[i]
432
+ tgt_imgs = [tgt_img]
433
+ assert len(tgt_imgs) == 1
434
+
435
+ if type(pred_imgs) != list:
436
+ pred_imgs = [pred_imgs]
437
+
438
+ perc_sim = 10000
439
+ ssim_sim = -10
440
+ psnr_sim = -10
441
+ assert len(pred_imgs)>0
442
+ for p_img in pred_imgs:
443
+ t_img = load_img(tgt_imgs[0])
444
+ p_img = load_img(p_img, size=t_img.shape[2:])
445
+ t_perc_sim = perceptual_sim(p_img, t_img, vgg16).item()
446
+ perc_sim = min(perc_sim, t_perc_sim)
447
+
448
+ ssim_sim = max(ssim_sim, ssim_metric(p_img, t_img).item())
449
+ psnr_sim = max(psnr_sim, psnr(p_img, t_img).item())
450
+
451
+ values_percsim += [perc_sim]
452
+ values_ssim += [ssim_sim]
453
+ if psnr_sim != np.float("inf"):
454
+ values_psnr += [psnr_sim]
455
+ else:
456
+ if torch.allclose(p_img, t_img):
457
+ equal_count += 1
458
+ print("{} equal src and wrp images.".format(equal_count))
459
+ else:
460
+ ambig_count += 1
461
+ print("{} ambiguous src and wrp images.".format(ambig_count))
462
+
463
+ if take_every_other:
464
+ n_valuespercsim = []
465
+ n_valuesssim = []
466
+ n_valuespsnr = []
467
+ for i in range(0, len(values_percsim) // 2):
468
+ n_valuespercsim += [
469
+ min(values_percsim[2 * i], values_percsim[2 * i + 1])
470
+ ]
471
+ n_valuespsnr += [max(values_psnr[2 * i], values_psnr[2 * i + 1])]
472
+ n_valuesssim += [max(values_ssim[2 * i], values_ssim[2 * i + 1])]
473
+
474
+ values_percsim = n_valuespercsim
475
+ values_ssim = n_valuesssim
476
+ values_psnr = n_valuespsnr
477
+
478
+ avg_percsim = np.mean(np.array(values_percsim))
479
+ std_percsim = np.std(np.array(values_percsim))
480
+
481
+ avg_psnr = np.mean(np.array(values_psnr))
482
+ std_psnr = np.std(np.array(values_psnr))
483
+
484
+ avg_ssim = np.mean(np.array(values_ssim))
485
+ std_ssim = np.std(np.array(values_ssim))
486
+
487
+ if simple_format:
488
+ # just to make yaml formatting readable
489
+ return {
490
+ "Perceptual similarity": [float(avg_percsim), float(std_percsim)],
491
+ "PSNR": [float(avg_psnr), float(std_psnr)],
492
+ "SSIM": [float(avg_ssim), float(std_ssim)],
493
+ }
494
+ else:
495
+ return {
496
+ "Perceptual similarity": (avg_percsim, std_percsim),
497
+ "PSNR": (avg_psnr, std_psnr),
498
+ "SSIM": (avg_ssim, std_ssim),
499
+ }
500
+
501
+
502
+ def compute_perceptual_similarity_from_list_topk(pred_imgs_list, tgt_imgs_list,
503
+ take_every_other, resize=False):
504
+
505
+ # Load VGG16 for feature similarity
506
+ vgg16 = PNet().to("cuda")
507
+ vgg16.eval()
508
+ vgg16.cuda()
509
+
510
+ values_percsim = []
511
+ values_ssim = []
512
+ values_psnr = []
513
+ individual_percsim = []
514
+ individual_ssim = []
515
+ individual_psnr = []
516
+ for i, tgt_img in enumerate(tqdm(tgt_imgs_list)):
517
+ pred_imgs = pred_imgs_list[i]
518
+ tgt_imgs = [tgt_img]
519
+ assert len(tgt_imgs) == 1
520
+
521
+ if type(pred_imgs) != list:
522
+ assert False
523
+ pred_imgs = [pred_imgs]
524
+
525
+ perc_sim = 10000
526
+ ssim_sim = -10
527
+ psnr_sim = -10
528
+ sample_percsim = list()
529
+ sample_ssim = list()
530
+ sample_psnr = list()
531
+ for p_img in pred_imgs:
532
+ if resize:
533
+ t_img = load_img(tgt_imgs[0], size=(256,256))
534
+ else:
535
+ t_img = load_img(tgt_imgs[0])
536
+ p_img = load_img(p_img, size=t_img.shape[2:])
537
+
538
+ t_perc_sim = perceptual_sim(p_img, t_img, vgg16).item()
539
+ sample_percsim.append(t_perc_sim)
540
+ perc_sim = min(perc_sim, t_perc_sim)
541
+
542
+ t_ssim = ssim_metric(p_img, t_img).item()
543
+ sample_ssim.append(t_ssim)
544
+ ssim_sim = max(ssim_sim, t_ssim)
545
+
546
+ t_psnr = psnr(p_img, t_img).item()
547
+ sample_psnr.append(t_psnr)
548
+ psnr_sim = max(psnr_sim, t_psnr)
549
+
550
+ values_percsim += [perc_sim]
551
+ values_ssim += [ssim_sim]
552
+ values_psnr += [psnr_sim]
553
+ individual_percsim.append(sample_percsim)
554
+ individual_ssim.append(sample_ssim)
555
+ individual_psnr.append(sample_psnr)
556
+
557
+ if take_every_other:
558
+ assert False, "Do this later, after specifying topk to get proper results"
559
+ n_valuespercsim = []
560
+ n_valuesssim = []
561
+ n_valuespsnr = []
562
+ for i in range(0, len(values_percsim) // 2):
563
+ n_valuespercsim += [
564
+ min(values_percsim[2 * i], values_percsim[2 * i + 1])
565
+ ]
566
+ n_valuespsnr += [max(values_psnr[2 * i], values_psnr[2 * i + 1])]
567
+ n_valuesssim += [max(values_ssim[2 * i], values_ssim[2 * i + 1])]
568
+
569
+ values_percsim = n_valuespercsim
570
+ values_ssim = n_valuesssim
571
+ values_psnr = n_valuespsnr
572
+
573
+ avg_percsim = np.mean(np.array(values_percsim))
574
+ std_percsim = np.std(np.array(values_percsim))
575
+
576
+ avg_psnr = np.mean(np.array(values_psnr))
577
+ std_psnr = np.std(np.array(values_psnr))
578
+
579
+ avg_ssim = np.mean(np.array(values_ssim))
580
+ std_ssim = np.std(np.array(values_ssim))
581
+
582
+ individual_percsim = np.array(individual_percsim)
583
+ individual_psnr = np.array(individual_psnr)
584
+ individual_ssim = np.array(individual_ssim)
585
+
586
+ return {
587
+ "avg_of_best": {
588
+ "Perceptual similarity": [float(avg_percsim), float(std_percsim)],
589
+ "PSNR": [float(avg_psnr), float(std_psnr)],
590
+ "SSIM": [float(avg_ssim), float(std_ssim)],
591
+ },
592
+ "individual": {
593
+ "PSIM": individual_percsim,
594
+ "PSNR": individual_psnr,
595
+ "SSIM": individual_ssim,
596
+ }
597
+ }
598
+
599
+
600
+ if __name__ == "__main__":
601
+ args = argparse.ArgumentParser()
602
+ args.add_argument("--folder", type=str, default="")
603
+ args.add_argument("--pred_image", type=str, default="")
604
+ args.add_argument("--target_image", type=str, default="")
605
+ args.add_argument("--take_every_other", action="store_true", default=False)
606
+ args.add_argument("--output_file", type=str, default="")
607
+
608
+ opts = args.parse_args()
609
+
610
+ folder = opts.folder
611
+ pred_img = opts.pred_image
612
+ tgt_img = opts.target_image
613
+
614
+ results = compute_perceptual_similarity(
615
+ folder, pred_img, tgt_img, opts.take_every_other
616
+ )
617
+
618
+ f = open(opts.output_file, 'w')
619
+ for key in results:
620
+ print("%s for %s: \n" % (key, opts.folder))
621
+ print(
622
+ "\t {:0.4f} | {:0.4f} \n".format(results[key][0], results[key][1])
623
+ )
624
+
625
+ f.write("%s for %s: \n" % (key, opts.folder))
626
+ f.write(
627
+ "\t {:0.4f} | {:0.4f} \n".format(results[key][0], results[key][1])
628
+ )
629
+
630
+ f.close()
stable_diffusion/ldm/modules/evaluate/frechet_video_distance.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The Google Research Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python2, python3
17
+ """Minimal Reference implementation for the Frechet Video Distance (FVD).
18
+
19
+ FVD is a metric for the quality of video generation models. It is inspired by
20
+ the FID (Frechet Inception Distance) used for images, but uses a different
21
+ embedding to be better suitable for videos.
22
+ """
23
+
24
+ from __future__ import absolute_import
25
+ from __future__ import division
26
+ from __future__ import print_function
27
+
28
+
29
+ import six
30
+ import tensorflow.compat.v1 as tf
31
+ import tensorflow_gan as tfgan
32
+ import tensorflow_hub as hub
33
+
34
+
35
+ def preprocess(videos, target_resolution):
36
+ """Runs some preprocessing on the videos for I3D model.
37
+
38
+ Args:
39
+ videos: <T>[batch_size, num_frames, height, width, depth] The videos to be
40
+ preprocessed. We don't care about the specific dtype of the videos, it can
41
+ be anything that tf.image.resize_bilinear accepts. Values are expected to
42
+ be in the range 0-255.
43
+ target_resolution: (width, height): target video resolution
44
+
45
+ Returns:
46
+ videos: <float32>[batch_size, num_frames, height, width, depth]
47
+ """
48
+ videos_shape = list(videos.shape)
49
+ all_frames = tf.reshape(videos, [-1] + videos_shape[-3:])
50
+ resized_videos = tf.image.resize_bilinear(all_frames, size=target_resolution)
51
+ target_shape = [videos_shape[0], -1] + list(target_resolution) + [3]
52
+ output_videos = tf.reshape(resized_videos, target_shape)
53
+ scaled_videos = 2. * tf.cast(output_videos, tf.float32) / 255. - 1
54
+ return scaled_videos
55
+
56
+
57
+ def _is_in_graph(tensor_name):
58
+ """Checks whether a given tensor does exists in the graph."""
59
+ try:
60
+ tf.get_default_graph().get_tensor_by_name(tensor_name)
61
+ except KeyError:
62
+ return False
63
+ return True
64
+
65
+
66
+ def create_id3_embedding(videos,warmup=False,batch_size=16):
67
+ """Embeds the given videos using the Inflated 3D Convolution ne twork.
68
+
69
+ Downloads the graph of the I3D from tf.hub and adds it to the graph on the
70
+ first call.
71
+
72
+ Args:
73
+ videos: <float32>[batch_size, num_frames, height=224, width=224, depth=3].
74
+ Expected range is [-1, 1].
75
+
76
+ Returns:
77
+ embedding: <float32>[batch_size, embedding_size]. embedding_size depends
78
+ on the model used.
79
+
80
+ Raises:
81
+ ValueError: when a provided embedding_layer is not supported.
82
+ """
83
+
84
+ # batch_size = 16
85
+ module_spec = "https://tfhub.dev/deepmind/i3d-kinetics-400/1"
86
+
87
+
88
+ # Making sure that we import the graph separately for
89
+ # each different input video tensor.
90
+ module_name = "fvd_kinetics-400_id3_module_" + six.ensure_str(
91
+ videos.name).replace(":", "_")
92
+
93
+
94
+
95
+ assert_ops = [
96
+ tf.Assert(
97
+ tf.reduce_max(videos) <= 1.001,
98
+ ["max value in frame is > 1", videos]),
99
+ tf.Assert(
100
+ tf.reduce_min(videos) >= -1.001,
101
+ ["min value in frame is < -1", videos]),
102
+ tf.assert_equal(
103
+ tf.shape(videos)[0],
104
+ batch_size, ["invalid frame batch size: ",
105
+ tf.shape(videos)],
106
+ summarize=6),
107
+ ]
108
+ with tf.control_dependencies(assert_ops):
109
+ videos = tf.identity(videos)
110
+
111
+ module_scope = "%s_apply_default/" % module_name
112
+
113
+ # To check whether the module has already been loaded into the graph, we look
114
+ # for a given tensor name. If this tensor name exists, we assume the function
115
+ # has been called before and the graph was imported. Otherwise we import it.
116
+ # Note: in theory, the tensor could exist, but have wrong shapes.
117
+ # This will happen if create_id3_embedding is called with a frames_placehoder
118
+ # of wrong size/batch size, because even though that will throw a tf.Assert
119
+ # on graph-execution time, it will insert the tensor (with wrong shape) into
120
+ # the graph. This is why we need the following assert.
121
+ if warmup:
122
+ video_batch_size = int(videos.shape[0])
123
+ assert video_batch_size in [batch_size, -1, None], f"Invalid batch size {video_batch_size}"
124
+ tensor_name = module_scope + "RGB/inception_i3d/Mean:0"
125
+ if not _is_in_graph(tensor_name):
126
+ i3d_model = hub.Module(module_spec, name=module_name)
127
+ i3d_model(videos)
128
+
129
+ # gets the kinetics-i3d-400-logits layer
130
+ tensor_name = module_scope + "RGB/inception_i3d/Mean:0"
131
+ tensor = tf.get_default_graph().get_tensor_by_name(tensor_name)
132
+ return tensor
133
+
134
+
135
+ def calculate_fvd(real_activations,
136
+ generated_activations):
137
+ """Returns a list of ops that compute metrics as funcs of activations.
138
+
139
+ Args:
140
+ real_activations: <float32>[num_samples, embedding_size]
141
+ generated_activations: <float32>[num_samples, embedding_size]
142
+
143
+ Returns:
144
+ A scalar that contains the requested FVD.
145
+ """
146
+ return tfgan.eval.frechet_classifier_distance_from_activations(
147
+ real_activations, generated_activations)
stable_diffusion/ldm/modules/evaluate/ssim.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MIT Licence
2
+
3
+ # Methods to predict the SSIM, taken from
4
+ # https://github.com/Po-Hsun-Su/pytorch-ssim/blob/master/pytorch_ssim/__init__.py
5
+
6
+ from math import exp
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+ from torch.autograd import Variable
11
+
12
+ def gaussian(window_size, sigma):
13
+ gauss = torch.Tensor(
14
+ [
15
+ exp(-((x - window_size // 2) ** 2) / float(2 * sigma ** 2))
16
+ for x in range(window_size)
17
+ ]
18
+ )
19
+ return gauss / gauss.sum()
20
+
21
+
22
+ def create_window(window_size, channel):
23
+ _1D_window = gaussian(window_size, 1.5).unsqueeze(1)
24
+ _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
25
+ window = Variable(
26
+ _2D_window.expand(channel, 1, window_size, window_size).contiguous()
27
+ )
28
+ return window
29
+
30
+
31
+ def _ssim(
32
+ img1, img2, window, window_size, channel, mask=None, size_average=True
33
+ ):
34
+ mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
35
+ mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
36
+
37
+ mu1_sq = mu1.pow(2)
38
+ mu2_sq = mu2.pow(2)
39
+ mu1_mu2 = mu1 * mu2
40
+
41
+ sigma1_sq = (
42
+ F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel)
43
+ - mu1_sq
44
+ )
45
+ sigma2_sq = (
46
+ F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel)
47
+ - mu2_sq
48
+ )
49
+ sigma12 = (
50
+ F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel)
51
+ - mu1_mu2
52
+ )
53
+
54
+ C1 = (0.01) ** 2
55
+ C2 = (0.03) ** 2
56
+
57
+ ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / (
58
+ (mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)
59
+ )
60
+
61
+ if not (mask is None):
62
+ b = mask.size(0)
63
+ ssim_map = ssim_map.mean(dim=1, keepdim=True) * mask
64
+ ssim_map = ssim_map.view(b, -1).sum(dim=1) / mask.view(b, -1).sum(
65
+ dim=1
66
+ ).clamp(min=1)
67
+ return ssim_map
68
+
69
+ import pdb
70
+
71
+ pdb.set_trace
72
+
73
+ if size_average:
74
+ return ssim_map.mean()
75
+ else:
76
+ return ssim_map.mean(1).mean(1).mean(1)
77
+
78
+
79
+ class SSIM(torch.nn.Module):
80
+ def __init__(self, window_size=11, size_average=True):
81
+ super(SSIM, self).__init__()
82
+ self.window_size = window_size
83
+ self.size_average = size_average
84
+ self.channel = 1
85
+ self.window = create_window(window_size, self.channel)
86
+
87
+ def forward(self, img1, img2, mask=None):
88
+ (_, channel, _, _) = img1.size()
89
+
90
+ if (
91
+ channel == self.channel
92
+ and self.window.data.type() == img1.data.type()
93
+ ):
94
+ window = self.window
95
+ else:
96
+ window = create_window(self.window_size, channel)
97
+
98
+ if img1.is_cuda:
99
+ window = window.cuda(img1.get_device())
100
+ window = window.type_as(img1)
101
+
102
+ self.window = window
103
+ self.channel = channel
104
+
105
+ return _ssim(
106
+ img1,
107
+ img2,
108
+ window,
109
+ self.window_size,
110
+ channel,
111
+ mask,
112
+ self.size_average,
113
+ )
114
+
115
+
116
+ def ssim(img1, img2, window_size=11, mask=None, size_average=True):
117
+ (_, channel, _, _) = img1.size()
118
+ window = create_window(window_size, channel)
119
+
120
+ if img1.is_cuda:
121
+ window = window.cuda(img1.get_device())
122
+ window = window.type_as(img1)
123
+
124
+ return _ssim(img1, img2, window, window_size, channel, mask, size_average)
stable_diffusion/ldm/modules/evaluate/torch_frechet_video_distance.py ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # based on https://github.com/universome/fvd-comparison/blob/master/compare_models.py; huge thanks!
2
+ import os
3
+ import numpy as np
4
+ import io
5
+ import re
6
+ import requests
7
+ import html
8
+ import hashlib
9
+ import urllib
10
+ import urllib.request
11
+ import scipy.linalg
12
+ import multiprocessing as mp
13
+ import glob
14
+
15
+
16
+ from tqdm import tqdm
17
+ from typing import Any, List, Tuple, Union, Dict, Callable
18
+
19
+ from torchvision.io import read_video
20
+ import torch; torch.set_grad_enabled(False)
21
+ from einops import rearrange
22
+
23
+ from nitro.util import isvideo
24
+
25
+ def compute_frechet_distance(mu_sample,sigma_sample,mu_ref,sigma_ref) -> float:
26
+ print('Calculate frechet distance...')
27
+ m = np.square(mu_sample - mu_ref).sum()
28
+ s, _ = scipy.linalg.sqrtm(np.dot(sigma_sample, sigma_ref), disp=False) # pylint: disable=no-member
29
+ fid = np.real(m + np.trace(sigma_sample + sigma_ref - s * 2))
30
+
31
+ return float(fid)
32
+
33
+
34
+ def compute_stats(feats: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
35
+ mu = feats.mean(axis=0) # [d]
36
+ sigma = np.cov(feats, rowvar=False) # [d, d]
37
+
38
+ return mu, sigma
39
+
40
+
41
+ def open_url(url: str, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False) -> Any:
42
+ """Download the given URL and return a binary-mode file object to access the data."""
43
+ assert num_attempts >= 1
44
+
45
+ # Doesn't look like an URL scheme so interpret it as a local filename.
46
+ if not re.match('^[a-z]+://', url):
47
+ return url if return_filename else open(url, "rb")
48
+
49
+ # Handle file URLs. This code handles unusual file:// patterns that
50
+ # arise on Windows:
51
+ #
52
+ # file:///c:/foo.txt
53
+ #
54
+ # which would translate to a local '/c:/foo.txt' filename that's
55
+ # invalid. Drop the forward slash for such pathnames.
56
+ #
57
+ # If you touch this code path, you should test it on both Linux and
58
+ # Windows.
59
+ #
60
+ # Some internet resources suggest using urllib.request.url2pathname() but
61
+ # but that converts forward slashes to backslashes and this causes
62
+ # its own set of problems.
63
+ if url.startswith('file://'):
64
+ filename = urllib.parse.urlparse(url).path
65
+ if re.match(r'^/[a-zA-Z]:', filename):
66
+ filename = filename[1:]
67
+ return filename if return_filename else open(filename, "rb")
68
+
69
+ url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest()
70
+
71
+ # Download.
72
+ url_name = None
73
+ url_data = None
74
+ with requests.Session() as session:
75
+ if verbose:
76
+ print("Downloading %s ..." % url, end="", flush=True)
77
+ for attempts_left in reversed(range(num_attempts)):
78
+ try:
79
+ with session.get(url) as res:
80
+ res.raise_for_status()
81
+ if len(res.content) == 0:
82
+ raise IOError("No data received")
83
+
84
+ if len(res.content) < 8192:
85
+ content_str = res.content.decode("utf-8")
86
+ if "download_warning" in res.headers.get("Set-Cookie", ""):
87
+ links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link]
88
+ if len(links) == 1:
89
+ url = requests.compat.urljoin(url, links[0])
90
+ raise IOError("Google Drive virus checker nag")
91
+ if "Google Drive - Quota exceeded" in content_str:
92
+ raise IOError("Google Drive download quota exceeded -- please try again later")
93
+
94
+ match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", ""))
95
+ url_name = match[1] if match else url
96
+ url_data = res.content
97
+ if verbose:
98
+ print(" done")
99
+ break
100
+ except KeyboardInterrupt:
101
+ raise
102
+ except:
103
+ if not attempts_left:
104
+ if verbose:
105
+ print(" failed")
106
+ raise
107
+ if verbose:
108
+ print(".", end="", flush=True)
109
+
110
+ # Return data as file object.
111
+ assert not return_filename
112
+ return io.BytesIO(url_data)
113
+
114
+ def load_video(ip):
115
+ vid, *_ = read_video(ip)
116
+ vid = rearrange(vid, 't h w c -> t c h w').to(torch.uint8)
117
+ return vid
118
+
119
+ def get_data_from_str(input_str,nprc = None):
120
+ assert os.path.isdir(input_str), f'Specified input folder "{input_str}" is not a directory'
121
+ vid_filelist = glob.glob(os.path.join(input_str,'*.mp4'))
122
+ print(f'Found {len(vid_filelist)} videos in dir {input_str}')
123
+
124
+ if nprc is None:
125
+ try:
126
+ nprc = mp.cpu_count()
127
+ except NotImplementedError:
128
+ print('WARNING: cpu_count() not avlailable, using only 1 cpu for video loading')
129
+ nprc = 1
130
+
131
+ pool = mp.Pool(processes=nprc)
132
+
133
+ vids = []
134
+ for v in tqdm(pool.imap_unordered(load_video,vid_filelist),total=len(vid_filelist),desc='Loading videos...'):
135
+ vids.append(v)
136
+
137
+
138
+ vids = torch.stack(vids,dim=0).float()
139
+
140
+ return vids
141
+
142
+ def get_stats(stats):
143
+ assert os.path.isfile(stats) and stats.endswith('.npz'), f'no stats found under {stats}'
144
+
145
+ print(f'Using precomputed statistics under {stats}')
146
+ stats = np.load(stats)
147
+ stats = {key: stats[key] for key in stats.files}
148
+
149
+ return stats
150
+
151
+
152
+
153
+
154
+ @torch.no_grad()
155
+ def compute_fvd(ref_input, sample_input, bs=32,
156
+ ref_stats=None,
157
+ sample_stats=None,
158
+ nprc_load=None):
159
+
160
+
161
+
162
+ calc_stats = ref_stats is None or sample_stats is None
163
+
164
+ if calc_stats:
165
+
166
+ only_ref = sample_stats is not None
167
+ only_sample = ref_stats is not None
168
+
169
+
170
+ if isinstance(ref_input,str) and not only_sample:
171
+ ref_input = get_data_from_str(ref_input,nprc_load)
172
+
173
+ if isinstance(sample_input, str) and not only_ref:
174
+ sample_input = get_data_from_str(sample_input, nprc_load)
175
+
176
+ stats = compute_statistics(sample_input,ref_input,
177
+ device='cuda' if torch.cuda.is_available() else 'cpu',
178
+ bs=bs,
179
+ only_ref=only_ref,
180
+ only_sample=only_sample)
181
+
182
+ if only_ref:
183
+ stats.update(get_stats(sample_stats))
184
+ elif only_sample:
185
+ stats.update(get_stats(ref_stats))
186
+
187
+
188
+
189
+ else:
190
+ stats = get_stats(sample_stats)
191
+ stats.update(get_stats(ref_stats))
192
+
193
+ fvd = compute_frechet_distance(**stats)
194
+
195
+ return {'FVD' : fvd,}
196
+
197
+
198
+ @torch.no_grad()
199
+ def compute_statistics(videos_fake, videos_real, device: str='cuda', bs=32, only_ref=False,only_sample=False) -> Dict:
200
+ detector_url = 'https://www.dropbox.com/s/ge9e5ujwgetktms/i3d_torchscript.pt?dl=1'
201
+ detector_kwargs = dict(rescale=True, resize=True, return_features=True) # Return raw features before the softmax layer.
202
+
203
+ with open_url(detector_url, verbose=False) as f:
204
+ detector = torch.jit.load(f).eval().to(device)
205
+
206
+
207
+
208
+ assert not (only_sample and only_ref), 'only_ref and only_sample arguments are mutually exclusive'
209
+
210
+ ref_embed, sample_embed = [], []
211
+
212
+ info = f'Computing I3D activations for FVD score with batch size {bs}'
213
+
214
+ if only_ref:
215
+
216
+ if not isvideo(videos_real):
217
+ # if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255]
218
+ videos_real = torch.from_numpy(videos_real).permute(0, 4, 1, 2, 3).float()
219
+ print(videos_real.shape)
220
+
221
+ if videos_real.shape[0] % bs == 0:
222
+ n_secs = videos_real.shape[0] // bs
223
+ else:
224
+ n_secs = videos_real.shape[0] // bs + 1
225
+
226
+ videos_real = torch.tensor_split(videos_real, n_secs, dim=0)
227
+
228
+ for ref_v in tqdm(videos_real, total=len(videos_real),desc=info):
229
+
230
+ feats_ref = detector(ref_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
231
+ ref_embed.append(feats_ref)
232
+
233
+ elif only_sample:
234
+
235
+ if not isvideo(videos_fake):
236
+ # if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255]
237
+ videos_fake = torch.from_numpy(videos_fake).permute(0, 4, 1, 2, 3).float()
238
+ print(videos_fake.shape)
239
+
240
+ if videos_fake.shape[0] % bs == 0:
241
+ n_secs = videos_fake.shape[0] // bs
242
+ else:
243
+ n_secs = videos_fake.shape[0] // bs + 1
244
+
245
+ videos_real = torch.tensor_split(videos_real, n_secs, dim=0)
246
+
247
+ for sample_v in tqdm(videos_fake, total=len(videos_real),desc=info):
248
+ feats_sample = detector(sample_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
249
+ sample_embed.append(feats_sample)
250
+
251
+
252
+ else:
253
+
254
+ if not isvideo(videos_real):
255
+ # if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255]
256
+ videos_real = torch.from_numpy(videos_real).permute(0, 4, 1, 2, 3).float()
257
+
258
+ if not isvideo(videos_fake):
259
+ videos_fake = torch.from_numpy(videos_fake).permute(0, 4, 1, 2, 3).float()
260
+
261
+ if videos_fake.shape[0] % bs == 0:
262
+ n_secs = videos_fake.shape[0] // bs
263
+ else:
264
+ n_secs = videos_fake.shape[0] // bs + 1
265
+
266
+ videos_real = torch.tensor_split(videos_real, n_secs, dim=0)
267
+ videos_fake = torch.tensor_split(videos_fake, n_secs, dim=0)
268
+
269
+ for ref_v, sample_v in tqdm(zip(videos_real,videos_fake),total=len(videos_fake),desc=info):
270
+ # print(ref_v.shape)
271
+ # ref_v = torch.nn.functional.interpolate(ref_v, size=(sample_v.shape[2], 256, 256), mode='trilinear', align_corners=False)
272
+ # sample_v = torch.nn.functional.interpolate(sample_v, size=(sample_v.shape[2], 256, 256), mode='trilinear', align_corners=False)
273
+
274
+
275
+ feats_sample = detector(sample_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
276
+ feats_ref = detector(ref_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
277
+ sample_embed.append(feats_sample)
278
+ ref_embed.append(feats_ref)
279
+
280
+ out = dict()
281
+ if len(sample_embed) > 0:
282
+ sample_embed = np.concatenate(sample_embed,axis=0)
283
+ mu_sample, sigma_sample = compute_stats(sample_embed)
284
+ out.update({'mu_sample': mu_sample,
285
+ 'sigma_sample': sigma_sample})
286
+
287
+ if len(ref_embed) > 0:
288
+ ref_embed = np.concatenate(ref_embed,axis=0)
289
+ mu_ref, sigma_ref = compute_stats(ref_embed)
290
+ out.update({'mu_ref': mu_ref,
291
+ 'sigma_ref': sigma_ref})
292
+
293
+
294
+ return out
stable_diffusion/ldm/modules/image_degradation/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
2
+ from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
stable_diffusion/ldm/modules/image_degradation/bsrgan.py ADDED
@@ -0,0 +1,730 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ # --------------------------------------------
4
+ # Super-Resolution
5
+ # --------------------------------------------
6
+ #
7
+ # Kai Zhang (cskaizhang@gmail.com)
8
+ # https://github.com/cszn
9
+ # From 2019/03--2021/08
10
+ # --------------------------------------------
11
+ """
12
+
13
+ import numpy as np
14
+ import cv2
15
+ import torch
16
+
17
+ from functools import partial
18
+ import random
19
+ from scipy import ndimage
20
+ import scipy
21
+ import scipy.stats as ss
22
+ from scipy.interpolate import interp2d
23
+ from scipy.linalg import orth
24
+ import albumentations
25
+
26
+ import ldm.modules.image_degradation.utils_image as util
27
+
28
+
29
+ def modcrop_np(img, sf):
30
+ '''
31
+ Args:
32
+ img: numpy image, WxH or WxHxC
33
+ sf: scale factor
34
+ Return:
35
+ cropped image
36
+ '''
37
+ w, h = img.shape[:2]
38
+ im = np.copy(img)
39
+ return im[:w - w % sf, :h - h % sf, ...]
40
+
41
+
42
+ """
43
+ # --------------------------------------------
44
+ # anisotropic Gaussian kernels
45
+ # --------------------------------------------
46
+ """
47
+
48
+
49
+ def analytic_kernel(k):
50
+ """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
51
+ k_size = k.shape[0]
52
+ # Calculate the big kernels size
53
+ big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
54
+ # Loop over the small kernel to fill the big one
55
+ for r in range(k_size):
56
+ for c in range(k_size):
57
+ big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
58
+ # Crop the edges of the big kernel to ignore very small values and increase run time of SR
59
+ crop = k_size // 2
60
+ cropped_big_k = big_k[crop:-crop, crop:-crop]
61
+ # Normalize to 1
62
+ return cropped_big_k / cropped_big_k.sum()
63
+
64
+
65
+ def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
66
+ """ generate an anisotropic Gaussian kernel
67
+ Args:
68
+ ksize : e.g., 15, kernel size
69
+ theta : [0, pi], rotation angle range
70
+ l1 : [0.1,50], scaling of eigenvalues
71
+ l2 : [0.1,l1], scaling of eigenvalues
72
+ If l1 = l2, will get an isotropic Gaussian kernel.
73
+ Returns:
74
+ k : kernel
75
+ """
76
+
77
+ v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
78
+ V = np.array([[v[0], v[1]], [v[1], -v[0]]])
79
+ D = np.array([[l1, 0], [0, l2]])
80
+ Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
81
+ k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
82
+
83
+ return k
84
+
85
+
86
+ def gm_blur_kernel(mean, cov, size=15):
87
+ center = size / 2.0 + 0.5
88
+ k = np.zeros([size, size])
89
+ for y in range(size):
90
+ for x in range(size):
91
+ cy = y - center + 1
92
+ cx = x - center + 1
93
+ k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
94
+
95
+ k = k / np.sum(k)
96
+ return k
97
+
98
+
99
+ def shift_pixel(x, sf, upper_left=True):
100
+ """shift pixel for super-resolution with different scale factors
101
+ Args:
102
+ x: WxHxC or WxH
103
+ sf: scale factor
104
+ upper_left: shift direction
105
+ """
106
+ h, w = x.shape[:2]
107
+ shift = (sf - 1) * 0.5
108
+ xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
109
+ if upper_left:
110
+ x1 = xv + shift
111
+ y1 = yv + shift
112
+ else:
113
+ x1 = xv - shift
114
+ y1 = yv - shift
115
+
116
+ x1 = np.clip(x1, 0, w - 1)
117
+ y1 = np.clip(y1, 0, h - 1)
118
+
119
+ if x.ndim == 2:
120
+ x = interp2d(xv, yv, x)(x1, y1)
121
+ if x.ndim == 3:
122
+ for i in range(x.shape[-1]):
123
+ x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
124
+
125
+ return x
126
+
127
+
128
+ def blur(x, k):
129
+ '''
130
+ x: image, NxcxHxW
131
+ k: kernel, Nx1xhxw
132
+ '''
133
+ n, c = x.shape[:2]
134
+ p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
135
+ x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
136
+ k = k.repeat(1, c, 1, 1)
137
+ k = k.view(-1, 1, k.shape[2], k.shape[3])
138
+ x = x.view(1, -1, x.shape[2], x.shape[3])
139
+ x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
140
+ x = x.view(n, c, x.shape[2], x.shape[3])
141
+
142
+ return x
143
+
144
+
145
+ def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
146
+ """"
147
+ # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
148
+ # Kai Zhang
149
+ # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
150
+ # max_var = 2.5 * sf
151
+ """
152
+ # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
153
+ lambda_1 = min_var + np.random.rand() * (max_var - min_var)
154
+ lambda_2 = min_var + np.random.rand() * (max_var - min_var)
155
+ theta = np.random.rand() * np.pi # random theta
156
+ noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
157
+
158
+ # Set COV matrix using Lambdas and Theta
159
+ LAMBDA = np.diag([lambda_1, lambda_2])
160
+ Q = np.array([[np.cos(theta), -np.sin(theta)],
161
+ [np.sin(theta), np.cos(theta)]])
162
+ SIGMA = Q @ LAMBDA @ Q.T
163
+ INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
164
+
165
+ # Set expectation position (shifting kernel for aligned image)
166
+ MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
167
+ MU = MU[None, None, :, None]
168
+
169
+ # Create meshgrid for Gaussian
170
+ [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
171
+ Z = np.stack([X, Y], 2)[:, :, :, None]
172
+
173
+ # Calcualte Gaussian for every pixel of the kernel
174
+ ZZ = Z - MU
175
+ ZZ_t = ZZ.transpose(0, 1, 3, 2)
176
+ raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
177
+
178
+ # shift the kernel so it will be centered
179
+ # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
180
+
181
+ # Normalize the kernel and return
182
+ # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
183
+ kernel = raw_kernel / np.sum(raw_kernel)
184
+ return kernel
185
+
186
+
187
+ def fspecial_gaussian(hsize, sigma):
188
+ hsize = [hsize, hsize]
189
+ siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
190
+ std = sigma
191
+ [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
192
+ arg = -(x * x + y * y) / (2 * std * std)
193
+ h = np.exp(arg)
194
+ h[h < scipy.finfo(float).eps * h.max()] = 0
195
+ sumh = h.sum()
196
+ if sumh != 0:
197
+ h = h / sumh
198
+ return h
199
+
200
+
201
+ def fspecial_laplacian(alpha):
202
+ alpha = max([0, min([alpha, 1])])
203
+ h1 = alpha / (alpha + 1)
204
+ h2 = (1 - alpha) / (alpha + 1)
205
+ h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
206
+ h = np.array(h)
207
+ return h
208
+
209
+
210
+ def fspecial(filter_type, *args, **kwargs):
211
+ '''
212
+ python code from:
213
+ https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
214
+ '''
215
+ if filter_type == 'gaussian':
216
+ return fspecial_gaussian(*args, **kwargs)
217
+ if filter_type == 'laplacian':
218
+ return fspecial_laplacian(*args, **kwargs)
219
+
220
+
221
+ """
222
+ # --------------------------------------------
223
+ # degradation models
224
+ # --------------------------------------------
225
+ """
226
+
227
+
228
+ def bicubic_degradation(x, sf=3):
229
+ '''
230
+ Args:
231
+ x: HxWxC image, [0, 1]
232
+ sf: down-scale factor
233
+ Return:
234
+ bicubicly downsampled LR image
235
+ '''
236
+ x = util.imresize_np(x, scale=1 / sf)
237
+ return x
238
+
239
+
240
+ def srmd_degradation(x, k, sf=3):
241
+ ''' blur + bicubic downsampling
242
+ Args:
243
+ x: HxWxC image, [0, 1]
244
+ k: hxw, double
245
+ sf: down-scale factor
246
+ Return:
247
+ downsampled LR image
248
+ Reference:
249
+ @inproceedings{zhang2018learning,
250
+ title={Learning a single convolutional super-resolution network for multiple degradations},
251
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
252
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
253
+ pages={3262--3271},
254
+ year={2018}
255
+ }
256
+ '''
257
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
258
+ x = bicubic_degradation(x, sf=sf)
259
+ return x
260
+
261
+
262
+ def dpsr_degradation(x, k, sf=3):
263
+ ''' bicubic downsampling + blur
264
+ Args:
265
+ x: HxWxC image, [0, 1]
266
+ k: hxw, double
267
+ sf: down-scale factor
268
+ Return:
269
+ downsampled LR image
270
+ Reference:
271
+ @inproceedings{zhang2019deep,
272
+ title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
273
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
274
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
275
+ pages={1671--1681},
276
+ year={2019}
277
+ }
278
+ '''
279
+ x = bicubic_degradation(x, sf=sf)
280
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
281
+ return x
282
+
283
+
284
+ def classical_degradation(x, k, sf=3):
285
+ ''' blur + downsampling
286
+ Args:
287
+ x: HxWxC image, [0, 1]/[0, 255]
288
+ k: hxw, double
289
+ sf: down-scale factor
290
+ Return:
291
+ downsampled LR image
292
+ '''
293
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
294
+ # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
295
+ st = 0
296
+ return x[st::sf, st::sf, ...]
297
+
298
+
299
+ def add_sharpening(img, weight=0.5, radius=50, threshold=10):
300
+ """USM sharpening. borrowed from real-ESRGAN
301
+ Input image: I; Blurry image: B.
302
+ 1. K = I + weight * (I - B)
303
+ 2. Mask = 1 if abs(I - B) > threshold, else: 0
304
+ 3. Blur mask:
305
+ 4. Out = Mask * K + (1 - Mask) * I
306
+ Args:
307
+ img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
308
+ weight (float): Sharp weight. Default: 1.
309
+ radius (float): Kernel size of Gaussian blur. Default: 50.
310
+ threshold (int):
311
+ """
312
+ if radius % 2 == 0:
313
+ radius += 1
314
+ blur = cv2.GaussianBlur(img, (radius, radius), 0)
315
+ residual = img - blur
316
+ mask = np.abs(residual) * 255 > threshold
317
+ mask = mask.astype('float32')
318
+ soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
319
+
320
+ K = img + weight * residual
321
+ K = np.clip(K, 0, 1)
322
+ return soft_mask * K + (1 - soft_mask) * img
323
+
324
+
325
+ def add_blur(img, sf=4):
326
+ wd2 = 4.0 + sf
327
+ wd = 2.0 + 0.2 * sf
328
+ if random.random() < 0.5:
329
+ l1 = wd2 * random.random()
330
+ l2 = wd2 * random.random()
331
+ k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
332
+ else:
333
+ k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
334
+ img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
335
+
336
+ return img
337
+
338
+
339
+ def add_resize(img, sf=4):
340
+ rnum = np.random.rand()
341
+ if rnum > 0.8: # up
342
+ sf1 = random.uniform(1, 2)
343
+ elif rnum < 0.7: # down
344
+ sf1 = random.uniform(0.5 / sf, 1)
345
+ else:
346
+ sf1 = 1.0
347
+ img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
348
+ img = np.clip(img, 0.0, 1.0)
349
+
350
+ return img
351
+
352
+
353
+ # def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
354
+ # noise_level = random.randint(noise_level1, noise_level2)
355
+ # rnum = np.random.rand()
356
+ # if rnum > 0.6: # add color Gaussian noise
357
+ # img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
358
+ # elif rnum < 0.4: # add grayscale Gaussian noise
359
+ # img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
360
+ # else: # add noise
361
+ # L = noise_level2 / 255.
362
+ # D = np.diag(np.random.rand(3))
363
+ # U = orth(np.random.rand(3, 3))
364
+ # conv = np.dot(np.dot(np.transpose(U), D), U)
365
+ # img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
366
+ # img = np.clip(img, 0.0, 1.0)
367
+ # return img
368
+
369
+ def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
370
+ noise_level = random.randint(noise_level1, noise_level2)
371
+ rnum = np.random.rand()
372
+ if rnum > 0.6: # add color Gaussian noise
373
+ img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
374
+ elif rnum < 0.4: # add grayscale Gaussian noise
375
+ img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
376
+ else: # add noise
377
+ L = noise_level2 / 255.
378
+ D = np.diag(np.random.rand(3))
379
+ U = orth(np.random.rand(3, 3))
380
+ conv = np.dot(np.dot(np.transpose(U), D), U)
381
+ img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
382
+ img = np.clip(img, 0.0, 1.0)
383
+ return img
384
+
385
+
386
+ def add_speckle_noise(img, noise_level1=2, noise_level2=25):
387
+ noise_level = random.randint(noise_level1, noise_level2)
388
+ img = np.clip(img, 0.0, 1.0)
389
+ rnum = random.random()
390
+ if rnum > 0.6:
391
+ img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
392
+ elif rnum < 0.4:
393
+ img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
394
+ else:
395
+ L = noise_level2 / 255.
396
+ D = np.diag(np.random.rand(3))
397
+ U = orth(np.random.rand(3, 3))
398
+ conv = np.dot(np.dot(np.transpose(U), D), U)
399
+ img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
400
+ img = np.clip(img, 0.0, 1.0)
401
+ return img
402
+
403
+
404
+ def add_Poisson_noise(img):
405
+ img = np.clip((img * 255.0).round(), 0, 255) / 255.
406
+ vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
407
+ if random.random() < 0.5:
408
+ img = np.random.poisson(img * vals).astype(np.float32) / vals
409
+ else:
410
+ img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
411
+ img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
412
+ noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
413
+ img += noise_gray[:, :, np.newaxis]
414
+ img = np.clip(img, 0.0, 1.0)
415
+ return img
416
+
417
+
418
+ def add_JPEG_noise(img):
419
+ quality_factor = random.randint(30, 95)
420
+ img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
421
+ result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
422
+ img = cv2.imdecode(encimg, 1)
423
+ img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
424
+ return img
425
+
426
+
427
+ def random_crop(lq, hq, sf=4, lq_patchsize=64):
428
+ h, w = lq.shape[:2]
429
+ rnd_h = random.randint(0, h - lq_patchsize)
430
+ rnd_w = random.randint(0, w - lq_patchsize)
431
+ lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
432
+
433
+ rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
434
+ hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
435
+ return lq, hq
436
+
437
+
438
+ def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
439
+ """
440
+ This is the degradation model of BSRGAN from the paper
441
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
442
+ ----------
443
+ img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
444
+ sf: scale factor
445
+ isp_model: camera ISP model
446
+ Returns
447
+ -------
448
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
449
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
450
+ """
451
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
452
+ sf_ori = sf
453
+
454
+ h1, w1 = img.shape[:2]
455
+ img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
456
+ h, w = img.shape[:2]
457
+
458
+ if h < lq_patchsize * sf or w < lq_patchsize * sf:
459
+ raise ValueError(f'img size ({h1}X{w1}) is too small!')
460
+
461
+ hq = img.copy()
462
+
463
+ if sf == 4 and random.random() < scale2_prob: # downsample1
464
+ if np.random.rand() < 0.5:
465
+ img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
466
+ interpolation=random.choice([1, 2, 3]))
467
+ else:
468
+ img = util.imresize_np(img, 1 / 2, True)
469
+ img = np.clip(img, 0.0, 1.0)
470
+ sf = 2
471
+
472
+ shuffle_order = random.sample(range(7), 7)
473
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
474
+ if idx1 > idx2: # keep downsample3 last
475
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
476
+
477
+ for i in shuffle_order:
478
+
479
+ if i == 0:
480
+ img = add_blur(img, sf=sf)
481
+
482
+ elif i == 1:
483
+ img = add_blur(img, sf=sf)
484
+
485
+ elif i == 2:
486
+ a, b = img.shape[1], img.shape[0]
487
+ # downsample2
488
+ if random.random() < 0.75:
489
+ sf1 = random.uniform(1, 2 * sf)
490
+ img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
491
+ interpolation=random.choice([1, 2, 3]))
492
+ else:
493
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
494
+ k_shifted = shift_pixel(k, sf)
495
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
496
+ img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
497
+ img = img[0::sf, 0::sf, ...] # nearest downsampling
498
+ img = np.clip(img, 0.0, 1.0)
499
+
500
+ elif i == 3:
501
+ # downsample3
502
+ img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
503
+ img = np.clip(img, 0.0, 1.0)
504
+
505
+ elif i == 4:
506
+ # add Gaussian noise
507
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
508
+
509
+ elif i == 5:
510
+ # add JPEG noise
511
+ if random.random() < jpeg_prob:
512
+ img = add_JPEG_noise(img)
513
+
514
+ elif i == 6:
515
+ # add processed camera sensor noise
516
+ if random.random() < isp_prob and isp_model is not None:
517
+ with torch.no_grad():
518
+ img, hq = isp_model.forward(img.copy(), hq)
519
+
520
+ # add final JPEG compression noise
521
+ img = add_JPEG_noise(img)
522
+
523
+ # random crop
524
+ img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
525
+
526
+ return img, hq
527
+
528
+
529
+ # todo no isp_model?
530
+ def degradation_bsrgan_variant(image, sf=4, isp_model=None):
531
+ """
532
+ This is the degradation model of BSRGAN from the paper
533
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
534
+ ----------
535
+ sf: scale factor
536
+ isp_model: camera ISP model
537
+ Returns
538
+ -------
539
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
540
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
541
+ """
542
+ image = util.uint2single(image)
543
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
544
+ sf_ori = sf
545
+
546
+ h1, w1 = image.shape[:2]
547
+ image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
548
+ h, w = image.shape[:2]
549
+
550
+ hq = image.copy()
551
+
552
+ if sf == 4 and random.random() < scale2_prob: # downsample1
553
+ if np.random.rand() < 0.5:
554
+ image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
555
+ interpolation=random.choice([1, 2, 3]))
556
+ else:
557
+ image = util.imresize_np(image, 1 / 2, True)
558
+ image = np.clip(image, 0.0, 1.0)
559
+ sf = 2
560
+
561
+ shuffle_order = random.sample(range(7), 7)
562
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
563
+ if idx1 > idx2: # keep downsample3 last
564
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
565
+
566
+ for i in shuffle_order:
567
+
568
+ if i == 0:
569
+ image = add_blur(image, sf=sf)
570
+
571
+ elif i == 1:
572
+ image = add_blur(image, sf=sf)
573
+
574
+ elif i == 2:
575
+ a, b = image.shape[1], image.shape[0]
576
+ # downsample2
577
+ if random.random() < 0.75:
578
+ sf1 = random.uniform(1, 2 * sf)
579
+ image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
580
+ interpolation=random.choice([1, 2, 3]))
581
+ else:
582
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
583
+ k_shifted = shift_pixel(k, sf)
584
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
585
+ image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
586
+ image = image[0::sf, 0::sf, ...] # nearest downsampling
587
+ image = np.clip(image, 0.0, 1.0)
588
+
589
+ elif i == 3:
590
+ # downsample3
591
+ image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
592
+ image = np.clip(image, 0.0, 1.0)
593
+
594
+ elif i == 4:
595
+ # add Gaussian noise
596
+ image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
597
+
598
+ elif i == 5:
599
+ # add JPEG noise
600
+ if random.random() < jpeg_prob:
601
+ image = add_JPEG_noise(image)
602
+
603
+ # elif i == 6:
604
+ # # add processed camera sensor noise
605
+ # if random.random() < isp_prob and isp_model is not None:
606
+ # with torch.no_grad():
607
+ # img, hq = isp_model.forward(img.copy(), hq)
608
+
609
+ # add final JPEG compression noise
610
+ image = add_JPEG_noise(image)
611
+ image = util.single2uint(image)
612
+ example = {"image":image}
613
+ return example
614
+
615
+
616
+ # TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
617
+ def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
618
+ """
619
+ This is an extended degradation model by combining
620
+ the degradation models of BSRGAN and Real-ESRGAN
621
+ ----------
622
+ img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
623
+ sf: scale factor
624
+ use_shuffle: the degradation shuffle
625
+ use_sharp: sharpening the img
626
+ Returns
627
+ -------
628
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
629
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
630
+ """
631
+
632
+ h1, w1 = img.shape[:2]
633
+ img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
634
+ h, w = img.shape[:2]
635
+
636
+ if h < lq_patchsize * sf or w < lq_patchsize * sf:
637
+ raise ValueError(f'img size ({h1}X{w1}) is too small!')
638
+
639
+ if use_sharp:
640
+ img = add_sharpening(img)
641
+ hq = img.copy()
642
+
643
+ if random.random() < shuffle_prob:
644
+ shuffle_order = random.sample(range(13), 13)
645
+ else:
646
+ shuffle_order = list(range(13))
647
+ # local shuffle for noise, JPEG is always the last one
648
+ shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
649
+ shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
650
+
651
+ poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
652
+
653
+ for i in shuffle_order:
654
+ if i == 0:
655
+ img = add_blur(img, sf=sf)
656
+ elif i == 1:
657
+ img = add_resize(img, sf=sf)
658
+ elif i == 2:
659
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
660
+ elif i == 3:
661
+ if random.random() < poisson_prob:
662
+ img = add_Poisson_noise(img)
663
+ elif i == 4:
664
+ if random.random() < speckle_prob:
665
+ img = add_speckle_noise(img)
666
+ elif i == 5:
667
+ if random.random() < isp_prob and isp_model is not None:
668
+ with torch.no_grad():
669
+ img, hq = isp_model.forward(img.copy(), hq)
670
+ elif i == 6:
671
+ img = add_JPEG_noise(img)
672
+ elif i == 7:
673
+ img = add_blur(img, sf=sf)
674
+ elif i == 8:
675
+ img = add_resize(img, sf=sf)
676
+ elif i == 9:
677
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
678
+ elif i == 10:
679
+ if random.random() < poisson_prob:
680
+ img = add_Poisson_noise(img)
681
+ elif i == 11:
682
+ if random.random() < speckle_prob:
683
+ img = add_speckle_noise(img)
684
+ elif i == 12:
685
+ if random.random() < isp_prob and isp_model is not None:
686
+ with torch.no_grad():
687
+ img, hq = isp_model.forward(img.copy(), hq)
688
+ else:
689
+ print('check the shuffle!')
690
+
691
+ # resize to desired size
692
+ img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
693
+ interpolation=random.choice([1, 2, 3]))
694
+
695
+ # add final JPEG compression noise
696
+ img = add_JPEG_noise(img)
697
+
698
+ # random crop
699
+ img, hq = random_crop(img, hq, sf, lq_patchsize)
700
+
701
+ return img, hq
702
+
703
+
704
+ if __name__ == '__main__':
705
+ print("hey")
706
+ img = util.imread_uint('utils/test.png', 3)
707
+ print(img)
708
+ img = util.uint2single(img)
709
+ print(img)
710
+ img = img[:448, :448]
711
+ h = img.shape[0] // 4
712
+ print("resizing to", h)
713
+ sf = 4
714
+ deg_fn = partial(degradation_bsrgan_variant, sf=sf)
715
+ for i in range(20):
716
+ print(i)
717
+ img_lq = deg_fn(img)
718
+ print(img_lq)
719
+ img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
720
+ print(img_lq.shape)
721
+ print("bicubic", img_lq_bicubic.shape)
722
+ print(img_hq.shape)
723
+ lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
724
+ interpolation=0)
725
+ lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
726
+ interpolation=0)
727
+ img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
728
+ util.imsave(img_concat, str(i) + '.png')
729
+
730
+
stable_diffusion/ldm/modules/image_degradation/bsrgan_light.py ADDED
@@ -0,0 +1,650 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ import numpy as np
3
+ import cv2
4
+ import torch
5
+
6
+ from functools import partial
7
+ import random
8
+ from scipy import ndimage
9
+ import scipy
10
+ import scipy.stats as ss
11
+ from scipy.interpolate import interp2d
12
+ from scipy.linalg import orth
13
+ import albumentations
14
+
15
+ import ldm.modules.image_degradation.utils_image as util
16
+
17
+ """
18
+ # --------------------------------------------
19
+ # Super-Resolution
20
+ # --------------------------------------------
21
+ #
22
+ # Kai Zhang (cskaizhang@gmail.com)
23
+ # https://github.com/cszn
24
+ # From 2019/03--2021/08
25
+ # --------------------------------------------
26
+ """
27
+
28
+
29
+ def modcrop_np(img, sf):
30
+ '''
31
+ Args:
32
+ img: numpy image, WxH or WxHxC
33
+ sf: scale factor
34
+ Return:
35
+ cropped image
36
+ '''
37
+ w, h = img.shape[:2]
38
+ im = np.copy(img)
39
+ return im[:w - w % sf, :h - h % sf, ...]
40
+
41
+
42
+ """
43
+ # --------------------------------------------
44
+ # anisotropic Gaussian kernels
45
+ # --------------------------------------------
46
+ """
47
+
48
+
49
+ def analytic_kernel(k):
50
+ """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
51
+ k_size = k.shape[0]
52
+ # Calculate the big kernels size
53
+ big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
54
+ # Loop over the small kernel to fill the big one
55
+ for r in range(k_size):
56
+ for c in range(k_size):
57
+ big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
58
+ # Crop the edges of the big kernel to ignore very small values and increase run time of SR
59
+ crop = k_size // 2
60
+ cropped_big_k = big_k[crop:-crop, crop:-crop]
61
+ # Normalize to 1
62
+ return cropped_big_k / cropped_big_k.sum()
63
+
64
+
65
+ def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
66
+ """ generate an anisotropic Gaussian kernel
67
+ Args:
68
+ ksize : e.g., 15, kernel size
69
+ theta : [0, pi], rotation angle range
70
+ l1 : [0.1,50], scaling of eigenvalues
71
+ l2 : [0.1,l1], scaling of eigenvalues
72
+ If l1 = l2, will get an isotropic Gaussian kernel.
73
+ Returns:
74
+ k : kernel
75
+ """
76
+
77
+ v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
78
+ V = np.array([[v[0], v[1]], [v[1], -v[0]]])
79
+ D = np.array([[l1, 0], [0, l2]])
80
+ Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
81
+ k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
82
+
83
+ return k
84
+
85
+
86
+ def gm_blur_kernel(mean, cov, size=15):
87
+ center = size / 2.0 + 0.5
88
+ k = np.zeros([size, size])
89
+ for y in range(size):
90
+ for x in range(size):
91
+ cy = y - center + 1
92
+ cx = x - center + 1
93
+ k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
94
+
95
+ k = k / np.sum(k)
96
+ return k
97
+
98
+
99
+ def shift_pixel(x, sf, upper_left=True):
100
+ """shift pixel for super-resolution with different scale factors
101
+ Args:
102
+ x: WxHxC or WxH
103
+ sf: scale factor
104
+ upper_left: shift direction
105
+ """
106
+ h, w = x.shape[:2]
107
+ shift = (sf - 1) * 0.5
108
+ xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
109
+ if upper_left:
110
+ x1 = xv + shift
111
+ y1 = yv + shift
112
+ else:
113
+ x1 = xv - shift
114
+ y1 = yv - shift
115
+
116
+ x1 = np.clip(x1, 0, w - 1)
117
+ y1 = np.clip(y1, 0, h - 1)
118
+
119
+ if x.ndim == 2:
120
+ x = interp2d(xv, yv, x)(x1, y1)
121
+ if x.ndim == 3:
122
+ for i in range(x.shape[-1]):
123
+ x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
124
+
125
+ return x
126
+
127
+
128
+ def blur(x, k):
129
+ '''
130
+ x: image, NxcxHxW
131
+ k: kernel, Nx1xhxw
132
+ '''
133
+ n, c = x.shape[:2]
134
+ p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
135
+ x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
136
+ k = k.repeat(1, c, 1, 1)
137
+ k = k.view(-1, 1, k.shape[2], k.shape[3])
138
+ x = x.view(1, -1, x.shape[2], x.shape[3])
139
+ x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
140
+ x = x.view(n, c, x.shape[2], x.shape[3])
141
+
142
+ return x
143
+
144
+
145
+ def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
146
+ """"
147
+ # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
148
+ # Kai Zhang
149
+ # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
150
+ # max_var = 2.5 * sf
151
+ """
152
+ # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
153
+ lambda_1 = min_var + np.random.rand() * (max_var - min_var)
154
+ lambda_2 = min_var + np.random.rand() * (max_var - min_var)
155
+ theta = np.random.rand() * np.pi # random theta
156
+ noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
157
+
158
+ # Set COV matrix using Lambdas and Theta
159
+ LAMBDA = np.diag([lambda_1, lambda_2])
160
+ Q = np.array([[np.cos(theta), -np.sin(theta)],
161
+ [np.sin(theta), np.cos(theta)]])
162
+ SIGMA = Q @ LAMBDA @ Q.T
163
+ INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
164
+
165
+ # Set expectation position (shifting kernel for aligned image)
166
+ MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
167
+ MU = MU[None, None, :, None]
168
+
169
+ # Create meshgrid for Gaussian
170
+ [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
171
+ Z = np.stack([X, Y], 2)[:, :, :, None]
172
+
173
+ # Calcualte Gaussian for every pixel of the kernel
174
+ ZZ = Z - MU
175
+ ZZ_t = ZZ.transpose(0, 1, 3, 2)
176
+ raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
177
+
178
+ # shift the kernel so it will be centered
179
+ # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
180
+
181
+ # Normalize the kernel and return
182
+ # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
183
+ kernel = raw_kernel / np.sum(raw_kernel)
184
+ return kernel
185
+
186
+
187
+ def fspecial_gaussian(hsize, sigma):
188
+ hsize = [hsize, hsize]
189
+ siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
190
+ std = sigma
191
+ [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
192
+ arg = -(x * x + y * y) / (2 * std * std)
193
+ h = np.exp(arg)
194
+ h[h < scipy.finfo(float).eps * h.max()] = 0
195
+ sumh = h.sum()
196
+ if sumh != 0:
197
+ h = h / sumh
198
+ return h
199
+
200
+
201
+ def fspecial_laplacian(alpha):
202
+ alpha = max([0, min([alpha, 1])])
203
+ h1 = alpha / (alpha + 1)
204
+ h2 = (1 - alpha) / (alpha + 1)
205
+ h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
206
+ h = np.array(h)
207
+ return h
208
+
209
+
210
+ def fspecial(filter_type, *args, **kwargs):
211
+ '''
212
+ python code from:
213
+ https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
214
+ '''
215
+ if filter_type == 'gaussian':
216
+ return fspecial_gaussian(*args, **kwargs)
217
+ if filter_type == 'laplacian':
218
+ return fspecial_laplacian(*args, **kwargs)
219
+
220
+
221
+ """
222
+ # --------------------------------------------
223
+ # degradation models
224
+ # --------------------------------------------
225
+ """
226
+
227
+
228
+ def bicubic_degradation(x, sf=3):
229
+ '''
230
+ Args:
231
+ x: HxWxC image, [0, 1]
232
+ sf: down-scale factor
233
+ Return:
234
+ bicubicly downsampled LR image
235
+ '''
236
+ x = util.imresize_np(x, scale=1 / sf)
237
+ return x
238
+
239
+
240
+ def srmd_degradation(x, k, sf=3):
241
+ ''' blur + bicubic downsampling
242
+ Args:
243
+ x: HxWxC image, [0, 1]
244
+ k: hxw, double
245
+ sf: down-scale factor
246
+ Return:
247
+ downsampled LR image
248
+ Reference:
249
+ @inproceedings{zhang2018learning,
250
+ title={Learning a single convolutional super-resolution network for multiple degradations},
251
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
252
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
253
+ pages={3262--3271},
254
+ year={2018}
255
+ }
256
+ '''
257
+ x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
258
+ x = bicubic_degradation(x, sf=sf)
259
+ return x
260
+
261
+
262
+ def dpsr_degradation(x, k, sf=3):
263
+ ''' bicubic downsampling + blur
264
+ Args:
265
+ x: HxWxC image, [0, 1]
266
+ k: hxw, double
267
+ sf: down-scale factor
268
+ Return:
269
+ downsampled LR image
270
+ Reference:
271
+ @inproceedings{zhang2019deep,
272
+ title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
273
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
274
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
275
+ pages={1671--1681},
276
+ year={2019}
277
+ }
278
+ '''
279
+ x = bicubic_degradation(x, sf=sf)
280
+ x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
281
+ return x
282
+
283
+
284
+ def classical_degradation(x, k, sf=3):
285
+ ''' blur + downsampling
286
+ Args:
287
+ x: HxWxC image, [0, 1]/[0, 255]
288
+ k: hxw, double
289
+ sf: down-scale factor
290
+ Return:
291
+ downsampled LR image
292
+ '''
293
+ x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
294
+ # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
295
+ st = 0
296
+ return x[st::sf, st::sf, ...]
297
+
298
+
299
+ def add_sharpening(img, weight=0.5, radius=50, threshold=10):
300
+ """USM sharpening. borrowed from real-ESRGAN
301
+ Input image: I; Blurry image: B.
302
+ 1. K = I + weight * (I - B)
303
+ 2. Mask = 1 if abs(I - B) > threshold, else: 0
304
+ 3. Blur mask:
305
+ 4. Out = Mask * K + (1 - Mask) * I
306
+ Args:
307
+ img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
308
+ weight (float): Sharp weight. Default: 1.
309
+ radius (float): Kernel size of Gaussian blur. Default: 50.
310
+ threshold (int):
311
+ """
312
+ if radius % 2 == 0:
313
+ radius += 1
314
+ blur = cv2.GaussianBlur(img, (radius, radius), 0)
315
+ residual = img - blur
316
+ mask = np.abs(residual) * 255 > threshold
317
+ mask = mask.astype('float32')
318
+ soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
319
+
320
+ K = img + weight * residual
321
+ K = np.clip(K, 0, 1)
322
+ return soft_mask * K + (1 - soft_mask) * img
323
+
324
+
325
+ def add_blur(img, sf=4):
326
+ wd2 = 4.0 + sf
327
+ wd = 2.0 + 0.2 * sf
328
+
329
+ wd2 = wd2/4
330
+ wd = wd/4
331
+
332
+ if random.random() < 0.5:
333
+ l1 = wd2 * random.random()
334
+ l2 = wd2 * random.random()
335
+ k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
336
+ else:
337
+ k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
338
+ img = ndimage.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
339
+
340
+ return img
341
+
342
+
343
+ def add_resize(img, sf=4):
344
+ rnum = np.random.rand()
345
+ if rnum > 0.8: # up
346
+ sf1 = random.uniform(1, 2)
347
+ elif rnum < 0.7: # down
348
+ sf1 = random.uniform(0.5 / sf, 1)
349
+ else:
350
+ sf1 = 1.0
351
+ img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
352
+ img = np.clip(img, 0.0, 1.0)
353
+
354
+ return img
355
+
356
+
357
+ # def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
358
+ # noise_level = random.randint(noise_level1, noise_level2)
359
+ # rnum = np.random.rand()
360
+ # if rnum > 0.6: # add color Gaussian noise
361
+ # img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
362
+ # elif rnum < 0.4: # add grayscale Gaussian noise
363
+ # img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
364
+ # else: # add noise
365
+ # L = noise_level2 / 255.
366
+ # D = np.diag(np.random.rand(3))
367
+ # U = orth(np.random.rand(3, 3))
368
+ # conv = np.dot(np.dot(np.transpose(U), D), U)
369
+ # img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
370
+ # img = np.clip(img, 0.0, 1.0)
371
+ # return img
372
+
373
+ def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
374
+ noise_level = random.randint(noise_level1, noise_level2)
375
+ rnum = np.random.rand()
376
+ if rnum > 0.6: # add color Gaussian noise
377
+ img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
378
+ elif rnum < 0.4: # add grayscale Gaussian noise
379
+ img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
380
+ else: # add noise
381
+ L = noise_level2 / 255.
382
+ D = np.diag(np.random.rand(3))
383
+ U = orth(np.random.rand(3, 3))
384
+ conv = np.dot(np.dot(np.transpose(U), D), U)
385
+ img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
386
+ img = np.clip(img, 0.0, 1.0)
387
+ return img
388
+
389
+
390
+ def add_speckle_noise(img, noise_level1=2, noise_level2=25):
391
+ noise_level = random.randint(noise_level1, noise_level2)
392
+ img = np.clip(img, 0.0, 1.0)
393
+ rnum = random.random()
394
+ if rnum > 0.6:
395
+ img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
396
+ elif rnum < 0.4:
397
+ img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
398
+ else:
399
+ L = noise_level2 / 255.
400
+ D = np.diag(np.random.rand(3))
401
+ U = orth(np.random.rand(3, 3))
402
+ conv = np.dot(np.dot(np.transpose(U), D), U)
403
+ img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
404
+ img = np.clip(img, 0.0, 1.0)
405
+ return img
406
+
407
+
408
+ def add_Poisson_noise(img):
409
+ img = np.clip((img * 255.0).round(), 0, 255) / 255.
410
+ vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
411
+ if random.random() < 0.5:
412
+ img = np.random.poisson(img * vals).astype(np.float32) / vals
413
+ else:
414
+ img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
415
+ img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
416
+ noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
417
+ img += noise_gray[:, :, np.newaxis]
418
+ img = np.clip(img, 0.0, 1.0)
419
+ return img
420
+
421
+
422
+ def add_JPEG_noise(img):
423
+ quality_factor = random.randint(80, 95)
424
+ img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
425
+ result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
426
+ img = cv2.imdecode(encimg, 1)
427
+ img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
428
+ return img
429
+
430
+
431
+ def random_crop(lq, hq, sf=4, lq_patchsize=64):
432
+ h, w = lq.shape[:2]
433
+ rnd_h = random.randint(0, h - lq_patchsize)
434
+ rnd_w = random.randint(0, w - lq_patchsize)
435
+ lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
436
+
437
+ rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
438
+ hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
439
+ return lq, hq
440
+
441
+
442
+ def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
443
+ """
444
+ This is the degradation model of BSRGAN from the paper
445
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
446
+ ----------
447
+ img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
448
+ sf: scale factor
449
+ isp_model: camera ISP model
450
+ Returns
451
+ -------
452
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
453
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
454
+ """
455
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
456
+ sf_ori = sf
457
+
458
+ h1, w1 = img.shape[:2]
459
+ img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
460
+ h, w = img.shape[:2]
461
+
462
+ if h < lq_patchsize * sf or w < lq_patchsize * sf:
463
+ raise ValueError(f'img size ({h1}X{w1}) is too small!')
464
+
465
+ hq = img.copy()
466
+
467
+ if sf == 4 and random.random() < scale2_prob: # downsample1
468
+ if np.random.rand() < 0.5:
469
+ img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
470
+ interpolation=random.choice([1, 2, 3]))
471
+ else:
472
+ img = util.imresize_np(img, 1 / 2, True)
473
+ img = np.clip(img, 0.0, 1.0)
474
+ sf = 2
475
+
476
+ shuffle_order = random.sample(range(7), 7)
477
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
478
+ if idx1 > idx2: # keep downsample3 last
479
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
480
+
481
+ for i in shuffle_order:
482
+
483
+ if i == 0:
484
+ img = add_blur(img, sf=sf)
485
+
486
+ elif i == 1:
487
+ img = add_blur(img, sf=sf)
488
+
489
+ elif i == 2:
490
+ a, b = img.shape[1], img.shape[0]
491
+ # downsample2
492
+ if random.random() < 0.75:
493
+ sf1 = random.uniform(1, 2 * sf)
494
+ img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
495
+ interpolation=random.choice([1, 2, 3]))
496
+ else:
497
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
498
+ k_shifted = shift_pixel(k, sf)
499
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
500
+ img = ndimage.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
501
+ img = img[0::sf, 0::sf, ...] # nearest downsampling
502
+ img = np.clip(img, 0.0, 1.0)
503
+
504
+ elif i == 3:
505
+ # downsample3
506
+ img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
507
+ img = np.clip(img, 0.0, 1.0)
508
+
509
+ elif i == 4:
510
+ # add Gaussian noise
511
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
512
+
513
+ elif i == 5:
514
+ # add JPEG noise
515
+ if random.random() < jpeg_prob:
516
+ img = add_JPEG_noise(img)
517
+
518
+ elif i == 6:
519
+ # add processed camera sensor noise
520
+ if random.random() < isp_prob and isp_model is not None:
521
+ with torch.no_grad():
522
+ img, hq = isp_model.forward(img.copy(), hq)
523
+
524
+ # add final JPEG compression noise
525
+ img = add_JPEG_noise(img)
526
+
527
+ # random crop
528
+ img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
529
+
530
+ return img, hq
531
+
532
+
533
+ # todo no isp_model?
534
+ def degradation_bsrgan_variant(image, sf=4, isp_model=None):
535
+ """
536
+ This is the degradation model of BSRGAN from the paper
537
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
538
+ ----------
539
+ sf: scale factor
540
+ isp_model: camera ISP model
541
+ Returns
542
+ -------
543
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
544
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
545
+ """
546
+ image = util.uint2single(image)
547
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
548
+ sf_ori = sf
549
+
550
+ h1, w1 = image.shape[:2]
551
+ image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
552
+ h, w = image.shape[:2]
553
+
554
+ hq = image.copy()
555
+
556
+ if sf == 4 and random.random() < scale2_prob: # downsample1
557
+ if np.random.rand() < 0.5:
558
+ image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
559
+ interpolation=random.choice([1, 2, 3]))
560
+ else:
561
+ image = util.imresize_np(image, 1 / 2, True)
562
+ image = np.clip(image, 0.0, 1.0)
563
+ sf = 2
564
+
565
+ shuffle_order = random.sample(range(7), 7)
566
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
567
+ if idx1 > idx2: # keep downsample3 last
568
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
569
+
570
+ for i in shuffle_order:
571
+
572
+ if i == 0:
573
+ image = add_blur(image, sf=sf)
574
+
575
+ # elif i == 1:
576
+ # image = add_blur(image, sf=sf)
577
+
578
+ if i == 0:
579
+ pass
580
+
581
+ elif i == 2:
582
+ a, b = image.shape[1], image.shape[0]
583
+ # downsample2
584
+ if random.random() < 0.8:
585
+ sf1 = random.uniform(1, 2 * sf)
586
+ image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
587
+ interpolation=random.choice([1, 2, 3]))
588
+ else:
589
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
590
+ k_shifted = shift_pixel(k, sf)
591
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
592
+ image = ndimage.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
593
+ image = image[0::sf, 0::sf, ...] # nearest downsampling
594
+
595
+ image = np.clip(image, 0.0, 1.0)
596
+
597
+ elif i == 3:
598
+ # downsample3
599
+ image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
600
+ image = np.clip(image, 0.0, 1.0)
601
+
602
+ elif i == 4:
603
+ # add Gaussian noise
604
+ image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
605
+
606
+ elif i == 5:
607
+ # add JPEG noise
608
+ if random.random() < jpeg_prob:
609
+ image = add_JPEG_noise(image)
610
+ #
611
+ # elif i == 6:
612
+ # # add processed camera sensor noise
613
+ # if random.random() < isp_prob and isp_model is not None:
614
+ # with torch.no_grad():
615
+ # img, hq = isp_model.forward(img.copy(), hq)
616
+
617
+ # add final JPEG compression noise
618
+ image = add_JPEG_noise(image)
619
+ image = util.single2uint(image)
620
+ example = {"image": image}
621
+ return example
622
+
623
+
624
+
625
+
626
+ if __name__ == '__main__':
627
+ print("hey")
628
+ img = util.imread_uint('utils/test.png', 3)
629
+ img = img[:448, :448]
630
+ h = img.shape[0] // 4
631
+ print("resizing to", h)
632
+ sf = 4
633
+ deg_fn = partial(degradation_bsrgan_variant, sf=sf)
634
+ for i in range(20):
635
+ print(i)
636
+ img_hq = img
637
+ img_lq = deg_fn(img)["image"]
638
+ img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
639
+ print(img_lq)
640
+ img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
641
+ print(img_lq.shape)
642
+ print("bicubic", img_lq_bicubic.shape)
643
+ print(img_hq.shape)
644
+ lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
645
+ interpolation=0)
646
+ lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
647
+ (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
648
+ interpolation=0)
649
+ img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
650
+ util.imsave(img_concat, str(i) + '.png')
stable_diffusion/ldm/modules/image_degradation/utils/test.png ADDED
stable_diffusion/ldm/modules/image_degradation/utils_image.py ADDED
@@ -0,0 +1,916 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import math
3
+ import random
4
+ import numpy as np
5
+ import torch
6
+ import cv2
7
+ from torchvision.utils import make_grid
8
+ from datetime import datetime
9
+ #import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
10
+
11
+
12
+ os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
13
+
14
+
15
+ '''
16
+ # --------------------------------------------
17
+ # Kai Zhang (github: https://github.com/cszn)
18
+ # 03/Mar/2019
19
+ # --------------------------------------------
20
+ # https://github.com/twhui/SRGAN-pyTorch
21
+ # https://github.com/xinntao/BasicSR
22
+ # --------------------------------------------
23
+ '''
24
+
25
+
26
+ IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
27
+
28
+
29
+ def is_image_file(filename):
30
+ return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
31
+
32
+
33
+ def get_timestamp():
34
+ return datetime.now().strftime('%y%m%d-%H%M%S')
35
+
36
+
37
+ def imshow(x, title=None, cbar=False, figsize=None):
38
+ plt.figure(figsize=figsize)
39
+ plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
40
+ if title:
41
+ plt.title(title)
42
+ if cbar:
43
+ plt.colorbar()
44
+ plt.show()
45
+
46
+
47
+ def surf(Z, cmap='rainbow', figsize=None):
48
+ plt.figure(figsize=figsize)
49
+ ax3 = plt.axes(projection='3d')
50
+
51
+ w, h = Z.shape[:2]
52
+ xx = np.arange(0,w,1)
53
+ yy = np.arange(0,h,1)
54
+ X, Y = np.meshgrid(xx, yy)
55
+ ax3.plot_surface(X,Y,Z,cmap=cmap)
56
+ #ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
57
+ plt.show()
58
+
59
+
60
+ '''
61
+ # --------------------------------------------
62
+ # get image pathes
63
+ # --------------------------------------------
64
+ '''
65
+
66
+
67
+ def get_image_paths(dataroot):
68
+ paths = None # return None if dataroot is None
69
+ if dataroot is not None:
70
+ paths = sorted(_get_paths_from_images(dataroot))
71
+ return paths
72
+
73
+
74
+ def _get_paths_from_images(path):
75
+ assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
76
+ images = []
77
+ for dirpath, _, fnames in sorted(os.walk(path)):
78
+ for fname in sorted(fnames):
79
+ if is_image_file(fname):
80
+ img_path = os.path.join(dirpath, fname)
81
+ images.append(img_path)
82
+ assert images, '{:s} has no valid image file'.format(path)
83
+ return images
84
+
85
+
86
+ '''
87
+ # --------------------------------------------
88
+ # split large images into small images
89
+ # --------------------------------------------
90
+ '''
91
+
92
+
93
+ def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
94
+ w, h = img.shape[:2]
95
+ patches = []
96
+ if w > p_max and h > p_max:
97
+ w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
98
+ h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
99
+ w1.append(w-p_size)
100
+ h1.append(h-p_size)
101
+ # print(w1)
102
+ # print(h1)
103
+ for i in w1:
104
+ for j in h1:
105
+ patches.append(img[i:i+p_size, j:j+p_size,:])
106
+ else:
107
+ patches.append(img)
108
+
109
+ return patches
110
+
111
+
112
+ def imssave(imgs, img_path):
113
+ """
114
+ imgs: list, N images of size WxHxC
115
+ """
116
+ img_name, ext = os.path.splitext(os.path.basename(img_path))
117
+
118
+ for i, img in enumerate(imgs):
119
+ if img.ndim == 3:
120
+ img = img[:, :, [2, 1, 0]]
121
+ new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
122
+ cv2.imwrite(new_path, img)
123
+
124
+
125
+ def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
126
+ """
127
+ split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
128
+ and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
129
+ will be splitted.
130
+ Args:
131
+ original_dataroot:
132
+ taget_dataroot:
133
+ p_size: size of small images
134
+ p_overlap: patch size in training is a good choice
135
+ p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
136
+ """
137
+ paths = get_image_paths(original_dataroot)
138
+ for img_path in paths:
139
+ # img_name, ext = os.path.splitext(os.path.basename(img_path))
140
+ img = imread_uint(img_path, n_channels=n_channels)
141
+ patches = patches_from_image(img, p_size, p_overlap, p_max)
142
+ imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
143
+ #if original_dataroot == taget_dataroot:
144
+ #del img_path
145
+
146
+ '''
147
+ # --------------------------------------------
148
+ # makedir
149
+ # --------------------------------------------
150
+ '''
151
+
152
+
153
+ def mkdir(path):
154
+ if not os.path.exists(path):
155
+ os.makedirs(path)
156
+
157
+
158
+ def mkdirs(paths):
159
+ if isinstance(paths, str):
160
+ mkdir(paths)
161
+ else:
162
+ for path in paths:
163
+ mkdir(path)
164
+
165
+
166
+ def mkdir_and_rename(path):
167
+ if os.path.exists(path):
168
+ new_name = path + '_archived_' + get_timestamp()
169
+ print('Path already exists. Rename it to [{:s}]'.format(new_name))
170
+ os.rename(path, new_name)
171
+ os.makedirs(path)
172
+
173
+
174
+ '''
175
+ # --------------------------------------------
176
+ # read image from path
177
+ # opencv is fast, but read BGR numpy image
178
+ # --------------------------------------------
179
+ '''
180
+
181
+
182
+ # --------------------------------------------
183
+ # get uint8 image of size HxWxn_channles (RGB)
184
+ # --------------------------------------------
185
+ def imread_uint(path, n_channels=3):
186
+ # input: path
187
+ # output: HxWx3(RGB or GGG), or HxWx1 (G)
188
+ if n_channels == 1:
189
+ img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE
190
+ img = np.expand_dims(img, axis=2) # HxWx1
191
+ elif n_channels == 3:
192
+ img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G
193
+ if img.ndim == 2:
194
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG
195
+ else:
196
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB
197
+ return img
198
+
199
+
200
+ # --------------------------------------------
201
+ # matlab's imwrite
202
+ # --------------------------------------------
203
+ def imsave(img, img_path):
204
+ img = np.squeeze(img)
205
+ if img.ndim == 3:
206
+ img = img[:, :, [2, 1, 0]]
207
+ cv2.imwrite(img_path, img)
208
+
209
+ def imwrite(img, img_path):
210
+ img = np.squeeze(img)
211
+ if img.ndim == 3:
212
+ img = img[:, :, [2, 1, 0]]
213
+ cv2.imwrite(img_path, img)
214
+
215
+
216
+
217
+ # --------------------------------------------
218
+ # get single image of size HxWxn_channles (BGR)
219
+ # --------------------------------------------
220
+ def read_img(path):
221
+ # read image by cv2
222
+ # return: Numpy float32, HWC, BGR, [0,1]
223
+ img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE
224
+ img = img.astype(np.float32) / 255.
225
+ if img.ndim == 2:
226
+ img = np.expand_dims(img, axis=2)
227
+ # some images have 4 channels
228
+ if img.shape[2] > 3:
229
+ img = img[:, :, :3]
230
+ return img
231
+
232
+
233
+ '''
234
+ # --------------------------------------------
235
+ # image format conversion
236
+ # --------------------------------------------
237
+ # numpy(single) <---> numpy(unit)
238
+ # numpy(single) <---> tensor
239
+ # numpy(unit) <---> tensor
240
+ # --------------------------------------------
241
+ '''
242
+
243
+
244
+ # --------------------------------------------
245
+ # numpy(single) [0, 1] <---> numpy(unit)
246
+ # --------------------------------------------
247
+
248
+
249
+ def uint2single(img):
250
+
251
+ return np.float32(img/255.)
252
+
253
+
254
+ def single2uint(img):
255
+
256
+ return np.uint8((img.clip(0, 1)*255.).round())
257
+
258
+
259
+ def uint162single(img):
260
+
261
+ return np.float32(img/65535.)
262
+
263
+
264
+ def single2uint16(img):
265
+
266
+ return np.uint16((img.clip(0, 1)*65535.).round())
267
+
268
+
269
+ # --------------------------------------------
270
+ # numpy(unit) (HxWxC or HxW) <---> tensor
271
+ # --------------------------------------------
272
+
273
+
274
+ # convert uint to 4-dimensional torch tensor
275
+ def uint2tensor4(img):
276
+ if img.ndim == 2:
277
+ img = np.expand_dims(img, axis=2)
278
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
279
+
280
+
281
+ # convert uint to 3-dimensional torch tensor
282
+ def uint2tensor3(img):
283
+ if img.ndim == 2:
284
+ img = np.expand_dims(img, axis=2)
285
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
286
+
287
+
288
+ # convert 2/3/4-dimensional torch tensor to uint
289
+ def tensor2uint(img):
290
+ img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
291
+ if img.ndim == 3:
292
+ img = np.transpose(img, (1, 2, 0))
293
+ return np.uint8((img*255.0).round())
294
+
295
+
296
+ # --------------------------------------------
297
+ # numpy(single) (HxWxC) <---> tensor
298
+ # --------------------------------------------
299
+
300
+
301
+ # convert single (HxWxC) to 3-dimensional torch tensor
302
+ def single2tensor3(img):
303
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
304
+
305
+
306
+ # convert single (HxWxC) to 4-dimensional torch tensor
307
+ def single2tensor4(img):
308
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
309
+
310
+
311
+ # convert torch tensor to single
312
+ def tensor2single(img):
313
+ img = img.data.squeeze().float().cpu().numpy()
314
+ if img.ndim == 3:
315
+ img = np.transpose(img, (1, 2, 0))
316
+
317
+ return img
318
+
319
+ # convert torch tensor to single
320
+ def tensor2single3(img):
321
+ img = img.data.squeeze().float().cpu().numpy()
322
+ if img.ndim == 3:
323
+ img = np.transpose(img, (1, 2, 0))
324
+ elif img.ndim == 2:
325
+ img = np.expand_dims(img, axis=2)
326
+ return img
327
+
328
+
329
+ def single2tensor5(img):
330
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
331
+
332
+
333
+ def single32tensor5(img):
334
+ return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
335
+
336
+
337
+ def single42tensor4(img):
338
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
339
+
340
+
341
+ # from skimage.io import imread, imsave
342
+ def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
343
+ '''
344
+ Converts a torch Tensor into an image Numpy array of BGR channel order
345
+ Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
346
+ Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
347
+ '''
348
+ tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
349
+ tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
350
+ n_dim = tensor.dim()
351
+ if n_dim == 4:
352
+ n_img = len(tensor)
353
+ img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
354
+ img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
355
+ elif n_dim == 3:
356
+ img_np = tensor.numpy()
357
+ img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
358
+ elif n_dim == 2:
359
+ img_np = tensor.numpy()
360
+ else:
361
+ raise TypeError(
362
+ 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
363
+ if out_type == np.uint8:
364
+ img_np = (img_np * 255.0).round()
365
+ # Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
366
+ return img_np.astype(out_type)
367
+
368
+
369
+ '''
370
+ # --------------------------------------------
371
+ # Augmentation, flipe and/or rotate
372
+ # --------------------------------------------
373
+ # The following two are enough.
374
+ # (1) augmet_img: numpy image of WxHxC or WxH
375
+ # (2) augment_img_tensor4: tensor image 1xCxWxH
376
+ # --------------------------------------------
377
+ '''
378
+
379
+
380
+ def augment_img(img, mode=0):
381
+ '''Kai Zhang (github: https://github.com/cszn)
382
+ '''
383
+ if mode == 0:
384
+ return img
385
+ elif mode == 1:
386
+ return np.flipud(np.rot90(img))
387
+ elif mode == 2:
388
+ return np.flipud(img)
389
+ elif mode == 3:
390
+ return np.rot90(img, k=3)
391
+ elif mode == 4:
392
+ return np.flipud(np.rot90(img, k=2))
393
+ elif mode == 5:
394
+ return np.rot90(img)
395
+ elif mode == 6:
396
+ return np.rot90(img, k=2)
397
+ elif mode == 7:
398
+ return np.flipud(np.rot90(img, k=3))
399
+
400
+
401
+ def augment_img_tensor4(img, mode=0):
402
+ '''Kai Zhang (github: https://github.com/cszn)
403
+ '''
404
+ if mode == 0:
405
+ return img
406
+ elif mode == 1:
407
+ return img.rot90(1, [2, 3]).flip([2])
408
+ elif mode == 2:
409
+ return img.flip([2])
410
+ elif mode == 3:
411
+ return img.rot90(3, [2, 3])
412
+ elif mode == 4:
413
+ return img.rot90(2, [2, 3]).flip([2])
414
+ elif mode == 5:
415
+ return img.rot90(1, [2, 3])
416
+ elif mode == 6:
417
+ return img.rot90(2, [2, 3])
418
+ elif mode == 7:
419
+ return img.rot90(3, [2, 3]).flip([2])
420
+
421
+
422
+ def augment_img_tensor(img, mode=0):
423
+ '''Kai Zhang (github: https://github.com/cszn)
424
+ '''
425
+ img_size = img.size()
426
+ img_np = img.data.cpu().numpy()
427
+ if len(img_size) == 3:
428
+ img_np = np.transpose(img_np, (1, 2, 0))
429
+ elif len(img_size) == 4:
430
+ img_np = np.transpose(img_np, (2, 3, 1, 0))
431
+ img_np = augment_img(img_np, mode=mode)
432
+ img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
433
+ if len(img_size) == 3:
434
+ img_tensor = img_tensor.permute(2, 0, 1)
435
+ elif len(img_size) == 4:
436
+ img_tensor = img_tensor.permute(3, 2, 0, 1)
437
+
438
+ return img_tensor.type_as(img)
439
+
440
+
441
+ def augment_img_np3(img, mode=0):
442
+ if mode == 0:
443
+ return img
444
+ elif mode == 1:
445
+ return img.transpose(1, 0, 2)
446
+ elif mode == 2:
447
+ return img[::-1, :, :]
448
+ elif mode == 3:
449
+ img = img[::-1, :, :]
450
+ img = img.transpose(1, 0, 2)
451
+ return img
452
+ elif mode == 4:
453
+ return img[:, ::-1, :]
454
+ elif mode == 5:
455
+ img = img[:, ::-1, :]
456
+ img = img.transpose(1, 0, 2)
457
+ return img
458
+ elif mode == 6:
459
+ img = img[:, ::-1, :]
460
+ img = img[::-1, :, :]
461
+ return img
462
+ elif mode == 7:
463
+ img = img[:, ::-1, :]
464
+ img = img[::-1, :, :]
465
+ img = img.transpose(1, 0, 2)
466
+ return img
467
+
468
+
469
+ def augment_imgs(img_list, hflip=True, rot=True):
470
+ # horizontal flip OR rotate
471
+ hflip = hflip and random.random() < 0.5
472
+ vflip = rot and random.random() < 0.5
473
+ rot90 = rot and random.random() < 0.5
474
+
475
+ def _augment(img):
476
+ if hflip:
477
+ img = img[:, ::-1, :]
478
+ if vflip:
479
+ img = img[::-1, :, :]
480
+ if rot90:
481
+ img = img.transpose(1, 0, 2)
482
+ return img
483
+
484
+ return [_augment(img) for img in img_list]
485
+
486
+
487
+ '''
488
+ # --------------------------------------------
489
+ # modcrop and shave
490
+ # --------------------------------------------
491
+ '''
492
+
493
+
494
+ def modcrop(img_in, scale):
495
+ # img_in: Numpy, HWC or HW
496
+ img = np.copy(img_in)
497
+ if img.ndim == 2:
498
+ H, W = img.shape
499
+ H_r, W_r = H % scale, W % scale
500
+ img = img[:H - H_r, :W - W_r]
501
+ elif img.ndim == 3:
502
+ H, W, C = img.shape
503
+ H_r, W_r = H % scale, W % scale
504
+ img = img[:H - H_r, :W - W_r, :]
505
+ else:
506
+ raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
507
+ return img
508
+
509
+
510
+ def shave(img_in, border=0):
511
+ # img_in: Numpy, HWC or HW
512
+ img = np.copy(img_in)
513
+ h, w = img.shape[:2]
514
+ img = img[border:h-border, border:w-border]
515
+ return img
516
+
517
+
518
+ '''
519
+ # --------------------------------------------
520
+ # image processing process on numpy image
521
+ # channel_convert(in_c, tar_type, img_list):
522
+ # rgb2ycbcr(img, only_y=True):
523
+ # bgr2ycbcr(img, only_y=True):
524
+ # ycbcr2rgb(img):
525
+ # --------------------------------------------
526
+ '''
527
+
528
+
529
+ def rgb2ycbcr(img, only_y=True):
530
+ '''same as matlab rgb2ycbcr
531
+ only_y: only return Y channel
532
+ Input:
533
+ uint8, [0, 255]
534
+ float, [0, 1]
535
+ '''
536
+ in_img_type = img.dtype
537
+ img.astype(np.float32)
538
+ if in_img_type != np.uint8:
539
+ img *= 255.
540
+ # convert
541
+ if only_y:
542
+ rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
543
+ else:
544
+ rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
545
+ [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
546
+ if in_img_type == np.uint8:
547
+ rlt = rlt.round()
548
+ else:
549
+ rlt /= 255.
550
+ return rlt.astype(in_img_type)
551
+
552
+
553
+ def ycbcr2rgb(img):
554
+ '''same as matlab ycbcr2rgb
555
+ Input:
556
+ uint8, [0, 255]
557
+ float, [0, 1]
558
+ '''
559
+ in_img_type = img.dtype
560
+ img.astype(np.float32)
561
+ if in_img_type != np.uint8:
562
+ img *= 255.
563
+ # convert
564
+ rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
565
+ [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
566
+ if in_img_type == np.uint8:
567
+ rlt = rlt.round()
568
+ else:
569
+ rlt /= 255.
570
+ return rlt.astype(in_img_type)
571
+
572
+
573
+ def bgr2ycbcr(img, only_y=True):
574
+ '''bgr version of rgb2ycbcr
575
+ only_y: only return Y channel
576
+ Input:
577
+ uint8, [0, 255]
578
+ float, [0, 1]
579
+ '''
580
+ in_img_type = img.dtype
581
+ img.astype(np.float32)
582
+ if in_img_type != np.uint8:
583
+ img *= 255.
584
+ # convert
585
+ if only_y:
586
+ rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
587
+ else:
588
+ rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
589
+ [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
590
+ if in_img_type == np.uint8:
591
+ rlt = rlt.round()
592
+ else:
593
+ rlt /= 255.
594
+ return rlt.astype(in_img_type)
595
+
596
+
597
+ def channel_convert(in_c, tar_type, img_list):
598
+ # conversion among BGR, gray and y
599
+ if in_c == 3 and tar_type == 'gray': # BGR to gray
600
+ gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
601
+ return [np.expand_dims(img, axis=2) for img in gray_list]
602
+ elif in_c == 3 and tar_type == 'y': # BGR to y
603
+ y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
604
+ return [np.expand_dims(img, axis=2) for img in y_list]
605
+ elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR
606
+ return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
607
+ else:
608
+ return img_list
609
+
610
+
611
+ '''
612
+ # --------------------------------------------
613
+ # metric, PSNR and SSIM
614
+ # --------------------------------------------
615
+ '''
616
+
617
+
618
+ # --------------------------------------------
619
+ # PSNR
620
+ # --------------------------------------------
621
+ def calculate_psnr(img1, img2, border=0):
622
+ # img1 and img2 have range [0, 255]
623
+ #img1 = img1.squeeze()
624
+ #img2 = img2.squeeze()
625
+ if not img1.shape == img2.shape:
626
+ raise ValueError('Input images must have the same dimensions.')
627
+ h, w = img1.shape[:2]
628
+ img1 = img1[border:h-border, border:w-border]
629
+ img2 = img2[border:h-border, border:w-border]
630
+
631
+ img1 = img1.astype(np.float64)
632
+ img2 = img2.astype(np.float64)
633
+ mse = np.mean((img1 - img2)**2)
634
+ if mse == 0:
635
+ return float('inf')
636
+ return 20 * math.log10(255.0 / math.sqrt(mse))
637
+
638
+
639
+ # --------------------------------------------
640
+ # SSIM
641
+ # --------------------------------------------
642
+ def calculate_ssim(img1, img2, border=0):
643
+ '''calculate SSIM
644
+ the same outputs as MATLAB's
645
+ img1, img2: [0, 255]
646
+ '''
647
+ #img1 = img1.squeeze()
648
+ #img2 = img2.squeeze()
649
+ if not img1.shape == img2.shape:
650
+ raise ValueError('Input images must have the same dimensions.')
651
+ h, w = img1.shape[:2]
652
+ img1 = img1[border:h-border, border:w-border]
653
+ img2 = img2[border:h-border, border:w-border]
654
+
655
+ if img1.ndim == 2:
656
+ return ssim(img1, img2)
657
+ elif img1.ndim == 3:
658
+ if img1.shape[2] == 3:
659
+ ssims = []
660
+ for i in range(3):
661
+ ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
662
+ return np.array(ssims).mean()
663
+ elif img1.shape[2] == 1:
664
+ return ssim(np.squeeze(img1), np.squeeze(img2))
665
+ else:
666
+ raise ValueError('Wrong input image dimensions.')
667
+
668
+
669
+ def ssim(img1, img2):
670
+ C1 = (0.01 * 255)**2
671
+ C2 = (0.03 * 255)**2
672
+
673
+ img1 = img1.astype(np.float64)
674
+ img2 = img2.astype(np.float64)
675
+ kernel = cv2.getGaussianKernel(11, 1.5)
676
+ window = np.outer(kernel, kernel.transpose())
677
+
678
+ mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
679
+ mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
680
+ mu1_sq = mu1**2
681
+ mu2_sq = mu2**2
682
+ mu1_mu2 = mu1 * mu2
683
+ sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
684
+ sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
685
+ sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
686
+
687
+ ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
688
+ (sigma1_sq + sigma2_sq + C2))
689
+ return ssim_map.mean()
690
+
691
+
692
+ '''
693
+ # --------------------------------------------
694
+ # matlab's bicubic imresize (numpy and torch) [0, 1]
695
+ # --------------------------------------------
696
+ '''
697
+
698
+
699
+ # matlab 'imresize' function, now only support 'bicubic'
700
+ def cubic(x):
701
+ absx = torch.abs(x)
702
+ absx2 = absx**2
703
+ absx3 = absx**3
704
+ return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
705
+ (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
706
+
707
+
708
+ def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
709
+ if (scale < 1) and (antialiasing):
710
+ # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
711
+ kernel_width = kernel_width / scale
712
+
713
+ # Output-space coordinates
714
+ x = torch.linspace(1, out_length, out_length)
715
+
716
+ # Input-space coordinates. Calculate the inverse mapping such that 0.5
717
+ # in output space maps to 0.5 in input space, and 0.5+scale in output
718
+ # space maps to 1.5 in input space.
719
+ u = x / scale + 0.5 * (1 - 1 / scale)
720
+
721
+ # What is the left-most pixel that can be involved in the computation?
722
+ left = torch.floor(u - kernel_width / 2)
723
+
724
+ # What is the maximum number of pixels that can be involved in the
725
+ # computation? Note: it's OK to use an extra pixel here; if the
726
+ # corresponding weights are all zero, it will be eliminated at the end
727
+ # of this function.
728
+ P = math.ceil(kernel_width) + 2
729
+
730
+ # The indices of the input pixels involved in computing the k-th output
731
+ # pixel are in row k of the indices matrix.
732
+ indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
733
+ 1, P).expand(out_length, P)
734
+
735
+ # The weights used to compute the k-th output pixel are in row k of the
736
+ # weights matrix.
737
+ distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
738
+ # apply cubic kernel
739
+ if (scale < 1) and (antialiasing):
740
+ weights = scale * cubic(distance_to_center * scale)
741
+ else:
742
+ weights = cubic(distance_to_center)
743
+ # Normalize the weights matrix so that each row sums to 1.
744
+ weights_sum = torch.sum(weights, 1).view(out_length, 1)
745
+ weights = weights / weights_sum.expand(out_length, P)
746
+
747
+ # If a column in weights is all zero, get rid of it. only consider the first and last column.
748
+ weights_zero_tmp = torch.sum((weights == 0), 0)
749
+ if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
750
+ indices = indices.narrow(1, 1, P - 2)
751
+ weights = weights.narrow(1, 1, P - 2)
752
+ if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
753
+ indices = indices.narrow(1, 0, P - 2)
754
+ weights = weights.narrow(1, 0, P - 2)
755
+ weights = weights.contiguous()
756
+ indices = indices.contiguous()
757
+ sym_len_s = -indices.min() + 1
758
+ sym_len_e = indices.max() - in_length
759
+ indices = indices + sym_len_s - 1
760
+ return weights, indices, int(sym_len_s), int(sym_len_e)
761
+
762
+
763
+ # --------------------------------------------
764
+ # imresize for tensor image [0, 1]
765
+ # --------------------------------------------
766
+ def imresize(img, scale, antialiasing=True):
767
+ # Now the scale should be the same for H and W
768
+ # input: img: pytorch tensor, CHW or HW [0,1]
769
+ # output: CHW or HW [0,1] w/o round
770
+ need_squeeze = True if img.dim() == 2 else False
771
+ if need_squeeze:
772
+ img.unsqueeze_(0)
773
+ in_C, in_H, in_W = img.size()
774
+ out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
775
+ kernel_width = 4
776
+ kernel = 'cubic'
777
+
778
+ # Return the desired dimension order for performing the resize. The
779
+ # strategy is to perform the resize first along the dimension with the
780
+ # smallest scale factor.
781
+ # Now we do not support this.
782
+
783
+ # get weights and indices
784
+ weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
785
+ in_H, out_H, scale, kernel, kernel_width, antialiasing)
786
+ weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
787
+ in_W, out_W, scale, kernel, kernel_width, antialiasing)
788
+ # process H dimension
789
+ # symmetric copying
790
+ img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
791
+ img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
792
+
793
+ sym_patch = img[:, :sym_len_Hs, :]
794
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
795
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
796
+ img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
797
+
798
+ sym_patch = img[:, -sym_len_He:, :]
799
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
800
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
801
+ img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
802
+
803
+ out_1 = torch.FloatTensor(in_C, out_H, in_W)
804
+ kernel_width = weights_H.size(1)
805
+ for i in range(out_H):
806
+ idx = int(indices_H[i][0])
807
+ for j in range(out_C):
808
+ out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
809
+
810
+ # process W dimension
811
+ # symmetric copying
812
+ out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
813
+ out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
814
+
815
+ sym_patch = out_1[:, :, :sym_len_Ws]
816
+ inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
817
+ sym_patch_inv = sym_patch.index_select(2, inv_idx)
818
+ out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
819
+
820
+ sym_patch = out_1[:, :, -sym_len_We:]
821
+ inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
822
+ sym_patch_inv = sym_patch.index_select(2, inv_idx)
823
+ out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
824
+
825
+ out_2 = torch.FloatTensor(in_C, out_H, out_W)
826
+ kernel_width = weights_W.size(1)
827
+ for i in range(out_W):
828
+ idx = int(indices_W[i][0])
829
+ for j in range(out_C):
830
+ out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
831
+ if need_squeeze:
832
+ out_2.squeeze_()
833
+ return out_2
834
+
835
+
836
+ # --------------------------------------------
837
+ # imresize for numpy image [0, 1]
838
+ # --------------------------------------------
839
+ def imresize_np(img, scale, antialiasing=True):
840
+ # Now the scale should be the same for H and W
841
+ # input: img: Numpy, HWC or HW [0,1]
842
+ # output: HWC or HW [0,1] w/o round
843
+ img = torch.from_numpy(img)
844
+ need_squeeze = True if img.dim() == 2 else False
845
+ if need_squeeze:
846
+ img.unsqueeze_(2)
847
+
848
+ in_H, in_W, in_C = img.size()
849
+ out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
850
+ kernel_width = 4
851
+ kernel = 'cubic'
852
+
853
+ # Return the desired dimension order for performing the resize. The
854
+ # strategy is to perform the resize first along the dimension with the
855
+ # smallest scale factor.
856
+ # Now we do not support this.
857
+
858
+ # get weights and indices
859
+ weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
860
+ in_H, out_H, scale, kernel, kernel_width, antialiasing)
861
+ weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
862
+ in_W, out_W, scale, kernel, kernel_width, antialiasing)
863
+ # process H dimension
864
+ # symmetric copying
865
+ img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
866
+ img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
867
+
868
+ sym_patch = img[:sym_len_Hs, :, :]
869
+ inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
870
+ sym_patch_inv = sym_patch.index_select(0, inv_idx)
871
+ img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
872
+
873
+ sym_patch = img[-sym_len_He:, :, :]
874
+ inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
875
+ sym_patch_inv = sym_patch.index_select(0, inv_idx)
876
+ img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
877
+
878
+ out_1 = torch.FloatTensor(out_H, in_W, in_C)
879
+ kernel_width = weights_H.size(1)
880
+ for i in range(out_H):
881
+ idx = int(indices_H[i][0])
882
+ for j in range(out_C):
883
+ out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
884
+
885
+ # process W dimension
886
+ # symmetric copying
887
+ out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
888
+ out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
889
+
890
+ sym_patch = out_1[:, :sym_len_Ws, :]
891
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
892
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
893
+ out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
894
+
895
+ sym_patch = out_1[:, -sym_len_We:, :]
896
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
897
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
898
+ out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
899
+
900
+ out_2 = torch.FloatTensor(out_H, out_W, in_C)
901
+ kernel_width = weights_W.size(1)
902
+ for i in range(out_W):
903
+ idx = int(indices_W[i][0])
904
+ for j in range(out_C):
905
+ out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
906
+ if need_squeeze:
907
+ out_2.squeeze_()
908
+
909
+ return out_2.numpy()
910
+
911
+
912
+ if __name__ == '__main__':
913
+ print('---')
914
+ # img = imread_uint('test.bmp', 3)
915
+ # img = uint2single(img)
916
+ # img_bicubic = imresize_np(img, 1/4)
stable_diffusion/ldm/modules/losses/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from ldm.modules.losses.contperceptual import LPIPSWithDiscriminator
stable_diffusion/ldm/modules/losses/contperceptual.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from taming.modules.losses.vqperceptual import * # TODO: taming dependency yes/no?
5
+
6
+
7
+ class LPIPSWithDiscriminator(nn.Module):
8
+ def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0,
9
+ disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
10
+ perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
11
+ disc_loss="hinge"):
12
+
13
+ super().__init__()
14
+ assert disc_loss in ["hinge", "vanilla"]
15
+ self.kl_weight = kl_weight
16
+ self.pixel_weight = pixelloss_weight
17
+ self.perceptual_loss = LPIPS().eval()
18
+ self.perceptual_weight = perceptual_weight
19
+ # output log variance
20
+ self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)
21
+
22
+ self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
23
+ n_layers=disc_num_layers,
24
+ use_actnorm=use_actnorm
25
+ ).apply(weights_init)
26
+ self.discriminator_iter_start = disc_start
27
+ self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
28
+ self.disc_factor = disc_factor
29
+ self.discriminator_weight = disc_weight
30
+ self.disc_conditional = disc_conditional
31
+
32
+ def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
33
+ if last_layer is not None:
34
+ nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
35
+ g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
36
+ else:
37
+ nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
38
+ g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
39
+
40
+ d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
41
+ d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
42
+ d_weight = d_weight * self.discriminator_weight
43
+ return d_weight
44
+
45
+ def forward(self, inputs, reconstructions, posteriors, optimizer_idx,
46
+ global_step, last_layer=None, cond=None, split="train",
47
+ weights=None):
48
+ rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
49
+ if self.perceptual_weight > 0:
50
+ p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
51
+ rec_loss = rec_loss + self.perceptual_weight * p_loss
52
+
53
+ nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
54
+ weighted_nll_loss = nll_loss
55
+ if weights is not None:
56
+ weighted_nll_loss = weights*nll_loss
57
+ weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
58
+ nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
59
+ kl_loss = posteriors.kl()
60
+ kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
61
+
62
+ # now the GAN part
63
+ if optimizer_idx == 0:
64
+ # generator update
65
+ if cond is None:
66
+ assert not self.disc_conditional
67
+ logits_fake = self.discriminator(reconstructions.contiguous())
68
+ else:
69
+ assert self.disc_conditional
70
+ logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
71
+ g_loss = -torch.mean(logits_fake)
72
+
73
+ if self.disc_factor > 0.0:
74
+ try:
75
+ d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
76
+ except RuntimeError:
77
+ assert not self.training
78
+ d_weight = torch.tensor(0.0)
79
+ else:
80
+ d_weight = torch.tensor(0.0)
81
+
82
+ disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
83
+ loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss
84
+
85
+ log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(),
86
+ "{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(),
87
+ "{}/rec_loss".format(split): rec_loss.detach().mean(),
88
+ "{}/d_weight".format(split): d_weight.detach(),
89
+ "{}/disc_factor".format(split): torch.tensor(disc_factor),
90
+ "{}/g_loss".format(split): g_loss.detach().mean(),
91
+ }
92
+ return loss, log
93
+
94
+ if optimizer_idx == 1:
95
+ # second pass for discriminator update
96
+ if cond is None:
97
+ logits_real = self.discriminator(inputs.contiguous().detach())
98
+ logits_fake = self.discriminator(reconstructions.contiguous().detach())
99
+ else:
100
+ logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
101
+ logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
102
+
103
+ disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
104
+ d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
105
+
106
+ log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
107
+ "{}/logits_real".format(split): logits_real.detach().mean(),
108
+ "{}/logits_fake".format(split): logits_fake.detach().mean()
109
+ }
110
+ return d_loss, log
111
+
stable_diffusion/ldm/modules/losses/vqperceptual.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torch.nn.functional as F
4
+ from einops import repeat
5
+
6
+ from taming.modules.discriminator.model import NLayerDiscriminator, weights_init
7
+ from taming.modules.losses.lpips import LPIPS
8
+ from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss
9
+
10
+
11
+ def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights):
12
+ assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0]
13
+ loss_real = torch.mean(F.relu(1. - logits_real), dim=[1,2,3])
14
+ loss_fake = torch.mean(F.relu(1. + logits_fake), dim=[1,2,3])
15
+ loss_real = (weights * loss_real).sum() / weights.sum()
16
+ loss_fake = (weights * loss_fake).sum() / weights.sum()
17
+ d_loss = 0.5 * (loss_real + loss_fake)
18
+ return d_loss
19
+
20
+ def adopt_weight(weight, global_step, threshold=0, value=0.):
21
+ if global_step < threshold:
22
+ weight = value
23
+ return weight
24
+
25
+
26
+ def measure_perplexity(predicted_indices, n_embed):
27
+ # src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
28
+ # eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
29
+ encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed)
30
+ avg_probs = encodings.mean(0)
31
+ perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
32
+ cluster_use = torch.sum(avg_probs > 0)
33
+ return perplexity, cluster_use
34
+
35
+ def l1(x, y):
36
+ return torch.abs(x-y)
37
+
38
+
39
+ def l2(x, y):
40
+ return torch.pow((x-y), 2)
41
+
42
+
43
+ class VQLPIPSWithDiscriminator(nn.Module):
44
+ def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
45
+ disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
46
+ perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
47
+ disc_ndf=64, disc_loss="hinge", n_classes=None, perceptual_loss="lpips",
48
+ pixel_loss="l1"):
49
+ super().__init__()
50
+ assert disc_loss in ["hinge", "vanilla"]
51
+ assert perceptual_loss in ["lpips", "clips", "dists"]
52
+ assert pixel_loss in ["l1", "l2"]
53
+ self.codebook_weight = codebook_weight
54
+ self.pixel_weight = pixelloss_weight
55
+ if perceptual_loss == "lpips":
56
+ print(f"{self.__class__.__name__}: Running with LPIPS.")
57
+ self.perceptual_loss = LPIPS().eval()
58
+ else:
59
+ raise ValueError(f"Unknown perceptual loss: >> {perceptual_loss} <<")
60
+ self.perceptual_weight = perceptual_weight
61
+
62
+ if pixel_loss == "l1":
63
+ self.pixel_loss = l1
64
+ else:
65
+ self.pixel_loss = l2
66
+
67
+ self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
68
+ n_layers=disc_num_layers,
69
+ use_actnorm=use_actnorm,
70
+ ndf=disc_ndf
71
+ ).apply(weights_init)
72
+ self.discriminator_iter_start = disc_start
73
+ if disc_loss == "hinge":
74
+ self.disc_loss = hinge_d_loss
75
+ elif disc_loss == "vanilla":
76
+ self.disc_loss = vanilla_d_loss
77
+ else:
78
+ raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
79
+ print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")
80
+ self.disc_factor = disc_factor
81
+ self.discriminator_weight = disc_weight
82
+ self.disc_conditional = disc_conditional
83
+ self.n_classes = n_classes
84
+
85
+ def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
86
+ if last_layer is not None:
87
+ nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
88
+ g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
89
+ else:
90
+ nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
91
+ g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
92
+
93
+ d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
94
+ d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
95
+ d_weight = d_weight * self.discriminator_weight
96
+ return d_weight
97
+
98
+ def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx,
99
+ global_step, last_layer=None, cond=None, split="train", predicted_indices=None):
100
+ if not exists(codebook_loss):
101
+ codebook_loss = torch.tensor([0.]).to(inputs.device)
102
+ #rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
103
+ rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous())
104
+ if self.perceptual_weight > 0:
105
+ p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
106
+ rec_loss = rec_loss + self.perceptual_weight * p_loss
107
+ else:
108
+ p_loss = torch.tensor([0.0])
109
+
110
+ nll_loss = rec_loss
111
+ #nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
112
+ nll_loss = torch.mean(nll_loss)
113
+
114
+ # now the GAN part
115
+ if optimizer_idx == 0:
116
+ # generator update
117
+ if cond is None:
118
+ assert not self.disc_conditional
119
+ logits_fake = self.discriminator(reconstructions.contiguous())
120
+ else:
121
+ assert self.disc_conditional
122
+ logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
123
+ g_loss = -torch.mean(logits_fake)
124
+
125
+ try:
126
+ d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
127
+ except RuntimeError:
128
+ assert not self.training
129
+ d_weight = torch.tensor(0.0)
130
+
131
+ disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
132
+ loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean()
133
+
134
+ log = {"{}/total_loss".format(split): loss.clone().detach().mean(),
135
+ "{}/quant_loss".format(split): codebook_loss.detach().mean(),
136
+ "{}/nll_loss".format(split): nll_loss.detach().mean(),
137
+ "{}/rec_loss".format(split): rec_loss.detach().mean(),
138
+ "{}/p_loss".format(split): p_loss.detach().mean(),
139
+ "{}/d_weight".format(split): d_weight.detach(),
140
+ "{}/disc_factor".format(split): torch.tensor(disc_factor),
141
+ "{}/g_loss".format(split): g_loss.detach().mean(),
142
+ }
143
+ if predicted_indices is not None:
144
+ assert self.n_classes is not None
145
+ with torch.no_grad():
146
+ perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes)
147
+ log[f"{split}/perplexity"] = perplexity
148
+ log[f"{split}/cluster_usage"] = cluster_usage
149
+ return loss, log
150
+
151
+ if optimizer_idx == 1:
152
+ # second pass for discriminator update
153
+ if cond is None:
154
+ logits_real = self.discriminator(inputs.contiguous().detach())
155
+ logits_fake = self.discriminator(reconstructions.contiguous().detach())
156
+ else:
157
+ logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
158
+ logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
159
+
160
+ disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
161
+ d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
162
+
163
+ log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
164
+ "{}/logits_real".format(split): logits_real.detach().mean(),
165
+ "{}/logits_fake".format(split): logits_fake.detach().mean()
166
+ }
167
+ return d_loss, log
stable_diffusion/ldm/modules/x_transformer.py ADDED
@@ -0,0 +1,641 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers"""
2
+ import torch
3
+ from torch import nn, einsum
4
+ import torch.nn.functional as F
5
+ from functools import partial
6
+ from inspect import isfunction
7
+ from collections import namedtuple
8
+ from einops import rearrange, repeat, reduce
9
+
10
+ # constants
11
+
12
+ DEFAULT_DIM_HEAD = 64
13
+
14
+ Intermediates = namedtuple('Intermediates', [
15
+ 'pre_softmax_attn',
16
+ 'post_softmax_attn'
17
+ ])
18
+
19
+ LayerIntermediates = namedtuple('Intermediates', [
20
+ 'hiddens',
21
+ 'attn_intermediates'
22
+ ])
23
+
24
+
25
+ class AbsolutePositionalEmbedding(nn.Module):
26
+ def __init__(self, dim, max_seq_len):
27
+ super().__init__()
28
+ self.emb = nn.Embedding(max_seq_len, dim)
29
+ self.init_()
30
+
31
+ def init_(self):
32
+ nn.init.normal_(self.emb.weight, std=0.02)
33
+
34
+ def forward(self, x):
35
+ n = torch.arange(x.shape[1], device=x.device)
36
+ return self.emb(n)[None, :, :]
37
+
38
+
39
+ class FixedPositionalEmbedding(nn.Module):
40
+ def __init__(self, dim):
41
+ super().__init__()
42
+ inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
43
+ self.register_buffer('inv_freq', inv_freq)
44
+
45
+ def forward(self, x, seq_dim=1, offset=0):
46
+ t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
47
+ sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
48
+ emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
49
+ return emb[None, :, :]
50
+
51
+
52
+ # helpers
53
+
54
+ def exists(val):
55
+ return val is not None
56
+
57
+
58
+ def default(val, d):
59
+ if exists(val):
60
+ return val
61
+ return d() if isfunction(d) else d
62
+
63
+
64
+ def always(val):
65
+ def inner(*args, **kwargs):
66
+ return val
67
+ return inner
68
+
69
+
70
+ def not_equals(val):
71
+ def inner(x):
72
+ return x != val
73
+ return inner
74
+
75
+
76
+ def equals(val):
77
+ def inner(x):
78
+ return x == val
79
+ return inner
80
+
81
+
82
+ def max_neg_value(tensor):
83
+ return -torch.finfo(tensor.dtype).max
84
+
85
+
86
+ # keyword argument helpers
87
+
88
+ def pick_and_pop(keys, d):
89
+ values = list(map(lambda key: d.pop(key), keys))
90
+ return dict(zip(keys, values))
91
+
92
+
93
+ def group_dict_by_key(cond, d):
94
+ return_val = [dict(), dict()]
95
+ for key in d.keys():
96
+ match = bool(cond(key))
97
+ ind = int(not match)
98
+ return_val[ind][key] = d[key]
99
+ return (*return_val,)
100
+
101
+
102
+ def string_begins_with(prefix, str):
103
+ return str.startswith(prefix)
104
+
105
+
106
+ def group_by_key_prefix(prefix, d):
107
+ return group_dict_by_key(partial(string_begins_with, prefix), d)
108
+
109
+
110
+ def groupby_prefix_and_trim(prefix, d):
111
+ kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
112
+ kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
113
+ return kwargs_without_prefix, kwargs
114
+
115
+
116
+ # classes
117
+ class Scale(nn.Module):
118
+ def __init__(self, value, fn):
119
+ super().__init__()
120
+ self.value = value
121
+ self.fn = fn
122
+
123
+ def forward(self, x, **kwargs):
124
+ x, *rest = self.fn(x, **kwargs)
125
+ return (x * self.value, *rest)
126
+
127
+
128
+ class Rezero(nn.Module):
129
+ def __init__(self, fn):
130
+ super().__init__()
131
+ self.fn = fn
132
+ self.g = nn.Parameter(torch.zeros(1))
133
+
134
+ def forward(self, x, **kwargs):
135
+ x, *rest = self.fn(x, **kwargs)
136
+ return (x * self.g, *rest)
137
+
138
+
139
+ class ScaleNorm(nn.Module):
140
+ def __init__(self, dim, eps=1e-5):
141
+ super().__init__()
142
+ self.scale = dim ** -0.5
143
+ self.eps = eps
144
+ self.g = nn.Parameter(torch.ones(1))
145
+
146
+ def forward(self, x):
147
+ norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
148
+ return x / norm.clamp(min=self.eps) * self.g
149
+
150
+
151
+ class RMSNorm(nn.Module):
152
+ def __init__(self, dim, eps=1e-8):
153
+ super().__init__()
154
+ self.scale = dim ** -0.5
155
+ self.eps = eps
156
+ self.g = nn.Parameter(torch.ones(dim))
157
+
158
+ def forward(self, x):
159
+ norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
160
+ return x / norm.clamp(min=self.eps) * self.g
161
+
162
+
163
+ class Residual(nn.Module):
164
+ def forward(self, x, residual):
165
+ return x + residual
166
+
167
+
168
+ class GRUGating(nn.Module):
169
+ def __init__(self, dim):
170
+ super().__init__()
171
+ self.gru = nn.GRUCell(dim, dim)
172
+
173
+ def forward(self, x, residual):
174
+ gated_output = self.gru(
175
+ rearrange(x, 'b n d -> (b n) d'),
176
+ rearrange(residual, 'b n d -> (b n) d')
177
+ )
178
+
179
+ return gated_output.reshape_as(x)
180
+
181
+
182
+ # feedforward
183
+
184
+ class GEGLU(nn.Module):
185
+ def __init__(self, dim_in, dim_out):
186
+ super().__init__()
187
+ self.proj = nn.Linear(dim_in, dim_out * 2)
188
+
189
+ def forward(self, x):
190
+ x, gate = self.proj(x).chunk(2, dim=-1)
191
+ return x * F.gelu(gate)
192
+
193
+
194
+ class FeedForward(nn.Module):
195
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
196
+ super().__init__()
197
+ inner_dim = int(dim * mult)
198
+ dim_out = default(dim_out, dim)
199
+ project_in = nn.Sequential(
200
+ nn.Linear(dim, inner_dim),
201
+ nn.GELU()
202
+ ) if not glu else GEGLU(dim, inner_dim)
203
+
204
+ self.net = nn.Sequential(
205
+ project_in,
206
+ nn.Dropout(dropout),
207
+ nn.Linear(inner_dim, dim_out)
208
+ )
209
+
210
+ def forward(self, x):
211
+ return self.net(x)
212
+
213
+
214
+ # attention.
215
+ class Attention(nn.Module):
216
+ def __init__(
217
+ self,
218
+ dim,
219
+ dim_head=DEFAULT_DIM_HEAD,
220
+ heads=8,
221
+ causal=False,
222
+ mask=None,
223
+ talking_heads=False,
224
+ sparse_topk=None,
225
+ use_entmax15=False,
226
+ num_mem_kv=0,
227
+ dropout=0.,
228
+ on_attn=False
229
+ ):
230
+ super().__init__()
231
+ if use_entmax15:
232
+ raise NotImplementedError("Check out entmax activation instead of softmax activation!")
233
+ self.scale = dim_head ** -0.5
234
+ self.heads = heads
235
+ self.causal = causal
236
+ self.mask = mask
237
+
238
+ inner_dim = dim_head * heads
239
+
240
+ self.to_q = nn.Linear(dim, inner_dim, bias=False)
241
+ self.to_k = nn.Linear(dim, inner_dim, bias=False)
242
+ self.to_v = nn.Linear(dim, inner_dim, bias=False)
243
+ self.dropout = nn.Dropout(dropout)
244
+
245
+ # talking heads
246
+ self.talking_heads = talking_heads
247
+ if talking_heads:
248
+ self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
249
+ self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
250
+
251
+ # explicit topk sparse attention
252
+ self.sparse_topk = sparse_topk
253
+
254
+ # entmax
255
+ #self.attn_fn = entmax15 if use_entmax15 else F.softmax
256
+ self.attn_fn = F.softmax
257
+
258
+ # add memory key / values
259
+ self.num_mem_kv = num_mem_kv
260
+ if num_mem_kv > 0:
261
+ self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
262
+ self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
263
+
264
+ # attention on attention
265
+ self.attn_on_attn = on_attn
266
+ self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim)
267
+
268
+ def forward(
269
+ self,
270
+ x,
271
+ context=None,
272
+ mask=None,
273
+ context_mask=None,
274
+ rel_pos=None,
275
+ sinusoidal_emb=None,
276
+ prev_attn=None,
277
+ mem=None
278
+ ):
279
+ b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device
280
+ kv_input = default(context, x)
281
+
282
+ q_input = x
283
+ k_input = kv_input
284
+ v_input = kv_input
285
+
286
+ if exists(mem):
287
+ k_input = torch.cat((mem, k_input), dim=-2)
288
+ v_input = torch.cat((mem, v_input), dim=-2)
289
+
290
+ if exists(sinusoidal_emb):
291
+ # in shortformer, the query would start at a position offset depending on the past cached memory
292
+ offset = k_input.shape[-2] - q_input.shape[-2]
293
+ q_input = q_input + sinusoidal_emb(q_input, offset=offset)
294
+ k_input = k_input + sinusoidal_emb(k_input)
295
+
296
+ q = self.to_q(q_input)
297
+ k = self.to_k(k_input)
298
+ v = self.to_v(v_input)
299
+
300
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
301
+
302
+ input_mask = None
303
+ if any(map(exists, (mask, context_mask))):
304
+ q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
305
+ k_mask = q_mask if not exists(context) else context_mask
306
+ k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
307
+ q_mask = rearrange(q_mask, 'b i -> b () i ()')
308
+ k_mask = rearrange(k_mask, 'b j -> b () () j')
309
+ input_mask = q_mask * k_mask
310
+
311
+ if self.num_mem_kv > 0:
312
+ mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
313
+ k = torch.cat((mem_k, k), dim=-2)
314
+ v = torch.cat((mem_v, v), dim=-2)
315
+ if exists(input_mask):
316
+ input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
317
+
318
+ dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
319
+ mask_value = max_neg_value(dots)
320
+
321
+ if exists(prev_attn):
322
+ dots = dots + prev_attn
323
+
324
+ pre_softmax_attn = dots
325
+
326
+ if talking_heads:
327
+ dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
328
+
329
+ if exists(rel_pos):
330
+ dots = rel_pos(dots)
331
+
332
+ if exists(input_mask):
333
+ dots.masked_fill_(~input_mask, mask_value)
334
+ del input_mask
335
+
336
+ if self.causal:
337
+ i, j = dots.shape[-2:]
338
+ r = torch.arange(i, device=device)
339
+ mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
340
+ mask = F.pad(mask, (j - i, 0), value=False)
341
+ dots.masked_fill_(mask, mask_value)
342
+ del mask
343
+
344
+ if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
345
+ top, _ = dots.topk(self.sparse_topk, dim=-1)
346
+ vk = top[..., -1].unsqueeze(-1).expand_as(dots)
347
+ mask = dots < vk
348
+ dots.masked_fill_(mask, mask_value)
349
+ del mask
350
+
351
+ attn = self.attn_fn(dots, dim=-1)
352
+ post_softmax_attn = attn
353
+
354
+ attn = self.dropout(attn)
355
+
356
+ if talking_heads:
357
+ attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
358
+
359
+ out = einsum('b h i j, b h j d -> b h i d', attn, v)
360
+ out = rearrange(out, 'b h n d -> b n (h d)')
361
+
362
+ intermediates = Intermediates(
363
+ pre_softmax_attn=pre_softmax_attn,
364
+ post_softmax_attn=post_softmax_attn
365
+ )
366
+
367
+ return self.to_out(out), intermediates
368
+
369
+
370
+ class AttentionLayers(nn.Module):
371
+ def __init__(
372
+ self,
373
+ dim,
374
+ depth,
375
+ heads=8,
376
+ causal=False,
377
+ cross_attend=False,
378
+ only_cross=False,
379
+ use_scalenorm=False,
380
+ use_rmsnorm=False,
381
+ use_rezero=False,
382
+ rel_pos_num_buckets=32,
383
+ rel_pos_max_distance=128,
384
+ position_infused_attn=False,
385
+ custom_layers=None,
386
+ sandwich_coef=None,
387
+ par_ratio=None,
388
+ residual_attn=False,
389
+ cross_residual_attn=False,
390
+ macaron=False,
391
+ pre_norm=True,
392
+ gate_residual=False,
393
+ **kwargs
394
+ ):
395
+ super().__init__()
396
+ ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
397
+ attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)
398
+
399
+ dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
400
+
401
+ self.dim = dim
402
+ self.depth = depth
403
+ self.layers = nn.ModuleList([])
404
+
405
+ self.has_pos_emb = position_infused_attn
406
+ self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
407
+ self.rotary_pos_emb = always(None)
408
+
409
+ assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
410
+ self.rel_pos = None
411
+
412
+ self.pre_norm = pre_norm
413
+
414
+ self.residual_attn = residual_attn
415
+ self.cross_residual_attn = cross_residual_attn
416
+
417
+ norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
418
+ norm_class = RMSNorm if use_rmsnorm else norm_class
419
+ norm_fn = partial(norm_class, dim)
420
+
421
+ norm_fn = nn.Identity if use_rezero else norm_fn
422
+ branch_fn = Rezero if use_rezero else None
423
+
424
+ if cross_attend and not only_cross:
425
+ default_block = ('a', 'c', 'f')
426
+ elif cross_attend and only_cross:
427
+ default_block = ('c', 'f')
428
+ else:
429
+ default_block = ('a', 'f')
430
+
431
+ if macaron:
432
+ default_block = ('f',) + default_block
433
+
434
+ if exists(custom_layers):
435
+ layer_types = custom_layers
436
+ elif exists(par_ratio):
437
+ par_depth = depth * len(default_block)
438
+ assert 1 < par_ratio <= par_depth, 'par ratio out of range'
439
+ default_block = tuple(filter(not_equals('f'), default_block))
440
+ par_attn = par_depth // par_ratio
441
+ depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
442
+ par_width = (depth_cut + depth_cut // par_attn) // par_attn
443
+ assert len(default_block) <= par_width, 'default block is too large for par_ratio'
444
+ par_block = default_block + ('f',) * (par_width - len(default_block))
445
+ par_head = par_block * par_attn
446
+ layer_types = par_head + ('f',) * (par_depth - len(par_head))
447
+ elif exists(sandwich_coef):
448
+ assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
449
+ layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
450
+ else:
451
+ layer_types = default_block * depth
452
+
453
+ self.layer_types = layer_types
454
+ self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
455
+
456
+ for layer_type in self.layer_types:
457
+ if layer_type == 'a':
458
+ layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
459
+ elif layer_type == 'c':
460
+ layer = Attention(dim, heads=heads, **attn_kwargs)
461
+ elif layer_type == 'f':
462
+ layer = FeedForward(dim, **ff_kwargs)
463
+ layer = layer if not macaron else Scale(0.5, layer)
464
+ else:
465
+ raise Exception(f'invalid layer type {layer_type}')
466
+
467
+ if isinstance(layer, Attention) and exists(branch_fn):
468
+ layer = branch_fn(layer)
469
+
470
+ if gate_residual:
471
+ residual_fn = GRUGating(dim)
472
+ else:
473
+ residual_fn = Residual()
474
+
475
+ self.layers.append(nn.ModuleList([
476
+ norm_fn(),
477
+ layer,
478
+ residual_fn
479
+ ]))
480
+
481
+ def forward(
482
+ self,
483
+ x,
484
+ context=None,
485
+ mask=None,
486
+ context_mask=None,
487
+ mems=None,
488
+ return_hiddens=False
489
+ ):
490
+ hiddens = []
491
+ intermediates = []
492
+ prev_attn = None
493
+ prev_cross_attn = None
494
+
495
+ mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
496
+
497
+ for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
498
+ is_last = ind == (len(self.layers) - 1)
499
+
500
+ if layer_type == 'a':
501
+ hiddens.append(x)
502
+ layer_mem = mems.pop(0)
503
+
504
+ residual = x
505
+
506
+ if self.pre_norm:
507
+ x = norm(x)
508
+
509
+ if layer_type == 'a':
510
+ out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos,
511
+ prev_attn=prev_attn, mem=layer_mem)
512
+ elif layer_type == 'c':
513
+ out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn)
514
+ elif layer_type == 'f':
515
+ out = block(x)
516
+
517
+ x = residual_fn(out, residual)
518
+
519
+ if layer_type in ('a', 'c'):
520
+ intermediates.append(inter)
521
+
522
+ if layer_type == 'a' and self.residual_attn:
523
+ prev_attn = inter.pre_softmax_attn
524
+ elif layer_type == 'c' and self.cross_residual_attn:
525
+ prev_cross_attn = inter.pre_softmax_attn
526
+
527
+ if not self.pre_norm and not is_last:
528
+ x = norm(x)
529
+
530
+ if return_hiddens:
531
+ intermediates = LayerIntermediates(
532
+ hiddens=hiddens,
533
+ attn_intermediates=intermediates
534
+ )
535
+
536
+ return x, intermediates
537
+
538
+ return x
539
+
540
+
541
+ class Encoder(AttentionLayers):
542
+ def __init__(self, **kwargs):
543
+ assert 'causal' not in kwargs, 'cannot set causality on encoder'
544
+ super().__init__(causal=False, **kwargs)
545
+
546
+
547
+
548
+ class TransformerWrapper(nn.Module):
549
+ def __init__(
550
+ self,
551
+ *,
552
+ num_tokens,
553
+ max_seq_len,
554
+ attn_layers,
555
+ emb_dim=None,
556
+ max_mem_len=0.,
557
+ emb_dropout=0.,
558
+ num_memory_tokens=None,
559
+ tie_embedding=False,
560
+ use_pos_emb=True
561
+ ):
562
+ super().__init__()
563
+ assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
564
+
565
+ dim = attn_layers.dim
566
+ emb_dim = default(emb_dim, dim)
567
+
568
+ self.max_seq_len = max_seq_len
569
+ self.max_mem_len = max_mem_len
570
+ self.num_tokens = num_tokens
571
+
572
+ self.token_emb = nn.Embedding(num_tokens, emb_dim)
573
+ self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
574
+ use_pos_emb and not attn_layers.has_pos_emb) else always(0)
575
+ self.emb_dropout = nn.Dropout(emb_dropout)
576
+
577
+ self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
578
+ self.attn_layers = attn_layers
579
+ self.norm = nn.LayerNorm(dim)
580
+
581
+ self.init_()
582
+
583
+ self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
584
+
585
+ # memory tokens (like [cls]) from Memory Transformers paper
586
+ num_memory_tokens = default(num_memory_tokens, 0)
587
+ self.num_memory_tokens = num_memory_tokens
588
+ if num_memory_tokens > 0:
589
+ self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
590
+
591
+ # let funnel encoder know number of memory tokens, if specified
592
+ if hasattr(attn_layers, 'num_memory_tokens'):
593
+ attn_layers.num_memory_tokens = num_memory_tokens
594
+
595
+ def init_(self):
596
+ nn.init.normal_(self.token_emb.weight, std=0.02)
597
+
598
+ def forward(
599
+ self,
600
+ x,
601
+ return_embeddings=False,
602
+ mask=None,
603
+ return_mems=False,
604
+ return_attn=False,
605
+ mems=None,
606
+ **kwargs
607
+ ):
608
+ b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
609
+ x = self.token_emb(x)
610
+ x += self.pos_emb(x)
611
+ x = self.emb_dropout(x)
612
+
613
+ x = self.project_emb(x)
614
+
615
+ if num_mem > 0:
616
+ mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
617
+ x = torch.cat((mem, x), dim=1)
618
+
619
+ # auto-handle masking after appending memory tokens
620
+ if exists(mask):
621
+ mask = F.pad(mask, (num_mem, 0), value=True)
622
+
623
+ x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
624
+ x = self.norm(x)
625
+
626
+ mem, x = x[:, :num_mem], x[:, num_mem:]
627
+
628
+ out = self.to_logits(x) if not return_embeddings else x
629
+
630
+ if return_mems:
631
+ hiddens = intermediates.hiddens
632
+ new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens
633
+ new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
634
+ return out, new_mems
635
+
636
+ if return_attn:
637
+ attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
638
+ return out, attn_maps
639
+
640
+ return out
641
+
stable_diffusion/ldm/thirdp/psp/helpers.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://github.com/eladrich/pixel2style2pixel
2
+
3
+ from collections import namedtuple
4
+ import torch
5
+ from torch.nn import Conv2d, BatchNorm2d, PReLU, ReLU, Sigmoid, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module
6
+
7
+ """
8
+ ArcFace implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
9
+ """
10
+
11
+
12
+ class Flatten(Module):
13
+ def forward(self, input):
14
+ return input.view(input.size(0), -1)
15
+
16
+
17
+ def l2_norm(input, axis=1):
18
+ norm = torch.norm(input, 2, axis, True)
19
+ output = torch.div(input, norm)
20
+ return output
21
+
22
+
23
+ class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
24
+ """ A named tuple describing a ResNet block. """
25
+
26
+
27
+ def get_block(in_channel, depth, num_units, stride=2):
28
+ return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]
29
+
30
+
31
+ def get_blocks(num_layers):
32
+ if num_layers == 50:
33
+ blocks = [
34
+ get_block(in_channel=64, depth=64, num_units=3),
35
+ get_block(in_channel=64, depth=128, num_units=4),
36
+ get_block(in_channel=128, depth=256, num_units=14),
37
+ get_block(in_channel=256, depth=512, num_units=3)
38
+ ]
39
+ elif num_layers == 100:
40
+ blocks = [
41
+ get_block(in_channel=64, depth=64, num_units=3),
42
+ get_block(in_channel=64, depth=128, num_units=13),
43
+ get_block(in_channel=128, depth=256, num_units=30),
44
+ get_block(in_channel=256, depth=512, num_units=3)
45
+ ]
46
+ elif num_layers == 152:
47
+ blocks = [
48
+ get_block(in_channel=64, depth=64, num_units=3),
49
+ get_block(in_channel=64, depth=128, num_units=8),
50
+ get_block(in_channel=128, depth=256, num_units=36),
51
+ get_block(in_channel=256, depth=512, num_units=3)
52
+ ]
53
+ else:
54
+ raise ValueError("Invalid number of layers: {}. Must be one of [50, 100, 152]".format(num_layers))
55
+ return blocks
56
+
57
+
58
+ class SEModule(Module):
59
+ def __init__(self, channels, reduction):
60
+ super(SEModule, self).__init__()
61
+ self.avg_pool = AdaptiveAvgPool2d(1)
62
+ self.fc1 = Conv2d(channels, channels // reduction, kernel_size=1, padding=0, bias=False)
63
+ self.relu = ReLU(inplace=True)
64
+ self.fc2 = Conv2d(channels // reduction, channels, kernel_size=1, padding=0, bias=False)
65
+ self.sigmoid = Sigmoid()
66
+
67
+ def forward(self, x):
68
+ module_input = x
69
+ x = self.avg_pool(x)
70
+ x = self.fc1(x)
71
+ x = self.relu(x)
72
+ x = self.fc2(x)
73
+ x = self.sigmoid(x)
74
+ return module_input * x
75
+
76
+
77
+ class bottleneck_IR(Module):
78
+ def __init__(self, in_channel, depth, stride):
79
+ super(bottleneck_IR, self).__init__()
80
+ if in_channel == depth:
81
+ self.shortcut_layer = MaxPool2d(1, stride)
82
+ else:
83
+ self.shortcut_layer = Sequential(
84
+ Conv2d(in_channel, depth, (1, 1), stride, bias=False),
85
+ BatchNorm2d(depth)
86
+ )
87
+ self.res_layer = Sequential(
88
+ BatchNorm2d(in_channel),
89
+ Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth),
90
+ Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth)
91
+ )
92
+
93
+ def forward(self, x):
94
+ shortcut = self.shortcut_layer(x)
95
+ res = self.res_layer(x)
96
+ return res + shortcut
97
+
98
+
99
+ class bottleneck_IR_SE(Module):
100
+ def __init__(self, in_channel, depth, stride):
101
+ super(bottleneck_IR_SE, self).__init__()
102
+ if in_channel == depth:
103
+ self.shortcut_layer = MaxPool2d(1, stride)
104
+ else:
105
+ self.shortcut_layer = Sequential(
106
+ Conv2d(in_channel, depth, (1, 1), stride, bias=False),
107
+ BatchNorm2d(depth)
108
+ )
109
+ self.res_layer = Sequential(
110
+ BatchNorm2d(in_channel),
111
+ Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
112
+ PReLU(depth),
113
+ Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
114
+ BatchNorm2d(depth),
115
+ SEModule(depth, 16)
116
+ )
117
+
118
+ def forward(self, x):
119
+ shortcut = self.shortcut_layer(x)
120
+ res = self.res_layer(x)
121
+ return res + shortcut
stable_diffusion/ldm/thirdp/psp/id_loss.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://github.com/eladrich/pixel2style2pixel
2
+ import torch
3
+ from torch import nn
4
+ from ldm.thirdp.psp.model_irse import Backbone
5
+
6
+
7
+ class IDFeatures(nn.Module):
8
+ def __init__(self, model_path):
9
+ super(IDFeatures, self).__init__()
10
+ print('Loading ResNet ArcFace')
11
+ self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se')
12
+ self.facenet.load_state_dict(torch.load(model_path))
13
+ self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112))
14
+ self.facenet.eval()
15
+
16
+ def forward(self, x, crop=False):
17
+ # Not sure of the image range here
18
+ if crop:
19
+ x = torch.nn.functional.interpolate(x, (256, 256), mode="area")
20
+ x = x[:, :, 35:223, 32:220]
21
+ x = self.face_pool(x)
22
+ x_feats = self.facenet(x)
23
+ return x_feats
stable_diffusion/ldm/thirdp/psp/model_irse.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://github.com/eladrich/pixel2style2pixel
2
+
3
+ from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, Dropout, Sequential, Module
4
+ from ldm.thirdp.psp.helpers import get_blocks, Flatten, bottleneck_IR, bottleneck_IR_SE, l2_norm
5
+
6
+ """
7
+ Modified Backbone implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
8
+ """
9
+
10
+
11
+ class Backbone(Module):
12
+ def __init__(self, input_size, num_layers, mode='ir', drop_ratio=0.4, affine=True):
13
+ super(Backbone, self).__init__()
14
+ assert input_size in [112, 224], "input_size should be 112 or 224"
15
+ assert num_layers in [50, 100, 152], "num_layers should be 50, 100 or 152"
16
+ assert mode in ['ir', 'ir_se'], "mode should be ir or ir_se"
17
+ blocks = get_blocks(num_layers)
18
+ if mode == 'ir':
19
+ unit_module = bottleneck_IR
20
+ elif mode == 'ir_se':
21
+ unit_module = bottleneck_IR_SE
22
+ self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
23
+ BatchNorm2d(64),
24
+ PReLU(64))
25
+ if input_size == 112:
26
+ self.output_layer = Sequential(BatchNorm2d(512),
27
+ Dropout(drop_ratio),
28
+ Flatten(),
29
+ Linear(512 * 7 * 7, 512),
30
+ BatchNorm1d(512, affine=affine))
31
+ else:
32
+ self.output_layer = Sequential(BatchNorm2d(512),
33
+ Dropout(drop_ratio),
34
+ Flatten(),
35
+ Linear(512 * 14 * 14, 512),
36
+ BatchNorm1d(512, affine=affine))
37
+
38
+ modules = []
39
+ for block in blocks:
40
+ for bottleneck in block:
41
+ modules.append(unit_module(bottleneck.in_channel,
42
+ bottleneck.depth,
43
+ bottleneck.stride))
44
+ self.body = Sequential(*modules)
45
+
46
+ def forward(self, x):
47
+ x = self.input_layer(x)
48
+ x = self.body(x)
49
+ x = self.output_layer(x)
50
+ return l2_norm(x)
51
+
52
+
53
+ def IR_50(input_size):
54
+ """Constructs a ir-50 model."""
55
+ model = Backbone(input_size, num_layers=50, mode='ir', drop_ratio=0.4, affine=False)
56
+ return model
57
+
58
+
59
+ def IR_101(input_size):
60
+ """Constructs a ir-101 model."""
61
+ model = Backbone(input_size, num_layers=100, mode='ir', drop_ratio=0.4, affine=False)
62
+ return model
63
+
64
+
65
+ def IR_152(input_size):
66
+ """Constructs a ir-152 model."""
67
+ model = Backbone(input_size, num_layers=152, mode='ir', drop_ratio=0.4, affine=False)
68
+ return model
69
+
70
+
71
+ def IR_SE_50(input_size):
72
+ """Constructs a ir_se-50 model."""
73
+ model = Backbone(input_size, num_layers=50, mode='ir_se', drop_ratio=0.4, affine=False)
74
+ return model
75
+
76
+
77
+ def IR_SE_101(input_size):
78
+ """Constructs a ir_se-101 model."""
79
+ model = Backbone(input_size, num_layers=100, mode='ir_se', drop_ratio=0.4, affine=False)
80
+ return model
81
+
82
+
83
+ def IR_SE_152(input_size):
84
+ """Constructs a ir_se-152 model."""
85
+ model = Backbone(input_size, num_layers=152, mode='ir_se', drop_ratio=0.4, affine=False)
86
+ return model