Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
from typing import Dict, List, Optional, Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from fairseq import utils | |
from fairseq.models import ( | |
FairseqEncoder, | |
FairseqEncoderDecoderModel, | |
FairseqIncrementalDecoder, | |
register_model, | |
register_model_architecture, | |
) | |
from fairseq.modules import AdaptiveSoftmax, FairseqDropout | |
from torch import Tensor | |
DEFAULT_MAX_SOURCE_POSITIONS = 1e5 | |
DEFAULT_MAX_TARGET_POSITIONS = 1e5 | |
class LSTMModel(FairseqEncoderDecoderModel): | |
def __init__(self, encoder, decoder): | |
super().__init__(encoder, decoder) | |
def add_args(parser): | |
"""Add model-specific arguments to the parser.""" | |
# fmt: off | |
parser.add_argument('--dropout', type=float, metavar='D', | |
help='dropout probability') | |
parser.add_argument('--encoder-embed-dim', type=int, metavar='N', | |
help='encoder embedding dimension') | |
parser.add_argument('--encoder-embed-path', type=str, metavar='STR', | |
help='path to pre-trained encoder embedding') | |
parser.add_argument('--encoder-freeze-embed', action='store_true', | |
help='freeze encoder embeddings') | |
parser.add_argument('--encoder-hidden-size', type=int, metavar='N', | |
help='encoder hidden size') | |
parser.add_argument('--encoder-layers', type=int, metavar='N', | |
help='number of encoder layers') | |
parser.add_argument('--encoder-bidirectional', action='store_true', | |
help='make all layers of encoder bidirectional') | |
parser.add_argument('--decoder-embed-dim', type=int, metavar='N', | |
help='decoder embedding dimension') | |
parser.add_argument('--decoder-embed-path', type=str, metavar='STR', | |
help='path to pre-trained decoder embedding') | |
parser.add_argument('--decoder-freeze-embed', action='store_true', | |
help='freeze decoder embeddings') | |
parser.add_argument('--decoder-hidden-size', type=int, metavar='N', | |
help='decoder hidden size') | |
parser.add_argument('--decoder-layers', type=int, metavar='N', | |
help='number of decoder layers') | |
parser.add_argument('--decoder-out-embed-dim', type=int, metavar='N', | |
help='decoder output embedding dimension') | |
parser.add_argument('--decoder-attention', type=str, metavar='BOOL', | |
help='decoder attention') | |
parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', | |
help='comma separated list of adaptive softmax cutoff points. ' | |
'Must be used with adaptive_loss criterion') | |
parser.add_argument('--share-decoder-input-output-embed', default=False, | |
action='store_true', | |
help='share decoder input and output embeddings') | |
parser.add_argument('--share-all-embeddings', default=False, action='store_true', | |
help='share encoder, decoder and output embeddings' | |
' (requires shared dictionary and embed dim)') | |
# Granular dropout settings (if not specified these default to --dropout) | |
parser.add_argument('--encoder-dropout-in', type=float, metavar='D', | |
help='dropout probability for encoder input embedding') | |
parser.add_argument('--encoder-dropout-out', type=float, metavar='D', | |
help='dropout probability for encoder output') | |
parser.add_argument('--decoder-dropout-in', type=float, metavar='D', | |
help='dropout probability for decoder input embedding') | |
parser.add_argument('--decoder-dropout-out', type=float, metavar='D', | |
help='dropout probability for decoder output') | |
# fmt: on | |
def build_model(cls, args, task): | |
"""Build a new model instance.""" | |
# make sure that all args are properly defaulted (in case there are any new ones) | |
base_architecture(args) | |
if args.encoder_layers != args.decoder_layers: | |
raise ValueError("--encoder-layers must match --decoder-layers") | |
max_source_positions = getattr( | |
args, "max_source_positions", DEFAULT_MAX_SOURCE_POSITIONS | |
) | |
max_target_positions = getattr( | |
args, "max_target_positions", DEFAULT_MAX_TARGET_POSITIONS | |
) | |
def load_pretrained_embedding_from_file(embed_path, dictionary, embed_dim): | |
num_embeddings = len(dictionary) | |
padding_idx = dictionary.pad() | |
embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx) | |
embed_dict = utils.parse_embedding(embed_path) | |
utils.print_embed_overlap(embed_dict, dictionary) | |
return utils.load_embedding(embed_dict, dictionary, embed_tokens) | |
if args.encoder_embed_path: | |
pretrained_encoder_embed = load_pretrained_embedding_from_file( | |
args.encoder_embed_path, task.source_dictionary, args.encoder_embed_dim | |
) | |
else: | |
num_embeddings = len(task.source_dictionary) | |
pretrained_encoder_embed = Embedding( | |
num_embeddings, args.encoder_embed_dim, task.source_dictionary.pad() | |
) | |
if args.share_all_embeddings: | |
# double check all parameters combinations are valid | |
if task.source_dictionary != task.target_dictionary: | |
raise ValueError("--share-all-embeddings requires a joint dictionary") | |
if args.decoder_embed_path and ( | |
args.decoder_embed_path != args.encoder_embed_path | |
): | |
raise ValueError( | |
"--share-all-embed not compatible with --decoder-embed-path" | |
) | |
if args.encoder_embed_dim != args.decoder_embed_dim: | |
raise ValueError( | |
"--share-all-embeddings requires --encoder-embed-dim to " | |
"match --decoder-embed-dim" | |
) | |
pretrained_decoder_embed = pretrained_encoder_embed | |
args.share_decoder_input_output_embed = True | |
else: | |
# separate decoder input embeddings | |
pretrained_decoder_embed = None | |
if args.decoder_embed_path: | |
pretrained_decoder_embed = load_pretrained_embedding_from_file( | |
args.decoder_embed_path, | |
task.target_dictionary, | |
args.decoder_embed_dim, | |
) | |
# one last double check of parameter combinations | |
if args.share_decoder_input_output_embed and ( | |
args.decoder_embed_dim != args.decoder_out_embed_dim | |
): | |
raise ValueError( | |
"--share-decoder-input-output-embeddings requires " | |
"--decoder-embed-dim to match --decoder-out-embed-dim" | |
) | |
if args.encoder_freeze_embed: | |
pretrained_encoder_embed.weight.requires_grad = False | |
if args.decoder_freeze_embed: | |
pretrained_decoder_embed.weight.requires_grad = False | |
encoder = LSTMEncoder( | |
dictionary=task.source_dictionary, | |
embed_dim=args.encoder_embed_dim, | |
hidden_size=args.encoder_hidden_size, | |
num_layers=args.encoder_layers, | |
dropout_in=args.encoder_dropout_in, | |
dropout_out=args.encoder_dropout_out, | |
bidirectional=args.encoder_bidirectional, | |
pretrained_embed=pretrained_encoder_embed, | |
max_source_positions=max_source_positions, | |
) | |
decoder = LSTMDecoder( | |
dictionary=task.target_dictionary, | |
embed_dim=args.decoder_embed_dim, | |
hidden_size=args.decoder_hidden_size, | |
out_embed_dim=args.decoder_out_embed_dim, | |
num_layers=args.decoder_layers, | |
dropout_in=args.decoder_dropout_in, | |
dropout_out=args.decoder_dropout_out, | |
attention=utils.eval_bool(args.decoder_attention), | |
encoder_output_units=encoder.output_units, | |
pretrained_embed=pretrained_decoder_embed, | |
share_input_output_embed=args.share_decoder_input_output_embed, | |
adaptive_softmax_cutoff=( | |
utils.eval_str_list(args.adaptive_softmax_cutoff, type=int) | |
if args.criterion == "adaptive_loss" | |
else None | |
), | |
max_target_positions=max_target_positions, | |
residuals=False, | |
) | |
return cls(encoder, decoder) | |
def forward( | |
self, | |
src_tokens, | |
src_lengths, | |
prev_output_tokens, | |
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, | |
): | |
encoder_out = self.encoder(src_tokens, src_lengths=src_lengths) | |
decoder_out = self.decoder( | |
prev_output_tokens, | |
encoder_out=encoder_out, | |
incremental_state=incremental_state, | |
) | |
return decoder_out | |
class LSTMEncoder(FairseqEncoder): | |
"""LSTM encoder.""" | |
def __init__( | |
self, | |
dictionary, | |
embed_dim=512, | |
hidden_size=512, | |
num_layers=1, | |
dropout_in=0.1, | |
dropout_out=0.1, | |
bidirectional=False, | |
left_pad=True, | |
pretrained_embed=None, | |
padding_idx=None, | |
max_source_positions=DEFAULT_MAX_SOURCE_POSITIONS, | |
): | |
super().__init__(dictionary) | |
self.num_layers = num_layers | |
self.dropout_in_module = FairseqDropout( | |
dropout_in * 1.0, module_name=self.__class__.__name__ | |
) | |
self.dropout_out_module = FairseqDropout( | |
dropout_out * 1.0, module_name=self.__class__.__name__ | |
) | |
self.bidirectional = bidirectional | |
self.hidden_size = hidden_size | |
self.max_source_positions = max_source_positions | |
num_embeddings = len(dictionary) | |
self.padding_idx = padding_idx if padding_idx is not None else dictionary.pad() | |
if pretrained_embed is None: | |
self.embed_tokens = Embedding(num_embeddings, embed_dim, self.padding_idx) | |
else: | |
self.embed_tokens = pretrained_embed | |
self.lstm = LSTM( | |
input_size=embed_dim, | |
hidden_size=hidden_size, | |
num_layers=num_layers, | |
dropout=self.dropout_out_module.p if num_layers > 1 else 0.0, | |
bidirectional=bidirectional, | |
) | |
self.left_pad = left_pad | |
self.output_units = hidden_size | |
if bidirectional: | |
self.output_units *= 2 | |
def forward( | |
self, | |
src_tokens: Tensor, | |
src_lengths: Tensor, | |
enforce_sorted: bool = True, | |
): | |
""" | |
Args: | |
src_tokens (LongTensor): tokens in the source language of | |
shape `(batch, src_len)` | |
src_lengths (LongTensor): lengths of each source sentence of | |
shape `(batch)` | |
enforce_sorted (bool, optional): if True, `src_tokens` is | |
expected to contain sequences sorted by length in a | |
decreasing order. If False, this condition is not | |
required. Default: True. | |
""" | |
if self.left_pad: | |
# nn.utils.rnn.pack_padded_sequence requires right-padding; | |
# convert left-padding to right-padding | |
src_tokens = utils.convert_padding_direction( | |
src_tokens, | |
torch.zeros_like(src_tokens).fill_(self.padding_idx), | |
left_to_right=True, | |
) | |
bsz, seqlen = src_tokens.size() | |
# embed tokens | |
x = self.embed_tokens(src_tokens) | |
x = self.dropout_in_module(x) | |
# B x T x C -> T x B x C | |
x = x.transpose(0, 1) | |
# pack embedded source tokens into a PackedSequence | |
packed_x = nn.utils.rnn.pack_padded_sequence( | |
x, src_lengths.cpu(), enforce_sorted=enforce_sorted | |
) | |
# apply LSTM | |
if self.bidirectional: | |
state_size = 2 * self.num_layers, bsz, self.hidden_size | |
else: | |
state_size = self.num_layers, bsz, self.hidden_size | |
h0 = x.new_zeros(*state_size) | |
c0 = x.new_zeros(*state_size) | |
packed_outs, (final_hiddens, final_cells) = self.lstm(packed_x, (h0, c0)) | |
# unpack outputs and apply dropout | |
x, _ = nn.utils.rnn.pad_packed_sequence( | |
packed_outs, padding_value=self.padding_idx * 1.0 | |
) | |
x = self.dropout_out_module(x) | |
assert list(x.size()) == [seqlen, bsz, self.output_units] | |
if self.bidirectional: | |
final_hiddens = self.combine_bidir(final_hiddens, bsz) | |
final_cells = self.combine_bidir(final_cells, bsz) | |
encoder_padding_mask = src_tokens.eq(self.padding_idx).t() | |
return tuple( | |
( | |
x, # seq_len x batch x hidden | |
final_hiddens, # num_layers x batch x num_directions*hidden | |
final_cells, # num_layers x batch x num_directions*hidden | |
encoder_padding_mask, # seq_len x batch | |
) | |
) | |
def combine_bidir(self, outs, bsz: int): | |
out = outs.view(self.num_layers, 2, bsz, -1).transpose(1, 2).contiguous() | |
return out.view(self.num_layers, bsz, -1) | |
def reorder_encoder_out( | |
self, encoder_out: Tuple[Tensor, Tensor, Tensor, Tensor], new_order | |
): | |
return tuple( | |
( | |
encoder_out[0].index_select(1, new_order), | |
encoder_out[1].index_select(1, new_order), | |
encoder_out[2].index_select(1, new_order), | |
encoder_out[3].index_select(1, new_order), | |
) | |
) | |
def max_positions(self): | |
"""Maximum input length supported by the encoder.""" | |
return self.max_source_positions | |
class AttentionLayer(nn.Module): | |
def __init__(self, input_embed_dim, source_embed_dim, output_embed_dim, bias=False): | |
super().__init__() | |
self.input_proj = Linear(input_embed_dim, source_embed_dim, bias=bias) | |
self.output_proj = Linear( | |
input_embed_dim + source_embed_dim, output_embed_dim, bias=bias | |
) | |
def forward(self, input, source_hids, encoder_padding_mask): | |
# input: bsz x input_embed_dim | |
# source_hids: srclen x bsz x source_embed_dim | |
# x: bsz x source_embed_dim | |
x = self.input_proj(input) | |
# compute attention | |
attn_scores = (source_hids * x.unsqueeze(0)).sum(dim=2) | |
# don't attend over padding | |
if encoder_padding_mask is not None: | |
attn_scores = ( | |
attn_scores.float() | |
.masked_fill_(encoder_padding_mask, float("-inf")) | |
.type_as(attn_scores) | |
) # FP16 support: cast to float and back | |
attn_scores = F.softmax(attn_scores, dim=0) # srclen x bsz | |
# sum weighted sources | |
x = (attn_scores.unsqueeze(2) * source_hids).sum(dim=0) | |
x = torch.tanh(self.output_proj(torch.cat((x, input), dim=1))) | |
return x, attn_scores | |
class LSTMDecoder(FairseqIncrementalDecoder): | |
"""LSTM decoder.""" | |
def __init__( | |
self, | |
dictionary, | |
embed_dim=512, | |
hidden_size=512, | |
out_embed_dim=512, | |
num_layers=1, | |
dropout_in=0.1, | |
dropout_out=0.1, | |
attention=True, | |
encoder_output_units=512, | |
pretrained_embed=None, | |
share_input_output_embed=False, | |
adaptive_softmax_cutoff=None, | |
max_target_positions=DEFAULT_MAX_TARGET_POSITIONS, | |
residuals=False, | |
): | |
super().__init__(dictionary) | |
self.dropout_in_module = FairseqDropout( | |
dropout_in * 1.0, module_name=self.__class__.__name__ | |
) | |
self.dropout_out_module = FairseqDropout( | |
dropout_out * 1.0, module_name=self.__class__.__name__ | |
) | |
self.hidden_size = hidden_size | |
self.share_input_output_embed = share_input_output_embed | |
self.need_attn = True | |
self.max_target_positions = max_target_positions | |
self.residuals = residuals | |
self.num_layers = num_layers | |
self.adaptive_softmax = None | |
num_embeddings = len(dictionary) | |
padding_idx = dictionary.pad() | |
if pretrained_embed is None: | |
self.embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx) | |
else: | |
self.embed_tokens = pretrained_embed | |
self.encoder_output_units = encoder_output_units | |
if encoder_output_units != hidden_size and encoder_output_units != 0: | |
self.encoder_hidden_proj = Linear(encoder_output_units, hidden_size) | |
self.encoder_cell_proj = Linear(encoder_output_units, hidden_size) | |
else: | |
self.encoder_hidden_proj = self.encoder_cell_proj = None | |
# disable input feeding if there is no encoder | |
# input feeding is described in arxiv.org/abs/1508.04025 | |
input_feed_size = 0 if encoder_output_units == 0 else hidden_size | |
self.layers = nn.ModuleList( | |
[ | |
LSTMCell( | |
input_size=input_feed_size + embed_dim | |
if layer == 0 | |
else hidden_size, | |
hidden_size=hidden_size, | |
) | |
for layer in range(num_layers) | |
] | |
) | |
if attention: | |
# TODO make bias configurable | |
self.attention = AttentionLayer( | |
hidden_size, encoder_output_units, hidden_size, bias=False | |
) | |
else: | |
self.attention = None | |
if hidden_size != out_embed_dim: | |
self.additional_fc = Linear(hidden_size, out_embed_dim) | |
if adaptive_softmax_cutoff is not None: | |
# setting adaptive_softmax dropout to dropout_out for now but can be redefined | |
self.adaptive_softmax = AdaptiveSoftmax( | |
num_embeddings, | |
hidden_size, | |
adaptive_softmax_cutoff, | |
dropout=dropout_out, | |
) | |
elif not self.share_input_output_embed: | |
self.fc_out = Linear(out_embed_dim, num_embeddings, dropout=dropout_out) | |
def forward( | |
self, | |
prev_output_tokens, | |
encoder_out: Optional[Tuple[Tensor, Tensor, Tensor, Tensor]] = None, | |
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, | |
src_lengths: Optional[Tensor] = None, | |
): | |
x, attn_scores = self.extract_features( | |
prev_output_tokens, encoder_out, incremental_state | |
) | |
return self.output_layer(x), attn_scores | |
def extract_features( | |
self, | |
prev_output_tokens, | |
encoder_out: Optional[Tuple[Tensor, Tensor, Tensor, Tensor]] = None, | |
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, | |
): | |
""" | |
Similar to *forward* but only return features. | |
""" | |
# get outputs from encoder | |
if encoder_out is not None: | |
encoder_outs = encoder_out[0] | |
encoder_hiddens = encoder_out[1] | |
encoder_cells = encoder_out[2] | |
encoder_padding_mask = encoder_out[3] | |
else: | |
encoder_outs = torch.empty(0) | |
encoder_hiddens = torch.empty(0) | |
encoder_cells = torch.empty(0) | |
encoder_padding_mask = torch.empty(0) | |
srclen = encoder_outs.size(0) | |
if incremental_state is not None and len(incremental_state) > 0: | |
prev_output_tokens = prev_output_tokens[:, -1:] | |
bsz, seqlen = prev_output_tokens.size() | |
# embed tokens | |
x = self.embed_tokens(prev_output_tokens) | |
x = self.dropout_in_module(x) | |
# B x T x C -> T x B x C | |
x = x.transpose(0, 1) | |
# initialize previous states (or get from cache during incremental generation) | |
if incremental_state is not None and len(incremental_state) > 0: | |
prev_hiddens, prev_cells, input_feed = self.get_cached_state( | |
incremental_state | |
) | |
elif encoder_out is not None: | |
# setup recurrent cells | |
prev_hiddens = [encoder_hiddens[i] for i in range(self.num_layers)] | |
prev_cells = [encoder_cells[i] for i in range(self.num_layers)] | |
if self.encoder_hidden_proj is not None: | |
prev_hiddens = [self.encoder_hidden_proj(y) for y in prev_hiddens] | |
prev_cells = [self.encoder_cell_proj(y) for y in prev_cells] | |
input_feed = x.new_zeros(bsz, self.hidden_size) | |
else: | |
# setup zero cells, since there is no encoder | |
zero_state = x.new_zeros(bsz, self.hidden_size) | |
prev_hiddens = [zero_state for i in range(self.num_layers)] | |
prev_cells = [zero_state for i in range(self.num_layers)] | |
input_feed = None | |
assert ( | |
srclen > 0 or self.attention is None | |
), "attention is not supported if there are no encoder outputs" | |
attn_scores: Optional[Tensor] = ( | |
x.new_zeros(srclen, seqlen, bsz) if self.attention is not None else None | |
) | |
outs = [] | |
for j in range(seqlen): | |
# input feeding: concatenate context vector from previous time step | |
if input_feed is not None: | |
input = torch.cat((x[j, :, :], input_feed), dim=1) | |
else: | |
input = x[j] | |
for i, rnn in enumerate(self.layers): | |
# recurrent cell | |
hidden, cell = rnn(input, (prev_hiddens[i], prev_cells[i])) | |
# hidden state becomes the input to the next layer | |
input = self.dropout_out_module(hidden) | |
if self.residuals: | |
input = input + prev_hiddens[i] | |
# save state for next time step | |
prev_hiddens[i] = hidden | |
prev_cells[i] = cell | |
# apply attention using the last layer's hidden state | |
if self.attention is not None: | |
assert attn_scores is not None | |
out, attn_scores[:, j, :] = self.attention( | |
hidden, encoder_outs, encoder_padding_mask | |
) | |
else: | |
out = hidden | |
out = self.dropout_out_module(out) | |
# input feeding | |
if input_feed is not None: | |
input_feed = out | |
# save final output | |
outs.append(out) | |
# Stack all the necessary tensors together and store | |
prev_hiddens_tensor = torch.stack(prev_hiddens) | |
prev_cells_tensor = torch.stack(prev_cells) | |
cache_state = torch.jit.annotate( | |
Dict[str, Optional[Tensor]], | |
{ | |
"prev_hiddens": prev_hiddens_tensor, | |
"prev_cells": prev_cells_tensor, | |
"input_feed": input_feed, | |
}, | |
) | |
self.set_incremental_state(incremental_state, "cached_state", cache_state) | |
# collect outputs across time steps | |
x = torch.cat(outs, dim=0).view(seqlen, bsz, self.hidden_size) | |
# T x B x C -> B x T x C | |
x = x.transpose(1, 0) | |
if hasattr(self, "additional_fc") and self.adaptive_softmax is None: | |
x = self.additional_fc(x) | |
x = self.dropout_out_module(x) | |
# srclen x tgtlen x bsz -> bsz x tgtlen x srclen | |
if not self.training and self.need_attn and self.attention is not None: | |
assert attn_scores is not None | |
attn_scores = attn_scores.transpose(0, 2) | |
else: | |
attn_scores = None | |
return x, attn_scores | |
def output_layer(self, x): | |
"""Project features to the vocabulary size.""" | |
if self.adaptive_softmax is None: | |
if self.share_input_output_embed: | |
x = F.linear(x, self.embed_tokens.weight) | |
else: | |
x = self.fc_out(x) | |
return x | |
def get_cached_state( | |
self, | |
incremental_state: Dict[str, Dict[str, Optional[Tensor]]], | |
) -> Tuple[List[Tensor], List[Tensor], Optional[Tensor]]: | |
cached_state = self.get_incremental_state(incremental_state, "cached_state") | |
assert cached_state is not None | |
prev_hiddens_ = cached_state["prev_hiddens"] | |
assert prev_hiddens_ is not None | |
prev_cells_ = cached_state["prev_cells"] | |
assert prev_cells_ is not None | |
prev_hiddens = [prev_hiddens_[i] for i in range(self.num_layers)] | |
prev_cells = [prev_cells_[j] for j in range(self.num_layers)] | |
input_feed = cached_state[ | |
"input_feed" | |
] # can be None for decoder-only language models | |
return prev_hiddens, prev_cells, input_feed | |
def reorder_incremental_state( | |
self, | |
incremental_state: Dict[str, Dict[str, Optional[Tensor]]], | |
new_order: Tensor, | |
): | |
if incremental_state is None or len(incremental_state) == 0: | |
return | |
prev_hiddens, prev_cells, input_feed = self.get_cached_state(incremental_state) | |
prev_hiddens = [p.index_select(0, new_order) for p in prev_hiddens] | |
prev_cells = [p.index_select(0, new_order) for p in prev_cells] | |
if input_feed is not None: | |
input_feed = input_feed.index_select(0, new_order) | |
cached_state_new = torch.jit.annotate( | |
Dict[str, Optional[Tensor]], | |
{ | |
"prev_hiddens": torch.stack(prev_hiddens), | |
"prev_cells": torch.stack(prev_cells), | |
"input_feed": input_feed, | |
}, | |
) | |
self.set_incremental_state(incremental_state, "cached_state", cached_state_new), | |
return | |
def max_positions(self): | |
"""Maximum output length supported by the decoder.""" | |
return self.max_target_positions | |
def make_generation_fast_(self, need_attn=False, **kwargs): | |
self.need_attn = need_attn | |
def Embedding(num_embeddings, embedding_dim, padding_idx): | |
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) | |
nn.init.uniform_(m.weight, -0.1, 0.1) | |
nn.init.constant_(m.weight[padding_idx], 0) | |
return m | |
def LSTM(input_size, hidden_size, **kwargs): | |
m = nn.LSTM(input_size, hidden_size, **kwargs) | |
for name, param in m.named_parameters(): | |
if "weight" in name or "bias" in name: | |
param.data.uniform_(-0.1, 0.1) | |
return m | |
def LSTMCell(input_size, hidden_size, **kwargs): | |
m = nn.LSTMCell(input_size, hidden_size, **kwargs) | |
for name, param in m.named_parameters(): | |
if "weight" in name or "bias" in name: | |
param.data.uniform_(-0.1, 0.1) | |
return m | |
def Linear(in_features, out_features, bias=True, dropout=0.0): | |
"""Linear layer (input: N x T x C)""" | |
m = nn.Linear(in_features, out_features, bias=bias) | |
m.weight.data.uniform_(-0.1, 0.1) | |
if bias: | |
m.bias.data.uniform_(-0.1, 0.1) | |
return m | |
def base_architecture(args): | |
args.dropout = getattr(args, "dropout", 0.1) | |
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) | |
args.encoder_embed_path = getattr(args, "encoder_embed_path", None) | |
args.encoder_freeze_embed = getattr(args, "encoder_freeze_embed", False) | |
args.encoder_hidden_size = getattr( | |
args, "encoder_hidden_size", args.encoder_embed_dim | |
) | |
args.encoder_layers = getattr(args, "encoder_layers", 1) | |
args.encoder_bidirectional = getattr(args, "encoder_bidirectional", False) | |
args.encoder_dropout_in = getattr(args, "encoder_dropout_in", args.dropout) | |
args.encoder_dropout_out = getattr(args, "encoder_dropout_out", args.dropout) | |
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) | |
args.decoder_embed_path = getattr(args, "decoder_embed_path", None) | |
args.decoder_freeze_embed = getattr(args, "decoder_freeze_embed", False) | |
args.decoder_hidden_size = getattr( | |
args, "decoder_hidden_size", args.decoder_embed_dim | |
) | |
args.decoder_layers = getattr(args, "decoder_layers", 1) | |
args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 512) | |
args.decoder_attention = getattr(args, "decoder_attention", "1") | |
args.decoder_dropout_in = getattr(args, "decoder_dropout_in", args.dropout) | |
args.decoder_dropout_out = getattr(args, "decoder_dropout_out", args.dropout) | |
args.share_decoder_input_output_embed = getattr( | |
args, "share_decoder_input_output_embed", False | |
) | |
args.share_all_embeddings = getattr(args, "share_all_embeddings", False) | |
args.adaptive_softmax_cutoff = getattr( | |
args, "adaptive_softmax_cutoff", "10000,50000,200000" | |
) | |
def lstm_wiseman_iwslt_de_en(args): | |
args.dropout = getattr(args, "dropout", 0.1) | |
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256) | |
args.encoder_dropout_in = getattr(args, "encoder_dropout_in", 0) | |
args.encoder_dropout_out = getattr(args, "encoder_dropout_out", 0) | |
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256) | |
args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 256) | |
args.decoder_dropout_in = getattr(args, "decoder_dropout_in", 0) | |
args.decoder_dropout_out = getattr(args, "decoder_dropout_out", args.dropout) | |
base_architecture(args) | |
def lstm_luong_wmt_en_de(args): | |
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1000) | |
args.encoder_layers = getattr(args, "encoder_layers", 4) | |
args.encoder_dropout_out = getattr(args, "encoder_dropout_out", 0) | |
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1000) | |
args.decoder_layers = getattr(args, "decoder_layers", 4) | |
args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 1000) | |
args.decoder_dropout_out = getattr(args, "decoder_dropout_out", 0) | |
base_architecture(args) | |