Spaces:
Sleeping
Sleeping
File size: 30,557 Bytes
8273cb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from fairseq.models import (
FairseqEncoder,
FairseqEncoderDecoderModel,
FairseqIncrementalDecoder,
register_model,
register_model_architecture,
)
from fairseq.modules import AdaptiveSoftmax, FairseqDropout
from torch import Tensor
DEFAULT_MAX_SOURCE_POSITIONS = 1e5
DEFAULT_MAX_TARGET_POSITIONS = 1e5
@register_model("lstm")
class LSTMModel(FairseqEncoderDecoderModel):
def __init__(self, encoder, decoder):
super().__init__(encoder, decoder)
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
# fmt: off
parser.add_argument('--dropout', type=float, metavar='D',
help='dropout probability')
parser.add_argument('--encoder-embed-dim', type=int, metavar='N',
help='encoder embedding dimension')
parser.add_argument('--encoder-embed-path', type=str, metavar='STR',
help='path to pre-trained encoder embedding')
parser.add_argument('--encoder-freeze-embed', action='store_true',
help='freeze encoder embeddings')
parser.add_argument('--encoder-hidden-size', type=int, metavar='N',
help='encoder hidden size')
parser.add_argument('--encoder-layers', type=int, metavar='N',
help='number of encoder layers')
parser.add_argument('--encoder-bidirectional', action='store_true',
help='make all layers of encoder bidirectional')
parser.add_argument('--decoder-embed-dim', type=int, metavar='N',
help='decoder embedding dimension')
parser.add_argument('--decoder-embed-path', type=str, metavar='STR',
help='path to pre-trained decoder embedding')
parser.add_argument('--decoder-freeze-embed', action='store_true',
help='freeze decoder embeddings')
parser.add_argument('--decoder-hidden-size', type=int, metavar='N',
help='decoder hidden size')
parser.add_argument('--decoder-layers', type=int, metavar='N',
help='number of decoder layers')
parser.add_argument('--decoder-out-embed-dim', type=int, metavar='N',
help='decoder output embedding dimension')
parser.add_argument('--decoder-attention', type=str, metavar='BOOL',
help='decoder attention')
parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR',
help='comma separated list of adaptive softmax cutoff points. '
'Must be used with adaptive_loss criterion')
parser.add_argument('--share-decoder-input-output-embed', default=False,
action='store_true',
help='share decoder input and output embeddings')
parser.add_argument('--share-all-embeddings', default=False, action='store_true',
help='share encoder, decoder and output embeddings'
' (requires shared dictionary and embed dim)')
# Granular dropout settings (if not specified these default to --dropout)
parser.add_argument('--encoder-dropout-in', type=float, metavar='D',
help='dropout probability for encoder input embedding')
parser.add_argument('--encoder-dropout-out', type=float, metavar='D',
help='dropout probability for encoder output')
parser.add_argument('--decoder-dropout-in', type=float, metavar='D',
help='dropout probability for decoder input embedding')
parser.add_argument('--decoder-dropout-out', type=float, metavar='D',
help='dropout probability for decoder output')
# fmt: on
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
# make sure that all args are properly defaulted (in case there are any new ones)
base_architecture(args)
if args.encoder_layers != args.decoder_layers:
raise ValueError("--encoder-layers must match --decoder-layers")
max_source_positions = getattr(
args, "max_source_positions", DEFAULT_MAX_SOURCE_POSITIONS
)
max_target_positions = getattr(
args, "max_target_positions", DEFAULT_MAX_TARGET_POSITIONS
)
def load_pretrained_embedding_from_file(embed_path, dictionary, embed_dim):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx)
embed_dict = utils.parse_embedding(embed_path)
utils.print_embed_overlap(embed_dict, dictionary)
return utils.load_embedding(embed_dict, dictionary, embed_tokens)
if args.encoder_embed_path:
pretrained_encoder_embed = load_pretrained_embedding_from_file(
args.encoder_embed_path, task.source_dictionary, args.encoder_embed_dim
)
else:
num_embeddings = len(task.source_dictionary)
pretrained_encoder_embed = Embedding(
num_embeddings, args.encoder_embed_dim, task.source_dictionary.pad()
)
if args.share_all_embeddings:
# double check all parameters combinations are valid
if task.source_dictionary != task.target_dictionary:
raise ValueError("--share-all-embeddings requires a joint dictionary")
if args.decoder_embed_path and (
args.decoder_embed_path != args.encoder_embed_path
):
raise ValueError(
"--share-all-embed not compatible with --decoder-embed-path"
)
if args.encoder_embed_dim != args.decoder_embed_dim:
raise ValueError(
"--share-all-embeddings requires --encoder-embed-dim to "
"match --decoder-embed-dim"
)
pretrained_decoder_embed = pretrained_encoder_embed
args.share_decoder_input_output_embed = True
else:
# separate decoder input embeddings
pretrained_decoder_embed = None
if args.decoder_embed_path:
pretrained_decoder_embed = load_pretrained_embedding_from_file(
args.decoder_embed_path,
task.target_dictionary,
args.decoder_embed_dim,
)
# one last double check of parameter combinations
if args.share_decoder_input_output_embed and (
args.decoder_embed_dim != args.decoder_out_embed_dim
):
raise ValueError(
"--share-decoder-input-output-embeddings requires "
"--decoder-embed-dim to match --decoder-out-embed-dim"
)
if args.encoder_freeze_embed:
pretrained_encoder_embed.weight.requires_grad = False
if args.decoder_freeze_embed:
pretrained_decoder_embed.weight.requires_grad = False
encoder = LSTMEncoder(
dictionary=task.source_dictionary,
embed_dim=args.encoder_embed_dim,
hidden_size=args.encoder_hidden_size,
num_layers=args.encoder_layers,
dropout_in=args.encoder_dropout_in,
dropout_out=args.encoder_dropout_out,
bidirectional=args.encoder_bidirectional,
pretrained_embed=pretrained_encoder_embed,
max_source_positions=max_source_positions,
)
decoder = LSTMDecoder(
dictionary=task.target_dictionary,
embed_dim=args.decoder_embed_dim,
hidden_size=args.decoder_hidden_size,
out_embed_dim=args.decoder_out_embed_dim,
num_layers=args.decoder_layers,
dropout_in=args.decoder_dropout_in,
dropout_out=args.decoder_dropout_out,
attention=utils.eval_bool(args.decoder_attention),
encoder_output_units=encoder.output_units,
pretrained_embed=pretrained_decoder_embed,
share_input_output_embed=args.share_decoder_input_output_embed,
adaptive_softmax_cutoff=(
utils.eval_str_list(args.adaptive_softmax_cutoff, type=int)
if args.criterion == "adaptive_loss"
else None
),
max_target_positions=max_target_positions,
residuals=False,
)
return cls(encoder, decoder)
def forward(
self,
src_tokens,
src_lengths,
prev_output_tokens,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
):
encoder_out = self.encoder(src_tokens, src_lengths=src_lengths)
decoder_out = self.decoder(
prev_output_tokens,
encoder_out=encoder_out,
incremental_state=incremental_state,
)
return decoder_out
class LSTMEncoder(FairseqEncoder):
"""LSTM encoder."""
def __init__(
self,
dictionary,
embed_dim=512,
hidden_size=512,
num_layers=1,
dropout_in=0.1,
dropout_out=0.1,
bidirectional=False,
left_pad=True,
pretrained_embed=None,
padding_idx=None,
max_source_positions=DEFAULT_MAX_SOURCE_POSITIONS,
):
super().__init__(dictionary)
self.num_layers = num_layers
self.dropout_in_module = FairseqDropout(
dropout_in * 1.0, module_name=self.__class__.__name__
)
self.dropout_out_module = FairseqDropout(
dropout_out * 1.0, module_name=self.__class__.__name__
)
self.bidirectional = bidirectional
self.hidden_size = hidden_size
self.max_source_positions = max_source_positions
num_embeddings = len(dictionary)
self.padding_idx = padding_idx if padding_idx is not None else dictionary.pad()
if pretrained_embed is None:
self.embed_tokens = Embedding(num_embeddings, embed_dim, self.padding_idx)
else:
self.embed_tokens = pretrained_embed
self.lstm = LSTM(
input_size=embed_dim,
hidden_size=hidden_size,
num_layers=num_layers,
dropout=self.dropout_out_module.p if num_layers > 1 else 0.0,
bidirectional=bidirectional,
)
self.left_pad = left_pad
self.output_units = hidden_size
if bidirectional:
self.output_units *= 2
def forward(
self,
src_tokens: Tensor,
src_lengths: Tensor,
enforce_sorted: bool = True,
):
"""
Args:
src_tokens (LongTensor): tokens in the source language of
shape `(batch, src_len)`
src_lengths (LongTensor): lengths of each source sentence of
shape `(batch)`
enforce_sorted (bool, optional): if True, `src_tokens` is
expected to contain sequences sorted by length in a
decreasing order. If False, this condition is not
required. Default: True.
"""
if self.left_pad:
# nn.utils.rnn.pack_padded_sequence requires right-padding;
# convert left-padding to right-padding
src_tokens = utils.convert_padding_direction(
src_tokens,
torch.zeros_like(src_tokens).fill_(self.padding_idx),
left_to_right=True,
)
bsz, seqlen = src_tokens.size()
# embed tokens
x = self.embed_tokens(src_tokens)
x = self.dropout_in_module(x)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
# pack embedded source tokens into a PackedSequence
packed_x = nn.utils.rnn.pack_padded_sequence(
x, src_lengths.cpu(), enforce_sorted=enforce_sorted
)
# apply LSTM
if self.bidirectional:
state_size = 2 * self.num_layers, bsz, self.hidden_size
else:
state_size = self.num_layers, bsz, self.hidden_size
h0 = x.new_zeros(*state_size)
c0 = x.new_zeros(*state_size)
packed_outs, (final_hiddens, final_cells) = self.lstm(packed_x, (h0, c0))
# unpack outputs and apply dropout
x, _ = nn.utils.rnn.pad_packed_sequence(
packed_outs, padding_value=self.padding_idx * 1.0
)
x = self.dropout_out_module(x)
assert list(x.size()) == [seqlen, bsz, self.output_units]
if self.bidirectional:
final_hiddens = self.combine_bidir(final_hiddens, bsz)
final_cells = self.combine_bidir(final_cells, bsz)
encoder_padding_mask = src_tokens.eq(self.padding_idx).t()
return tuple(
(
x, # seq_len x batch x hidden
final_hiddens, # num_layers x batch x num_directions*hidden
final_cells, # num_layers x batch x num_directions*hidden
encoder_padding_mask, # seq_len x batch
)
)
def combine_bidir(self, outs, bsz: int):
out = outs.view(self.num_layers, 2, bsz, -1).transpose(1, 2).contiguous()
return out.view(self.num_layers, bsz, -1)
def reorder_encoder_out(
self, encoder_out: Tuple[Tensor, Tensor, Tensor, Tensor], new_order
):
return tuple(
(
encoder_out[0].index_select(1, new_order),
encoder_out[1].index_select(1, new_order),
encoder_out[2].index_select(1, new_order),
encoder_out[3].index_select(1, new_order),
)
)
def max_positions(self):
"""Maximum input length supported by the encoder."""
return self.max_source_positions
class AttentionLayer(nn.Module):
def __init__(self, input_embed_dim, source_embed_dim, output_embed_dim, bias=False):
super().__init__()
self.input_proj = Linear(input_embed_dim, source_embed_dim, bias=bias)
self.output_proj = Linear(
input_embed_dim + source_embed_dim, output_embed_dim, bias=bias
)
def forward(self, input, source_hids, encoder_padding_mask):
# input: bsz x input_embed_dim
# source_hids: srclen x bsz x source_embed_dim
# x: bsz x source_embed_dim
x = self.input_proj(input)
# compute attention
attn_scores = (source_hids * x.unsqueeze(0)).sum(dim=2)
# don't attend over padding
if encoder_padding_mask is not None:
attn_scores = (
attn_scores.float()
.masked_fill_(encoder_padding_mask, float("-inf"))
.type_as(attn_scores)
) # FP16 support: cast to float and back
attn_scores = F.softmax(attn_scores, dim=0) # srclen x bsz
# sum weighted sources
x = (attn_scores.unsqueeze(2) * source_hids).sum(dim=0)
x = torch.tanh(self.output_proj(torch.cat((x, input), dim=1)))
return x, attn_scores
class LSTMDecoder(FairseqIncrementalDecoder):
"""LSTM decoder."""
def __init__(
self,
dictionary,
embed_dim=512,
hidden_size=512,
out_embed_dim=512,
num_layers=1,
dropout_in=0.1,
dropout_out=0.1,
attention=True,
encoder_output_units=512,
pretrained_embed=None,
share_input_output_embed=False,
adaptive_softmax_cutoff=None,
max_target_positions=DEFAULT_MAX_TARGET_POSITIONS,
residuals=False,
):
super().__init__(dictionary)
self.dropout_in_module = FairseqDropout(
dropout_in * 1.0, module_name=self.__class__.__name__
)
self.dropout_out_module = FairseqDropout(
dropout_out * 1.0, module_name=self.__class__.__name__
)
self.hidden_size = hidden_size
self.share_input_output_embed = share_input_output_embed
self.need_attn = True
self.max_target_positions = max_target_positions
self.residuals = residuals
self.num_layers = num_layers
self.adaptive_softmax = None
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
if pretrained_embed is None:
self.embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx)
else:
self.embed_tokens = pretrained_embed
self.encoder_output_units = encoder_output_units
if encoder_output_units != hidden_size and encoder_output_units != 0:
self.encoder_hidden_proj = Linear(encoder_output_units, hidden_size)
self.encoder_cell_proj = Linear(encoder_output_units, hidden_size)
else:
self.encoder_hidden_proj = self.encoder_cell_proj = None
# disable input feeding if there is no encoder
# input feeding is described in arxiv.org/abs/1508.04025
input_feed_size = 0 if encoder_output_units == 0 else hidden_size
self.layers = nn.ModuleList(
[
LSTMCell(
input_size=input_feed_size + embed_dim
if layer == 0
else hidden_size,
hidden_size=hidden_size,
)
for layer in range(num_layers)
]
)
if attention:
# TODO make bias configurable
self.attention = AttentionLayer(
hidden_size, encoder_output_units, hidden_size, bias=False
)
else:
self.attention = None
if hidden_size != out_embed_dim:
self.additional_fc = Linear(hidden_size, out_embed_dim)
if adaptive_softmax_cutoff is not None:
# setting adaptive_softmax dropout to dropout_out for now but can be redefined
self.adaptive_softmax = AdaptiveSoftmax(
num_embeddings,
hidden_size,
adaptive_softmax_cutoff,
dropout=dropout_out,
)
elif not self.share_input_output_embed:
self.fc_out = Linear(out_embed_dim, num_embeddings, dropout=dropout_out)
def forward(
self,
prev_output_tokens,
encoder_out: Optional[Tuple[Tensor, Tensor, Tensor, Tensor]] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
src_lengths: Optional[Tensor] = None,
):
x, attn_scores = self.extract_features(
prev_output_tokens, encoder_out, incremental_state
)
return self.output_layer(x), attn_scores
def extract_features(
self,
prev_output_tokens,
encoder_out: Optional[Tuple[Tensor, Tensor, Tensor, Tensor]] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
):
"""
Similar to *forward* but only return features.
"""
# get outputs from encoder
if encoder_out is not None:
encoder_outs = encoder_out[0]
encoder_hiddens = encoder_out[1]
encoder_cells = encoder_out[2]
encoder_padding_mask = encoder_out[3]
else:
encoder_outs = torch.empty(0)
encoder_hiddens = torch.empty(0)
encoder_cells = torch.empty(0)
encoder_padding_mask = torch.empty(0)
srclen = encoder_outs.size(0)
if incremental_state is not None and len(incremental_state) > 0:
prev_output_tokens = prev_output_tokens[:, -1:]
bsz, seqlen = prev_output_tokens.size()
# embed tokens
x = self.embed_tokens(prev_output_tokens)
x = self.dropout_in_module(x)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
# initialize previous states (or get from cache during incremental generation)
if incremental_state is not None and len(incremental_state) > 0:
prev_hiddens, prev_cells, input_feed = self.get_cached_state(
incremental_state
)
elif encoder_out is not None:
# setup recurrent cells
prev_hiddens = [encoder_hiddens[i] for i in range(self.num_layers)]
prev_cells = [encoder_cells[i] for i in range(self.num_layers)]
if self.encoder_hidden_proj is not None:
prev_hiddens = [self.encoder_hidden_proj(y) for y in prev_hiddens]
prev_cells = [self.encoder_cell_proj(y) for y in prev_cells]
input_feed = x.new_zeros(bsz, self.hidden_size)
else:
# setup zero cells, since there is no encoder
zero_state = x.new_zeros(bsz, self.hidden_size)
prev_hiddens = [zero_state for i in range(self.num_layers)]
prev_cells = [zero_state for i in range(self.num_layers)]
input_feed = None
assert (
srclen > 0 or self.attention is None
), "attention is not supported if there are no encoder outputs"
attn_scores: Optional[Tensor] = (
x.new_zeros(srclen, seqlen, bsz) if self.attention is not None else None
)
outs = []
for j in range(seqlen):
# input feeding: concatenate context vector from previous time step
if input_feed is not None:
input = torch.cat((x[j, :, :], input_feed), dim=1)
else:
input = x[j]
for i, rnn in enumerate(self.layers):
# recurrent cell
hidden, cell = rnn(input, (prev_hiddens[i], prev_cells[i]))
# hidden state becomes the input to the next layer
input = self.dropout_out_module(hidden)
if self.residuals:
input = input + prev_hiddens[i]
# save state for next time step
prev_hiddens[i] = hidden
prev_cells[i] = cell
# apply attention using the last layer's hidden state
if self.attention is not None:
assert attn_scores is not None
out, attn_scores[:, j, :] = self.attention(
hidden, encoder_outs, encoder_padding_mask
)
else:
out = hidden
out = self.dropout_out_module(out)
# input feeding
if input_feed is not None:
input_feed = out
# save final output
outs.append(out)
# Stack all the necessary tensors together and store
prev_hiddens_tensor = torch.stack(prev_hiddens)
prev_cells_tensor = torch.stack(prev_cells)
cache_state = torch.jit.annotate(
Dict[str, Optional[Tensor]],
{
"prev_hiddens": prev_hiddens_tensor,
"prev_cells": prev_cells_tensor,
"input_feed": input_feed,
},
)
self.set_incremental_state(incremental_state, "cached_state", cache_state)
# collect outputs across time steps
x = torch.cat(outs, dim=0).view(seqlen, bsz, self.hidden_size)
# T x B x C -> B x T x C
x = x.transpose(1, 0)
if hasattr(self, "additional_fc") and self.adaptive_softmax is None:
x = self.additional_fc(x)
x = self.dropout_out_module(x)
# srclen x tgtlen x bsz -> bsz x tgtlen x srclen
if not self.training and self.need_attn and self.attention is not None:
assert attn_scores is not None
attn_scores = attn_scores.transpose(0, 2)
else:
attn_scores = None
return x, attn_scores
def output_layer(self, x):
"""Project features to the vocabulary size."""
if self.adaptive_softmax is None:
if self.share_input_output_embed:
x = F.linear(x, self.embed_tokens.weight)
else:
x = self.fc_out(x)
return x
def get_cached_state(
self,
incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
) -> Tuple[List[Tensor], List[Tensor], Optional[Tensor]]:
cached_state = self.get_incremental_state(incremental_state, "cached_state")
assert cached_state is not None
prev_hiddens_ = cached_state["prev_hiddens"]
assert prev_hiddens_ is not None
prev_cells_ = cached_state["prev_cells"]
assert prev_cells_ is not None
prev_hiddens = [prev_hiddens_[i] for i in range(self.num_layers)]
prev_cells = [prev_cells_[j] for j in range(self.num_layers)]
input_feed = cached_state[
"input_feed"
] # can be None for decoder-only language models
return prev_hiddens, prev_cells, input_feed
def reorder_incremental_state(
self,
incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
new_order: Tensor,
):
if incremental_state is None or len(incremental_state) == 0:
return
prev_hiddens, prev_cells, input_feed = self.get_cached_state(incremental_state)
prev_hiddens = [p.index_select(0, new_order) for p in prev_hiddens]
prev_cells = [p.index_select(0, new_order) for p in prev_cells]
if input_feed is not None:
input_feed = input_feed.index_select(0, new_order)
cached_state_new = torch.jit.annotate(
Dict[str, Optional[Tensor]],
{
"prev_hiddens": torch.stack(prev_hiddens),
"prev_cells": torch.stack(prev_cells),
"input_feed": input_feed,
},
)
self.set_incremental_state(incremental_state, "cached_state", cached_state_new),
return
def max_positions(self):
"""Maximum output length supported by the decoder."""
return self.max_target_positions
def make_generation_fast_(self, need_attn=False, **kwargs):
self.need_attn = need_attn
def Embedding(num_embeddings, embedding_dim, padding_idx):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
nn.init.uniform_(m.weight, -0.1, 0.1)
nn.init.constant_(m.weight[padding_idx], 0)
return m
def LSTM(input_size, hidden_size, **kwargs):
m = nn.LSTM(input_size, hidden_size, **kwargs)
for name, param in m.named_parameters():
if "weight" in name or "bias" in name:
param.data.uniform_(-0.1, 0.1)
return m
def LSTMCell(input_size, hidden_size, **kwargs):
m = nn.LSTMCell(input_size, hidden_size, **kwargs)
for name, param in m.named_parameters():
if "weight" in name or "bias" in name:
param.data.uniform_(-0.1, 0.1)
return m
def Linear(in_features, out_features, bias=True, dropout=0.0):
"""Linear layer (input: N x T x C)"""
m = nn.Linear(in_features, out_features, bias=bias)
m.weight.data.uniform_(-0.1, 0.1)
if bias:
m.bias.data.uniform_(-0.1, 0.1)
return m
@register_model_architecture("lstm", "lstm")
def base_architecture(args):
args.dropout = getattr(args, "dropout", 0.1)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
args.encoder_freeze_embed = getattr(args, "encoder_freeze_embed", False)
args.encoder_hidden_size = getattr(
args, "encoder_hidden_size", args.encoder_embed_dim
)
args.encoder_layers = getattr(args, "encoder_layers", 1)
args.encoder_bidirectional = getattr(args, "encoder_bidirectional", False)
args.encoder_dropout_in = getattr(args, "encoder_dropout_in", args.dropout)
args.encoder_dropout_out = getattr(args, "encoder_dropout_out", args.dropout)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
args.decoder_freeze_embed = getattr(args, "decoder_freeze_embed", False)
args.decoder_hidden_size = getattr(
args, "decoder_hidden_size", args.decoder_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 1)
args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 512)
args.decoder_attention = getattr(args, "decoder_attention", "1")
args.decoder_dropout_in = getattr(args, "decoder_dropout_in", args.dropout)
args.decoder_dropout_out = getattr(args, "decoder_dropout_out", args.dropout)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
args.adaptive_softmax_cutoff = getattr(
args, "adaptive_softmax_cutoff", "10000,50000,200000"
)
@register_model_architecture("lstm", "lstm_wiseman_iwslt_de_en")
def lstm_wiseman_iwslt_de_en(args):
args.dropout = getattr(args, "dropout", 0.1)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256)
args.encoder_dropout_in = getattr(args, "encoder_dropout_in", 0)
args.encoder_dropout_out = getattr(args, "encoder_dropout_out", 0)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256)
args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 256)
args.decoder_dropout_in = getattr(args, "decoder_dropout_in", 0)
args.decoder_dropout_out = getattr(args, "decoder_dropout_out", args.dropout)
base_architecture(args)
@register_model_architecture("lstm", "lstm_luong_wmt_en_de")
def lstm_luong_wmt_en_de(args):
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1000)
args.encoder_layers = getattr(args, "encoder_layers", 4)
args.encoder_dropout_out = getattr(args, "encoder_dropout_out", 0)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1000)
args.decoder_layers = getattr(args, "decoder_layers", 4)
args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 1000)
args.decoder_dropout_out = getattr(args, "decoder_dropout_out", 0)
base_architecture(args)
|