CNN2 / implementation_plan.md
d-e-e-k-11's picture
Upload folder using huggingface_hub
294928d verified

Implementation Plan - CIFAR-10 CNN Classifier

This plan outlines the steps to build, train, and evaluate a Convolutional Neural Network (CNN) for the CIFAR-10 dataset.

1. Environment Setup

  • Verify installation of torch, torchvision, matplotlib.
  • Import necessary modules.

2. Data Preparation

  • Load CIFAR-10 dataset using torchvision.datasets.
  • Normalize and transform data to Tensors.
  • Explore data shapes and visualize sample images.

3. Model Architecture

  • Build a PyTorch nn.Module CNN:
    • Input layer: 32x32x3 images.
    • Multiple Convolutional blocks (Conv2d -> BatchNorm2d -> ReLU -> MaxPool2d -> Dropout).
    • Flatten layer.
    • Fully connected layers with BatchNorm and Dropout.
    • Output layer: 10 units.

4. Training Configuration

  • Loss Function: nn.CrossEntropyLoss().
  • Optimizer: optim.Adam.
  • Device: Use CUDA if available, else CPU.

5. Model Training

  • Train the model on the training set.
  • Validate on the test/validation set.
  • Save the training history.

6. Evaluation and Visualization

  • Evaluate the model on the test set.
  • Plot Training vs. Validation Accuracy/Loss.
  • Display a confusion matrix or classification report.
  • Save the final model.

7. Inference Script (Optional)

  • Create a script to load the model and predict labels for new images.