|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import argparse |
|
import pickle |
|
from PIL import Image |
|
import numpy as np |
|
from tqdm import tqdm |
|
|
|
import torch |
|
from torch.utils.data import DataLoader |
|
|
|
import utils.misc as misc |
|
from models.croco_downstream import CroCoDownstreamBinocular |
|
from models.head_downstream import PixelwiseTaskWithDPT |
|
|
|
from stereoflow.criterion import * |
|
from stereoflow.datasets_stereo import get_test_datasets_stereo |
|
from stereoflow.datasets_flow import get_test_datasets_flow |
|
from stereoflow.engine import tiled_pred |
|
|
|
from stereoflow.datasets_stereo import vis_disparity |
|
from stereoflow.datasets_flow import flowToColor |
|
|
|
def get_args_parser(): |
|
parser = argparse.ArgumentParser('Test CroCo models on stereo/flow', add_help=False) |
|
|
|
parser.add_argument('--model', required=True, type=str, help='Path to the model to evaluate') |
|
parser.add_argument('--dataset', required=True, type=str, help="test dataset (there can be multiple dataset separated by a +)") |
|
|
|
parser.add_argument('--tile_conf_mode', type=str, default='', help='Weights for the tiling aggregation based on confidence (empty means use the formula from the loaded checkpoint') |
|
parser.add_argument('--tile_overlap', type=float, default=0.7, help='overlap between tiles') |
|
|
|
parser.add_argument('--save', type=str, nargs='+', default=[], |
|
help='what to save: \ |
|
metrics (pickle file), \ |
|
pred (raw prediction save as torch tensor), \ |
|
visu (visualization in png of each prediction), \ |
|
err10 (visualization in png of the error clamp at 10 for each prediction), \ |
|
submission (submission file)') |
|
|
|
parser.add_argument('--num_workers', default=4, type=int) |
|
return parser |
|
|
|
|
|
def _load_model_and_criterion(model_path, do_load_metrics, device): |
|
print('loading model from', model_path) |
|
assert os.path.isfile(model_path) |
|
ckpt = torch.load(model_path, 'cpu') |
|
|
|
ckpt_args = ckpt['args'] |
|
task = ckpt_args.task |
|
tile_conf_mode = ckpt_args.tile_conf_mode |
|
num_channels = {'stereo': 1, 'flow': 2}[task] |
|
with_conf = eval(ckpt_args.criterion).with_conf |
|
if with_conf: num_channels += 1 |
|
print('head: PixelwiseTaskWithDPT()') |
|
head = PixelwiseTaskWithDPT() |
|
head.num_channels = num_channels |
|
print('croco_args:', ckpt_args.croco_args) |
|
model = CroCoDownstreamBinocular(head, **ckpt_args.croco_args) |
|
msg = model.load_state_dict(ckpt['model'], strict=True) |
|
model.eval() |
|
model = model.to(device) |
|
|
|
if do_load_metrics: |
|
if task=='stereo': |
|
metrics = StereoDatasetMetrics().to(device) |
|
else: |
|
metrics = FlowDatasetMetrics().to(device) |
|
else: |
|
metrics = None |
|
|
|
return model, metrics, ckpt_args.crop, with_conf, task, tile_conf_mode |
|
|
|
|
|
def _save_batch(pred, gt, pairnames, dataset, task, save, outdir, time, submission_dir=None): |
|
|
|
for i in range(len(pairnames)): |
|
|
|
pairname = eval(pairnames[i]) if pairnames[i].startswith('(') else pairnames[i] |
|
fname = os.path.join(outdir, dataset.pairname_to_str(pairname)) |
|
os.makedirs(os.path.dirname(fname), exist_ok=True) |
|
|
|
predi = pred[i,...] |
|
if gt is not None: gti = gt[i,...] |
|
|
|
if 'pred' in save: |
|
torch.save(predi.squeeze(0).cpu(), fname+'_pred.pth') |
|
|
|
if 'visu' in save: |
|
if task=='stereo': |
|
disparity = predi.permute((1,2,0)).squeeze(2).cpu().numpy() |
|
m,M = None |
|
if gt is not None: |
|
mask = torch.isfinite(gti) |
|
m = gt[mask].min() |
|
M = gt[mask].max() |
|
img_disparity = vis_disparity(disparity, m=m, M=M) |
|
Image.fromarray(img_disparity).save(fname+'_pred.png') |
|
else: |
|
|
|
flowNorm = torch.sqrt(torch.sum( (gti if gt is not None else predi)**2, dim=0)).max().item() |
|
imgflow = flowToColor(predi.permute((1,2,0)).cpu().numpy(), maxflow=flowNorm) |
|
Image.fromarray(imgflow).save(fname+'_pred.png') |
|
|
|
if 'err10' in save: |
|
assert gt is not None |
|
L2err = torch.sqrt(torch.sum( (gti-predi)**2, dim=0)) |
|
valid = torch.isfinite(gti[0,:,:]) |
|
L2err[~valid] = 0.0 |
|
L2err = torch.clamp(L2err, max=10.0) |
|
red = (L2err*255.0/10.0).to(dtype=torch.uint8)[:,:,None] |
|
zer = torch.zeros_like(red) |
|
imgerr = torch.cat( (red,zer,zer), dim=2).cpu().numpy() |
|
Image.fromarray(imgerr).save(fname+'_err10.png') |
|
|
|
if 'submission' in save: |
|
assert submission_dir is not None |
|
predi_np = predi.permute(1,2,0).squeeze(2).cpu().numpy() |
|
dataset.submission_save_pairname(pairname, predi_np, submission_dir, time) |
|
|
|
def main(args): |
|
|
|
|
|
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu') |
|
model, metrics, cropsize, with_conf, task, tile_conf_mode = _load_model_and_criterion(args.model, 'metrics' in args.save, device) |
|
if args.tile_conf_mode=='': args.tile_conf_mode = tile_conf_mode |
|
|
|
|
|
datasets = (get_test_datasets_stereo if task=='stereo' else get_test_datasets_flow)(args.dataset) |
|
dataloaders = [DataLoader(dataset, batch_size=1, shuffle=False, num_workers=args.num_workers, pin_memory=True, drop_last=False) for dataset in datasets] |
|
|
|
|
|
for i,dataloader in enumerate(dataloaders): |
|
dataset = datasets[i] |
|
dstr = args.dataset.split('+')[i] |
|
|
|
outdir = args.model+'_'+misc.filename(dstr) |
|
if 'metrics' in args.save and len(args.save)==1: |
|
fname = os.path.join(outdir, f'conf_{args.tile_conf_mode}_overlap_{args.tile_overlap}.pkl') |
|
if os.path.isfile(fname) and len(args.save)==1: |
|
print(' metrics already compute in '+fname) |
|
with open(fname, 'rb') as fid: |
|
results = pickle.load(fid) |
|
for k,v in results.items(): |
|
print('{:s}: {:.3f}'.format(k, v)) |
|
continue |
|
|
|
if 'submission' in args.save: |
|
dirname = f'submission_conf_{args.tile_conf_mode}_overlap_{args.tile_overlap}' |
|
submission_dir = os.path.join(outdir, dirname) |
|
else: |
|
submission_dir = None |
|
|
|
print('') |
|
print('saving {:s} in {:s}'.format('+'.join(args.save), outdir)) |
|
print(repr(dataset)) |
|
|
|
if metrics is not None: |
|
metrics.reset() |
|
|
|
for data_iter_step, (image1, image2, gt, pairnames) in enumerate(tqdm(dataloader)): |
|
|
|
do_flip = (task=='stereo' and dstr.startswith('Spring') and any("right" in p for p in pairnames)) |
|
|
|
image1 = image1.to(device, non_blocking=True) |
|
image2 = image2.to(device, non_blocking=True) |
|
gt = gt.to(device, non_blocking=True) if gt.numel()>0 else None |
|
if do_flip: |
|
assert all("right" in p for p in pairnames) |
|
image1 = image1.flip(dims=[3]) |
|
image2 = image2.flip(dims=[3]) |
|
gt = gt |
|
|
|
with torch.inference_mode(): |
|
pred, _, _, time = tiled_pred(model, None, image1, image2, None if dataset.name=='Spring' else gt, conf_mode=args.tile_conf_mode, overlap=args.tile_overlap, crop=cropsize, with_conf=with_conf, return_time=True) |
|
|
|
if do_flip: |
|
pred = pred.flip(dims=[3]) |
|
|
|
if metrics is not None: |
|
metrics.add_batch(pred, gt) |
|
|
|
if any(k in args.save for k in ['pred','visu','err10','submission']): |
|
_save_batch(pred, gt, pairnames, dataset, task, args.save, outdir, time, submission_dir=submission_dir) |
|
|
|
|
|
|
|
if metrics is not None: |
|
results = metrics.get_results() |
|
for k,v in results.items(): |
|
print('{:s}: {:.3f}'.format(k, v)) |
|
|
|
|
|
if 'metrics' in args.save: |
|
os.makedirs(os.path.dirname(fname), exist_ok=True) |
|
with open(fname, 'wb') as fid: |
|
pickle.dump(results, fid) |
|
print('metrics saved in', fname) |
|
|
|
|
|
if 'submission' in args.save: |
|
dataset.finalize_submission(submission_dir) |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
args = get_args_parser() |
|
args = args.parse_args() |
|
main(args) |