Spaces:
Running
Running
from config import DEMO_TITLE, IS_SHARE, CV_EXT, EXT_TXT | |
from config import CHEAP_API_BASE, CHEAP_API_KEY, CHEAP_MODEL | |
from config import STRONG_API_BASE, STRONG_API_KEY, STRONG_MODEL | |
from util import is_valid_url | |
from util import mylogger | |
from util import stream_together | |
from taskNonAI import extract_url, file_to_html | |
from taskAI import TaskAI | |
## load data | |
from data_test import mock_jd, mock_cv | |
## ui | |
import gradio as gr | |
## dependency | |
from pypandoc.pandoc_download import download_pandoc | |
## std | |
import os | |
logger = mylogger(__name__,'%(asctime)s:%(levelname)s:%(message)s') | |
info = logger.info | |
def init(): | |
os.system("shot-scraper install -b firefox") | |
download_pandoc() | |
def prepare_input(jd_info, cv_file: str, cv_text): | |
if jd_info: | |
if is_valid_url(jd_info): | |
jd = extract_url(jd_info) | |
else: | |
jd = jd_info | |
else: | |
jd = mock_jd | |
if cv_text: | |
cv = cv_text | |
elif cv_file: | |
if any([cv_file.endswith(ext) for ext in EXT_TXT]): | |
with open(cv_file, "r", encoding="utf8") as f: | |
cv = f.read() | |
else: | |
cv = file_to_html(cv_file) | |
else: | |
cv = mock_cv | |
return jd, cv | |
def run_refine(api_base, api_key, api_model, jd_info, cv_text): | |
jd,cv=jd_info,cv_text | |
cheapAPI = {"base": api_base, "key": api_key, "model": api_model} | |
taskAI = TaskAI(cheapAPI, temperature=0.2, max_tokens=2048) # max_tokens=2048 | |
info("API initialized") | |
gen = ( | |
taskAI.jd_preprocess(input=jd), | |
taskAI.cv_preprocess(input=cv), | |
) | |
info("tasks initialized") | |
result = [""] * 2 | |
while 1: | |
stop: bool = True | |
for i in range(len(gen)): | |
try: | |
result[i] += next(gen[i]).delta | |
stop = False | |
except StopIteration: | |
# info(f"gen[{i}] exhausted") | |
pass | |
yield result | |
if stop: | |
info("tasks done") | |
break | |
def run_compose(api_base, api_key, api_model, min_jd, min_cv): | |
strongAPI = {"base": api_base, "key": api_key, "model": api_model} | |
taskAI = TaskAI(strongAPI, temperature=0.6, max_tokens=4000) | |
info("Composing letter with CoT ...") | |
result = "" | |
for response in taskAI.compose_letter_CoT(jd=min_jd, resume=min_cv): | |
result += response.delta | |
yield result | |
def finalize_letter_txt(api_base, api_key, api_model, debug_CoT, jd, cv): | |
cheapAPI = {"base": api_base, "key": api_key, "model": api_model} | |
taskAI = TaskAI(cheapAPI, temperature=0.2, max_tokens=2048) | |
info("Finalizing letter ...") | |
gen = stream_together( | |
taskAI.purify_letter(full_text=debug_CoT), | |
taskAI.get_jobapp_meta(JD=jd, CV=cv), | |
) | |
for result in gen: | |
yield result | |
with gr.Blocks( | |
title=DEMO_TITLE, | |
theme=gr.themes.Base(primary_hue="blue", secondary_hue="sky", neutral_hue="slate"), | |
) as app: | |
intro = f"""# {DEMO_TITLE} | |
> You provide job description and résumé. I write Cover letter for you! | |
Before you use, please fisrt setup API for 2 AI agents': Cheap AI and Strong AI. | |
""" | |
gr.Markdown(intro) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Accordion("AI setup (OpenAI-compatible LLM API)", open=False): | |
gr.Markdown( | |
"**Cheap AI**, an honest format converter and refiner, extracts essential info from job description and résumé, to reduce subsequent cost on Strong AI." | |
) | |
with gr.Group(): | |
cheap_base = gr.Textbox( | |
value=CHEAP_API_BASE, label="API BASE" | |
) | |
cheap_key = gr.Textbox(value=CHEAP_API_KEY, label="API key") | |
cheap_model = gr.Textbox(value=CHEAP_MODEL, label="Model ID") | |
gr.Markdown( | |
"---\n**Strong AI**, a thoughtful wordsmith, generates perfect cover letters to make both you and recruiters happy." | |
) | |
with gr.Group(): | |
strong_base = gr.Textbox( | |
value=STRONG_API_BASE, label="API BASE" | |
) | |
strong_key = gr.Textbox( | |
value=STRONG_API_KEY, label="API key", type="password" | |
) | |
strong_model = gr.Textbox(value=STRONG_MODEL, label="Model ID") | |
with gr.Group(): | |
gr.Markdown("## Employer - Job Description") | |
jd_info = gr.Textbox( | |
label="Job Description", | |
placeholder="Paste as Full Text (recommmend) or URL", | |
lines=5, | |
max_lines=10, | |
) | |
with gr.Group(): | |
gr.Markdown("## Applicant - CV / Résumé") | |
with gr.Row(): | |
cv_file = gr.File( | |
label="Allowed formats: " + " ".join(CV_EXT), | |
file_count="single", | |
file_types=CV_EXT, | |
type="filepath", | |
) | |
cv_text = gr.TextArea( | |
label="Or enter text", | |
placeholder="If attempting to both upload a file and enter text, only this text will be used.", | |
) | |
with gr.Column(scale=2): | |
gr.Markdown("## Result") | |
with gr.Accordion("Reformatting", open=True) as reformat_zone: | |
with gr.Row(): | |
min_jd = gr.TextArea(label="Reformatted Job Description") | |
min_cv = gr.TextArea(label="Reformatted CV / Résumé") | |
with gr.Accordion("Expert Zone", open=False) as expert_zone: | |
debug_CoT = gr.Textbox(label="Chain of Thoughts") | |
debug_jobapp = gr.Textbox(label="Job application meta data") | |
cover_letter_text = gr.Textbox(label="Cover Letter") | |
cover_letter_pdf = gr.File( | |
label="Cover Letter PDF", | |
file_count="single", | |
file_types=[".pdf"], | |
type="filepath", | |
) | |
infer_btn = gr.Button("Go!", variant="primary") | |
infer_btn.click( | |
fn=prepare_input, | |
inputs=[jd_info, cv_file, cv_text], | |
outputs=[jd_info, cv_text] | |
).then( | |
fn=run_refine, | |
inputs=[cheap_base, cheap_key, cheap_model, jd_info, cv_text], | |
outputs=[min_jd, min_cv], | |
).then(fn=lambda:[gr.Accordion("Expert Zone", open=True),gr.Accordion("Reformatting", open=False)],inputs=None, outputs=[expert_zone, reformat_zone] | |
).then(fn=run_compose, inputs=[strong_base, strong_key, strong_model, min_jd, min_cv], outputs=[debug_CoT] | |
).then(fn=lambda:gr.Accordion("Expert Zone", open=False),inputs=None, outputs=[expert_zone] | |
).then(fn=finalize_letter_txt, inputs=[cheap_base, cheap_key, cheap_model, debug_CoT, jd_info, cv_text], outputs=[cover_letter_text, debug_jobapp] | |
) | |
if __name__ == "__main__": | |
init() | |
app.queue(max_size=10, default_concurrency_limit=1).launch( | |
show_error=True, debug=True, share=IS_SHARE | |
) | |