Spaces:
Running
Running
pre-release milstone: generate full text letter
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ from config import CHEAP_API_BASE, CHEAP_API_KEY, CHEAP_MODEL
|
|
3 |
from config import STRONG_API_BASE, STRONG_API_KEY, STRONG_MODEL
|
4 |
from util import is_valid_url
|
5 |
from util import mylogger
|
|
|
6 |
from taskNonAI import extract_url, file_to_html
|
7 |
from taskAI import TaskAI
|
8 |
## load data
|
@@ -22,8 +23,7 @@ def init():
|
|
22 |
os.system("shot-scraper install -b firefox")
|
23 |
download_pandoc()
|
24 |
|
25 |
-
|
26 |
-
def run_refine(api_base, api_key, api_model, jd_info, cv_file: str, cv_text):
|
27 |
if jd_info:
|
28 |
if is_valid_url(jd_info):
|
29 |
jd = extract_url(jd_info)
|
@@ -42,11 +42,15 @@ def run_refine(api_base, api_key, api_model, jd_info, cv_file: str, cv_text):
|
|
42 |
cv = file_to_html(cv_file)
|
43 |
else:
|
44 |
cv = mock_cv
|
|
|
|
|
|
|
|
|
45 |
cheapAPI = {"base": api_base, "key": api_key, "model": api_model}
|
46 |
taskAI = TaskAI(cheapAPI, temperature=0.2, max_tokens=2048) # max_tokens=2048
|
47 |
info("API initialized")
|
48 |
gen = (
|
49 |
-
taskAI.jd_preprocess(
|
50 |
taskAI.cv_preprocess(input=cv),
|
51 |
)
|
52 |
info("tasks initialized")
|
@@ -67,32 +71,46 @@ def run_refine(api_base, api_key, api_model, jd_info, cv_file: str, cv_text):
|
|
67 |
|
68 |
def run_compose(api_base, api_key, api_model, min_jd, min_cv):
|
69 |
strongAPI = {"base": api_base, "key": api_key, "model": api_model}
|
70 |
-
taskAI = TaskAI(strongAPI, temperature=0.
|
71 |
-
info("
|
|
|
|
|
|
|
|
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
with gr.Blocks(
|
75 |
title=DEMO_TITLE,
|
76 |
theme=gr.themes.Base(primary_hue="blue", secondary_hue="sky", neutral_hue="slate"),
|
77 |
-
) as
|
78 |
intro = f"""# {DEMO_TITLE}
|
79 |
> You provide job description and résumé. I write Cover letter for you!
|
80 |
-
Before you use, please setup
|
81 |
"""
|
82 |
gr.Markdown(intro)
|
83 |
|
84 |
with gr.Row():
|
85 |
with gr.Column(scale=1):
|
86 |
-
with gr.Accordion("AI setup (OpenAI-
|
87 |
gr.Markdown(
|
88 |
-
"**Cheap AI**, an honest format converter and
|
89 |
)
|
90 |
with gr.Group():
|
91 |
-
|
92 |
value=CHEAP_API_BASE, label="API BASE"
|
93 |
)
|
94 |
-
|
95 |
-
|
96 |
gr.Markdown(
|
97 |
"---\n**Strong AI**, a thoughtful wordsmith, generates perfect cover letters to make both you and recruiters happy."
|
98 |
)
|
@@ -108,8 +126,9 @@ with gr.Blocks(
|
|
108 |
gr.Markdown("## Employer - Job Description")
|
109 |
jd_info = gr.Textbox(
|
110 |
label="Job Description",
|
111 |
-
placeholder="Paste as Full Text (recommmend) or URL
|
112 |
lines=5,
|
|
|
113 |
)
|
114 |
with gr.Group():
|
115 |
gr.Markdown("## Applicant - CV / Résumé")
|
@@ -126,10 +145,15 @@ with gr.Blocks(
|
|
126 |
)
|
127 |
with gr.Column(scale=2):
|
128 |
gr.Markdown("## Result")
|
129 |
-
with gr.
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
133 |
cover_letter_pdf = gr.File(
|
134 |
label="Cover Letter PDF",
|
135 |
file_count="single",
|
@@ -137,16 +161,25 @@ with gr.Blocks(
|
|
137 |
type="filepath",
|
138 |
)
|
139 |
infer_btn = gr.Button("Go!", variant="primary")
|
|
|
|
|
140 |
infer_btn.click(
|
|
|
|
|
|
|
|
|
141 |
fn=run_refine,
|
142 |
-
inputs=[
|
143 |
outputs=[min_jd, min_cv],
|
144 |
-
|
|
|
|
|
|
|
145 |
)
|
146 |
|
147 |
|
148 |
if __name__ == "__main__":
|
149 |
init()
|
150 |
-
|
151 |
show_error=True, debug=True, share=IS_SHARE
|
152 |
)
|
|
|
3 |
from config import STRONG_API_BASE, STRONG_API_KEY, STRONG_MODEL
|
4 |
from util import is_valid_url
|
5 |
from util import mylogger
|
6 |
+
from util import stream_together
|
7 |
from taskNonAI import extract_url, file_to_html
|
8 |
from taskAI import TaskAI
|
9 |
## load data
|
|
|
23 |
os.system("shot-scraper install -b firefox")
|
24 |
download_pandoc()
|
25 |
|
26 |
+
def prepare_input(jd_info, cv_file: str, cv_text):
|
|
|
27 |
if jd_info:
|
28 |
if is_valid_url(jd_info):
|
29 |
jd = extract_url(jd_info)
|
|
|
42 |
cv = file_to_html(cv_file)
|
43 |
else:
|
44 |
cv = mock_cv
|
45 |
+
return jd, cv
|
46 |
+
|
47 |
+
def run_refine(api_base, api_key, api_model, jd_info, cv_text):
|
48 |
+
jd,cv=jd_info,cv_text
|
49 |
cheapAPI = {"base": api_base, "key": api_key, "model": api_model}
|
50 |
taskAI = TaskAI(cheapAPI, temperature=0.2, max_tokens=2048) # max_tokens=2048
|
51 |
info("API initialized")
|
52 |
gen = (
|
53 |
+
taskAI.jd_preprocess(input=jd),
|
54 |
taskAI.cv_preprocess(input=cv),
|
55 |
)
|
56 |
info("tasks initialized")
|
|
|
71 |
|
72 |
def run_compose(api_base, api_key, api_model, min_jd, min_cv):
|
73 |
strongAPI = {"base": api_base, "key": api_key, "model": api_model}
|
74 |
+
taskAI = TaskAI(strongAPI, temperature=0.6, max_tokens=4000)
|
75 |
+
info("Composing letter with CoT ...")
|
76 |
+
result = ""
|
77 |
+
for response in taskAI.compose_letter_CoT(jd=min_jd, resume=min_cv):
|
78 |
+
result += response.delta
|
79 |
+
yield result
|
80 |
|
81 |
+
def finalize_letter_txt(api_base, api_key, api_model, debug_CoT, jd, cv):
|
82 |
+
cheapAPI = {"base": api_base, "key": api_key, "model": api_model}
|
83 |
+
taskAI = TaskAI(cheapAPI, temperature=0.2, max_tokens=2048)
|
84 |
+
info("Finalizing letter ...")
|
85 |
+
gen = stream_together(
|
86 |
+
taskAI.purify_letter(full_text=debug_CoT),
|
87 |
+
taskAI.get_jobapp_meta(JD=jd, CV=cv),
|
88 |
+
)
|
89 |
+
for result in gen:
|
90 |
+
yield result
|
91 |
|
92 |
with gr.Blocks(
|
93 |
title=DEMO_TITLE,
|
94 |
theme=gr.themes.Base(primary_hue="blue", secondary_hue="sky", neutral_hue="slate"),
|
95 |
+
) as app:
|
96 |
intro = f"""# {DEMO_TITLE}
|
97 |
> You provide job description and résumé. I write Cover letter for you!
|
98 |
+
Before you use, please fisrt setup API for 2 AI agents': Cheap AI and Strong AI.
|
99 |
"""
|
100 |
gr.Markdown(intro)
|
101 |
|
102 |
with gr.Row():
|
103 |
with gr.Column(scale=1):
|
104 |
+
with gr.Accordion("AI setup (OpenAI-compatible LLM API)", open=False):
|
105 |
gr.Markdown(
|
106 |
+
"**Cheap AI**, an honest format converter and refiner, extracts essential info from job description and résumé, to reduce subsequent cost on Strong AI."
|
107 |
)
|
108 |
with gr.Group():
|
109 |
+
cheap_base = gr.Textbox(
|
110 |
value=CHEAP_API_BASE, label="API BASE"
|
111 |
)
|
112 |
+
cheap_key = gr.Textbox(value=CHEAP_API_KEY, label="API key")
|
113 |
+
cheap_model = gr.Textbox(value=CHEAP_MODEL, label="Model ID")
|
114 |
gr.Markdown(
|
115 |
"---\n**Strong AI**, a thoughtful wordsmith, generates perfect cover letters to make both you and recruiters happy."
|
116 |
)
|
|
|
126 |
gr.Markdown("## Employer - Job Description")
|
127 |
jd_info = gr.Textbox(
|
128 |
label="Job Description",
|
129 |
+
placeholder="Paste as Full Text (recommmend) or URL",
|
130 |
lines=5,
|
131 |
+
max_lines=10,
|
132 |
)
|
133 |
with gr.Group():
|
134 |
gr.Markdown("## Applicant - CV / Résumé")
|
|
|
145 |
)
|
146 |
with gr.Column(scale=2):
|
147 |
gr.Markdown("## Result")
|
148 |
+
with gr.Accordion("Reformatting", open=True) as reformat_zone:
|
149 |
+
with gr.Row():
|
150 |
+
min_jd = gr.TextArea(label="Reformatted Job Description")
|
151 |
+
min_cv = gr.TextArea(label="Reformatted CV / Résumé")
|
152 |
+
with gr.Accordion("Expert Zone", open=False) as expert_zone:
|
153 |
+
|
154 |
+
debug_CoT = gr.Textbox(label="Chain of Thoughts")
|
155 |
+
debug_jobapp = gr.Textbox(label="Job application meta data")
|
156 |
+
cover_letter_text = gr.Textbox(label="Cover Letter")
|
157 |
cover_letter_pdf = gr.File(
|
158 |
label="Cover Letter PDF",
|
159 |
file_count="single",
|
|
|
161 |
type="filepath",
|
162 |
)
|
163 |
infer_btn = gr.Button("Go!", variant="primary")
|
164 |
+
|
165 |
+
|
166 |
infer_btn.click(
|
167 |
+
fn=prepare_input,
|
168 |
+
inputs=[jd_info, cv_file, cv_text],
|
169 |
+
outputs=[jd_info, cv_text]
|
170 |
+
).then(
|
171 |
fn=run_refine,
|
172 |
+
inputs=[cheap_base, cheap_key, cheap_model, jd_info, cv_text],
|
173 |
outputs=[min_jd, min_cv],
|
174 |
+
).then(fn=lambda:[gr.Accordion("Expert Zone", open=True),gr.Accordion("Reformatting", open=False)],inputs=None, outputs=[expert_zone, reformat_zone]
|
175 |
+
).then(fn=run_compose, inputs=[strong_base, strong_key, strong_model, min_jd, min_cv], outputs=[debug_CoT]
|
176 |
+
).then(fn=lambda:gr.Accordion("Expert Zone", open=False),inputs=None, outputs=[expert_zone]
|
177 |
+
).then(fn=finalize_letter_txt, inputs=[cheap_base, cheap_key, cheap_model, debug_CoT, jd_info, cv_text], outputs=[cover_letter_text, debug_jobapp]
|
178 |
)
|
179 |
|
180 |
|
181 |
if __name__ == "__main__":
|
182 |
init()
|
183 |
+
app.queue(max_size=10, default_concurrency_limit=1).launch(
|
184 |
show_error=True, debug=True, share=IS_SHARE
|
185 |
)
|
config.py
CHANGED
@@ -5,7 +5,7 @@ OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") or ""
|
|
5 |
|
6 |
CHEAP_API_BASE = os.getenv("CHEAP_API_BASE") or OPENAI_API_BASE
|
7 |
CHEAP_API_KEY = os.getenv("CHEAP_API_KEY") or OPENAI_API_KEY
|
8 |
-
CHEAP_MODEL = os.getenv("CHEAP_MODEL") or "gpt-
|
9 |
|
10 |
STRONG_API_BASE = os.getenv("STRONG_API_BASE") or OPENAI_API_BASE
|
11 |
STRONG_API_KEY = os.getenv("STRONG_API_KEY") or OPENAI_API_KEY
|
|
|
5 |
|
6 |
CHEAP_API_BASE = os.getenv("CHEAP_API_BASE") or OPENAI_API_BASE
|
7 |
CHEAP_API_KEY = os.getenv("CHEAP_API_KEY") or OPENAI_API_KEY
|
8 |
+
CHEAP_MODEL = os.getenv("CHEAP_MODEL") or "gpt-4"
|
9 |
|
10 |
STRONG_API_BASE = os.getenv("STRONG_API_BASE") or OPENAI_API_BASE
|
11 |
STRONG_API_KEY = os.getenv("STRONG_API_KEY") or OPENAI_API_KEY
|
taskAI.py
CHANGED
@@ -1,28 +1,26 @@
|
|
|
|
|
|
1 |
from llama_index.llms.openai_like import OpenAILike
|
2 |
from llama_index.core.llms import ChatMessage # , MessageRole
|
3 |
from llama_index.core import ChatPromptTemplate
|
4 |
|
5 |
from util import mylogger
|
6 |
-
|
7 |
-
logger = mylogger(__name__,'%(asctime)s:%(levelname)s:%(message)s')
|
8 |
-
info = logger.info
|
9 |
-
|
10 |
-
|
11 |
## define templates
|
12 |
|
13 |
### topic,input
|
14 |
-
|
15 |
[
|
16 |
ChatMessage(
|
17 |
role="system",
|
18 |
-
content="You are a content extractor. You never paraphrase; you only reduce content at the sentence level. Your mission is to extract
|
19 |
),
|
20 |
ChatMessage(role="user", content="{input}"),
|
21 |
]
|
22 |
)
|
23 |
|
24 |
### input
|
25 |
-
|
26 |
[
|
27 |
ChatMessage(
|
28 |
role="system",
|
@@ -32,23 +30,39 @@ CV_PREPROCESS = ChatPromptTemplate(
|
|
32 |
]
|
33 |
)
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
is_chat_model=True,
|
44 |
-
context_window=window_size,
|
45 |
-
**kwargs,
|
46 |
-
)
|
47 |
|
|
|
48 |
|
49 |
## tasks
|
50 |
class TaskAI(OpenAILike):
|
51 |
def __init__(self, api: dict[str, str], **kwargs):
|
|
|
|
|
|
|
52 |
def guess_window_size(model=api["model"]):
|
53 |
_mid = model.lower()
|
54 |
windows: dict = {
|
@@ -60,15 +74,37 @@ class TaskAI(OpenAILike):
|
|
60 |
for ws, names in windows.items():
|
61 |
if any([n in _mid for n in names]):
|
62 |
window_size = ws
|
63 |
-
|
64 |
return window_size
|
65 |
|
66 |
super().__init__(
|
67 |
api_base=api["base"], api_key=api["key"], model=api["model"], is_chat_model=True, context_window=guess_window_size(), **kwargs
|
68 |
)
|
69 |
|
70 |
-
def jd_preprocess(self,
|
71 |
-
return self.stream_chat(
|
72 |
|
73 |
def cv_preprocess(self, input: str):
|
74 |
-
return self.stream_chat(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
from llama_index.llms.openai_like import OpenAILike
|
4 |
from llama_index.core.llms import ChatMessage # , MessageRole
|
5 |
from llama_index.core import ChatPromptTemplate
|
6 |
|
7 |
from util import mylogger
|
8 |
+
logger = mylogger(__name__,'%(asctime)s:%(filename)s:%(levelname)s:%(message)s')
|
|
|
|
|
|
|
|
|
9 |
## define templates
|
10 |
|
11 |
### topic,input
|
12 |
+
EXTRACT_INFO = ChatPromptTemplate(
|
13 |
[
|
14 |
ChatMessage(
|
15 |
role="system",
|
16 |
+
content="You are a content extractor. You never paraphrase; you only reduce content at the sentence level. Your mission is to extract {to_extract} from user input. Make sure output is complete without missing parts. Output is in a clean text format",
|
17 |
),
|
18 |
ChatMessage(role="user", content="{input}"),
|
19 |
]
|
20 |
)
|
21 |
|
22 |
### input
|
23 |
+
SIMPLIFY_MD = ChatPromptTemplate(
|
24 |
[
|
25 |
ChatMessage(
|
26 |
role="system",
|
|
|
30 |
]
|
31 |
)
|
32 |
|
33 |
+
### template, content
|
34 |
+
JSON_API = ChatPromptTemplate(
|
35 |
+
[
|
36 |
+
ChatMessage(
|
37 |
+
role="system",
|
38 |
+
content="You are an AI JSON API. You convert user input into a JSON object. API returns exactly in this template: {template}",
|
39 |
+
),
|
40 |
+
ChatMessage(role="user", content="{content}"),
|
41 |
+
]
|
42 |
+
)
|
43 |
+
keys_to_template = lambda keys : json.dumps(dict().fromkeys(keys, ""))
|
44 |
|
45 |
+
### resume, jd
|
46 |
+
LETTER_COMPOSE = ChatPromptTemplate(
|
47 |
+
[
|
48 |
+
ChatMessage(
|
49 |
+
role="system",
|
50 |
+
content="""You are a thoughtful wordsmith. You have a deep understanding of the scoiety and the bussiness world. You are always willing to help people find a job. Your mission is to write a compelling cover letter tailored for user to get the specified job, based on the provided RESUME and JOB_DESCRIPTION. Your writing is based on ground truth and you never fabricate anything you are unsure about.
|
51 |
|
52 |
+
Before officially write the letter, think step by step. First, list what makes a perfect cover letter in general, and in order to write a perfect cover letter, what key points do you have to learn from the RESUME and JOB_DESCRIPTION. Then, carefully analyze the given RESUME and JOB_DESCRIPTION, take a deep breath and propose 3 best tactics to convince recruiter believe the applicant fit for the role. Ensure your thoughts are express clearly and then write the complete cover letter.""",
|
53 |
+
),
|
54 |
+
ChatMessage(role="user", content="<RESUME>\n{resume}\n</RESUME>\n\n<JOB_DESCRIPTION>\n{jd}</JOB_DESCRIPTION>\n"),
|
55 |
+
]
|
56 |
+
)
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
## basic func
|
59 |
|
60 |
## tasks
|
61 |
class TaskAI(OpenAILike):
|
62 |
def __init__(self, api: dict[str, str], **kwargs):
|
63 |
+
|
64 |
+
log = logger.info
|
65 |
+
|
66 |
def guess_window_size(model=api["model"]):
|
67 |
_mid = model.lower()
|
68 |
windows: dict = {
|
|
|
74 |
for ws, names in windows.items():
|
75 |
if any([n in _mid for n in names]):
|
76 |
window_size = ws
|
77 |
+
log(f"use context window size: {window_size} for {model}")
|
78 |
return window_size
|
79 |
|
80 |
super().__init__(
|
81 |
api_base=api["base"], api_key=api["key"], model=api["model"], is_chat_model=True, context_window=guess_window_size(), **kwargs
|
82 |
)
|
83 |
|
84 |
+
def jd_preprocess(self, input: str):
|
85 |
+
return self.stream_chat(EXTRACT_INFO.format_messages(to_extract="information directly related to job description", input=input))
|
86 |
|
87 |
def cv_preprocess(self, input: str):
|
88 |
+
return self.stream_chat(SIMPLIFY_MD.format_messages(input=input))
|
89 |
+
|
90 |
+
def compose_letter_CoT(self, resume: str, jd: str):
|
91 |
+
return self.stream_chat(LETTER_COMPOSE.format_messages(resume=resume, jd=jd))
|
92 |
+
|
93 |
+
def get_jobapp_meta(self, JD, CV):
|
94 |
+
meta_JD = self.chat(JSON_API.format_messages(template=keys_to_template(["company_full_name", "job_title"]), content=JD)).message.content
|
95 |
+
# yield meta_JD
|
96 |
+
meta_CV = self.chat(JSON_API.format_messages(template=keys_to_template(["applicant_full_name", "applicant_contact_information"]), content=CV)).message.content
|
97 |
+
# yield meta_JD+'\n'+meta_CV
|
98 |
+
try:
|
99 |
+
meta_JD = json.loads(meta_JD.strip())
|
100 |
+
meta_CV = json.loads(meta_CV.strip())
|
101 |
+
except:
|
102 |
+
raise ValueError(f"AI didn't return a valid JSON string. Try again or consider a better model for CheapAI. \n{meta_JD}\n{meta_CV}")
|
103 |
+
meta = dict()
|
104 |
+
meta.update(meta_JD)
|
105 |
+
meta.update(meta_CV)
|
106 |
+
yield json.dumps(meta, indent=2)
|
107 |
+
|
108 |
+
def purify_letter(self, full_text):
|
109 |
+
return self.stream_chat(EXTRACT_INFO.format_messages(to_extract="the letter part from greeting to sign-off, and remove applicant's name at end", input=full_text))
|
110 |
+
|
test.py
CHANGED
@@ -28,5 +28,5 @@ def test_taskAI():
|
|
28 |
print(chunk)
|
29 |
|
30 |
if __name__ == "__main__":
|
31 |
-
|
32 |
# integration()
|
|
|
28 |
print(chunk)
|
29 |
|
30 |
if __name__ == "__main__":
|
31 |
+
test_taskAI()
|
32 |
# integration()
|
util.py
CHANGED
@@ -2,12 +2,13 @@ import tiktoken
|
|
2 |
|
3 |
from urllib.parse import urlparse
|
4 |
import requests
|
5 |
-
|
6 |
import logging
|
7 |
|
|
|
|
|
8 |
def mylogger(name, format, level=logging.INFO):
|
9 |
# Create a custom logger
|
10 |
-
logger = logging.getLogger(
|
11 |
logger.setLevel(level)
|
12 |
# Configure the custom logger with the desired settings
|
13 |
formatter = logging.Formatter(format)
|
@@ -42,3 +43,22 @@ def is_valid_openai_api_key(api_base:str, api_key: str)->bool:
|
|
42 |
|
43 |
def zip_api(api_base:str, api_key:str, model:str)->dict[str, str]:
|
44 |
return {"base": api_base, "key": api_key, "model": model}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
from urllib.parse import urlparse
|
4 |
import requests
|
|
|
5 |
import logging
|
6 |
|
7 |
+
from typing import Generator
|
8 |
+
|
9 |
def mylogger(name, format, level=logging.INFO):
|
10 |
# Create a custom logger
|
11 |
+
logger = logging.getLogger(name)
|
12 |
logger.setLevel(level)
|
13 |
# Configure the custom logger with the desired settings
|
14 |
formatter = logging.Formatter(format)
|
|
|
43 |
|
44 |
def zip_api(api_base:str, api_key:str, model:str)->dict[str, str]:
|
45 |
return {"base": api_base, "key": api_key, "model": model}
|
46 |
+
|
47 |
+
def stream_together(*gens: Generator):
|
48 |
+
ln=len(gens)
|
49 |
+
result = [""] * ln # Mind type here
|
50 |
+
while 1:
|
51 |
+
stop: bool = True
|
52 |
+
for i in range(ln):
|
53 |
+
try:
|
54 |
+
n=next(gens[i])
|
55 |
+
if "delta" in dir(n):
|
56 |
+
n=n.delta
|
57 |
+
result[i] += n
|
58 |
+
stop = False
|
59 |
+
except StopIteration:
|
60 |
+
# info(f"gen[{i}] exhausted")
|
61 |
+
pass
|
62 |
+
yield result
|
63 |
+
if stop:
|
64 |
+
break
|