demucs-cpu / app.py
cwitkowitz's picture
Removed choice and fixed to a single model.
c34090f
import torch
import torchaudio
import gradio as gr
from demucs import pretrained
from demucs.apply import apply_model
from audiotools import AudioSignal
from typing import Dict
from pyharp import *
#DEMUX_MODELS = ["mdx_extra_q", "mdx_extra", "htdemucs", "mdx_q"]
STEM_CHOICES = {
"Vocals": 3,
"Drums": 0,
"Bass": 1,
"Other": 2,
"Instrumental (No Vocals)": "instrumental"
}
#models = dict(zip(DEMUX_MODELS, [pretrained.get_model(m) for m in DEMUX_MODELS]))
#for model in models.values():
#model.eval()
model = pretrained.get_model('mdx_extra_q')
def separate_stem(audio_file_path: str, model_name: str, stem_choice: str) -> AudioSignal:
waveform, sr = torchaudio.load(audio_file_path)
is_mono = waveform.shape[0] == 1
if is_mono:
waveform = waveform.repeat(2, 1)
with torch.no_grad():
stems_batch = apply_model(
model,
waveform.unsqueeze(0),
overlap=0.2,
shifts=1,
split=True,
progress=True,
num_workers=4
)
stems = stems_batch[0]
if stem_choice == "Instrumental (No Vocals)":
stem = stems[0] + stems[1] + stems[2]
else:
stem_index = STEM_CHOICES[stem_choice]
stem = stems[stem_index]
if is_mono:
stem = stem.mean(dim=0, keepdim=True)
return AudioSignal(stem.cpu().numpy().astype('float32'), sample_rate=sr)
# Gradio Callback Function
def process_fn_stem(audio_file_path: str, stem_choice: str):
"""
PyHARP process function:
- Separates the chosen stem using Demucs.
- Saves the stem as a .wav file.
"""
stem_signal = separate_stem(audio_file_path, model_name='', stem_choice=stem_choice)
stem_path = save_audio(stem_signal, f"{stem_choice.lower().replace(' ', '_')}.wav")
return stem_path, LabelList(labels=[])
# Model Card
model_card = ModelCard(
name="Demucs Stem Separator",
description="Uses Demucs to separate a music track into a selected stem.",
author="Alexandre Défossez, Nicolas Usunier, Léon Bottou, Francis Bach",
tags=["demucs", "source-separation", "pyharp", "stems"]
)
# Gradio UI
with gr.Blocks() as demo:
#dropdown_model = gr.Dropdown(
# label="Demucs Model",
# choices=DEMUX_MODELS,
# value="mdx_extra_q"
#)
dropdown_stem = gr.Dropdown(
label="Stem to Separate",
choices=list(STEM_CHOICES.keys()),
value="Vocals"
)
app = build_endpoint(
model_card=model_card,
components=[dropdown_stem],
process_fn=process_fn_stem
)
demo.queue()
demo.launch(show_error=True)