import torch import torchaudio import gradio as gr from demucs import pretrained from demucs.apply import apply_model from audiotools import AudioSignal from typing import Dict from pyharp import * #DEMUX_MODELS = ["mdx_extra_q", "mdx_extra", "htdemucs", "mdx_q"] STEM_CHOICES = { "Vocals": 3, "Drums": 0, "Bass": 1, "Other": 2, "Instrumental (No Vocals)": "instrumental" } #models = dict(zip(DEMUX_MODELS, [pretrained.get_model(m) for m in DEMUX_MODELS])) #for model in models.values(): #model.eval() model = pretrained.get_model('mdx_extra_q') def separate_stem(audio_file_path: str, model_name: str, stem_choice: str) -> AudioSignal: waveform, sr = torchaudio.load(audio_file_path) is_mono = waveform.shape[0] == 1 if is_mono: waveform = waveform.repeat(2, 1) with torch.no_grad(): stems_batch = apply_model( model, waveform.unsqueeze(0), overlap=0.2, shifts=1, split=True, progress=True, num_workers=4 ) stems = stems_batch[0] if stem_choice == "Instrumental (No Vocals)": stem = stems[0] + stems[1] + stems[2] else: stem_index = STEM_CHOICES[stem_choice] stem = stems[stem_index] if is_mono: stem = stem.mean(dim=0, keepdim=True) return AudioSignal(stem.cpu().numpy().astype('float32'), sample_rate=sr) # Gradio Callback Function def process_fn_stem(audio_file_path: str, stem_choice: str): """ PyHARP process function: - Separates the chosen stem using Demucs. - Saves the stem as a .wav file. """ stem_signal = separate_stem(audio_file_path, model_name='', stem_choice=stem_choice) stem_path = save_audio(stem_signal, f"{stem_choice.lower().replace(' ', '_')}.wav") return stem_path, LabelList(labels=[]) # Model Card model_card = ModelCard( name="Demucs Stem Separator", description="Uses Demucs to separate a music track into a selected stem.", author="Alexandre Défossez, Nicolas Usunier, Léon Bottou, Francis Bach", tags=["demucs", "source-separation", "pyharp", "stems"] ) # Gradio UI with gr.Blocks() as demo: #dropdown_model = gr.Dropdown( # label="Demucs Model", # choices=DEMUX_MODELS, # value="mdx_extra_q" #) dropdown_stem = gr.Dropdown( label="Stem to Separate", choices=list(STEM_CHOICES.keys()), value="Vocals" ) app = build_endpoint( model_card=model_card, components=[dropdown_stem], process_fn=process_fn_stem ) demo.queue() demo.launch(show_error=True)