|
import keras |
|
from keras.models import load_model |
|
import gradio as gr |
|
import cv2 |
|
|
|
my_model=load_model('Final_Chicken_disease_model.h5',compile=True) |
|
auth_model=load_model('auth_model.h5',compile=True) |
|
name_disease={0:'Coccidiosis',1:'Healthy',2:'New Castle Disease',3:'Salmonella'} |
|
result={0:'Critical',1:'No issue',2:'Critical',3:'Critical'} |
|
recommend={0:'Panadol',1:'You have no need Medicine',2:'Percetamol',3:'Ponston'} |
|
|
|
|
|
def predict(image): |
|
image_check=cv2.resize(image,(224,224)) |
|
indx=auth_model.predict(image_check.reshape(1,224,224,3)).argmax() |
|
if indx==0: |
|
image=cv2.resize(image,(224,224)) |
|
indx=my_model.predict(image.reshape(1,224,224,3)).argmax() |
|
name=name_disease.get(indx) |
|
status=result.get(indx) |
|
recom=recommend.get(indx) |
|
return name,status,recom |
|
else: |
|
name='Unkown Image' |
|
status='N/A' |
|
recom='N/A' |
|
return name,status,recom |
|
|
|
|
|
interface=gr.Interface(fn=predict,inputs=[gr.Image(label='upload Image')],outputs=[gr.components.Textbox(label="Disease Name"),gr.components.Textbox(label="result"),gr.components.Textbox(label='Medicine Recommend')], |
|
examples=[['disease.jpg'],['ncd.jpg']]) |
|
interface.launch(debug=True) |
|
|
|
|
|
|
|
|
|
|
|
|