vstar / VisualSearch /model /owlvit /segmentation.py
Penghao Wu
init
3672502
raw
history blame
15.9 kB
# ------------------------------------------------------------------------
# Deformable DETR
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
"""
This file provides the definition of the convolutional heads used to predict masks, as well as the losses
"""
import io
from collections import defaultdict
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from .util import box_ops
from .util.misc import NestedTensor, interpolate, nested_tensor_from_tensor_list
try:
from panopticapi.utils import id2rgb, rgb2id
except ImportError:
pass
class DETRsegm(nn.Module):
def __init__(self, detr, freeze_detr=False):
super().__init__()
self.detr = detr
if freeze_detr:
for p in self.parameters():
p.requires_grad_(False)
hidden_dim, nheads = detr.transformer.d_model, detr.transformer.nhead
self.bbox_attention = MHAttentionMap(hidden_dim, hidden_dim, nheads, dropout=0)
self.mask_head = MaskHeadSmallConv(hidden_dim + nheads, [1024, 512, 256], hidden_dim)
def forward(self, samples: NestedTensor):
if not isinstance(samples, NestedTensor):
samples = nested_tensor_from_tensor_list(samples)
features, pos = self.detr.backbone(samples)
bs = features[-1].tensors.shape[0]
src, mask = features[-1].decompose()
src_proj = self.detr.input_proj(src)
hs, memory = self.detr.transformer(src_proj, mask, self.detr.query_embed.weight, pos[-1])
outputs_class = self.detr.class_embed(hs)
outputs_coord = self.detr.bbox_embed(hs).sigmoid()
out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord[-1]}
if self.detr.aux_loss:
out["aux_outputs"] = [
{"pred_logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])
]
# FIXME h_boxes takes the last one computed, keep this in mind
bbox_mask = self.bbox_attention(hs[-1], memory, mask=mask)
seg_masks = self.mask_head(src_proj, bbox_mask, [features[2].tensors, features[1].tensors, features[0].tensors])
outputs_seg_masks = seg_masks.view(bs, self.detr.num_queries, seg_masks.shape[-2], seg_masks.shape[-1])
out["pred_masks"] = outputs_seg_masks
return out
class MaskHeadSmallConv(nn.Module):
"""
Simple convolutional head, using group norm.
Upsampling is done using a FPN approach
"""
def __init__(self, dim, fpn_dims, context_dim):
super().__init__()
inter_dims = [dim, context_dim // 2, context_dim // 4, context_dim // 8, context_dim // 16, context_dim // 64]
self.lay1 = torch.nn.Conv2d(dim, dim, 3, padding=1)
self.gn1 = torch.nn.GroupNorm(8, dim)
self.lay2 = torch.nn.Conv2d(dim, inter_dims[1], 3, padding=1)
self.gn2 = torch.nn.GroupNorm(8, inter_dims[1])
self.lay3 = torch.nn.Conv2d(inter_dims[1], inter_dims[2], 3, padding=1)
self.gn3 = torch.nn.GroupNorm(8, inter_dims[2])
self.lay4 = torch.nn.Conv2d(inter_dims[2], inter_dims[3], 3, padding=1)
self.gn4 = torch.nn.GroupNorm(8, inter_dims[3])
self.lay5 = torch.nn.Conv2d(inter_dims[3], inter_dims[4], 3, padding=1)
self.gn5 = torch.nn.GroupNorm(8, inter_dims[4])
self.out_lay = torch.nn.Conv2d(inter_dims[4], 1, 3, padding=1)
self.dim = dim
self.adapter1 = torch.nn.Conv2d(fpn_dims[0], inter_dims[1], 1)
self.adapter2 = torch.nn.Conv2d(fpn_dims[1], inter_dims[2], 1)
self.adapter3 = torch.nn.Conv2d(fpn_dims[2], inter_dims[3], 1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_uniform_(m.weight, a=1)
nn.init.constant_(m.bias, 0)
def forward(self, x, bbox_mask, fpns):
def expand(tensor, length):
return tensor.unsqueeze(1).repeat(1, int(length), 1, 1, 1).flatten(0, 1)
x = torch.cat([expand(x, bbox_mask.shape[1]), bbox_mask.flatten(0, 1)], 1)
x = self.lay1(x)
x = self.gn1(x)
x = F.relu(x)
x = self.lay2(x)
x = self.gn2(x)
x = F.relu(x)
cur_fpn = self.adapter1(fpns[0])
if cur_fpn.size(0) != x.size(0):
cur_fpn = expand(cur_fpn, x.size(0) / cur_fpn.size(0))
x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
x = self.lay3(x)
x = self.gn3(x)
x = F.relu(x)
cur_fpn = self.adapter2(fpns[1])
if cur_fpn.size(0) != x.size(0):
cur_fpn = expand(cur_fpn, x.size(0) / cur_fpn.size(0))
x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
x = self.lay4(x)
x = self.gn4(x)
x = F.relu(x)
cur_fpn = self.adapter3(fpns[2])
if cur_fpn.size(0) != x.size(0):
cur_fpn = expand(cur_fpn, x.size(0) / cur_fpn.size(0))
x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
x = self.lay5(x)
x = self.gn5(x)
x = F.relu(x)
x = self.out_lay(x)
return x
class MHAttentionMap(nn.Module):
"""This is a 2D attention module, which only returns the attention softmax (no multiplication by value)"""
def __init__(self, query_dim, hidden_dim, num_heads, dropout=0, bias=True):
super().__init__()
self.num_heads = num_heads
self.hidden_dim = hidden_dim
self.dropout = nn.Dropout(dropout)
self.q_linear = nn.Linear(query_dim, hidden_dim, bias=bias)
self.k_linear = nn.Linear(query_dim, hidden_dim, bias=bias)
nn.init.zeros_(self.k_linear.bias)
nn.init.zeros_(self.q_linear.bias)
nn.init.xavier_uniform_(self.k_linear.weight)
nn.init.xavier_uniform_(self.q_linear.weight)
self.normalize_fact = float(hidden_dim / self.num_heads) ** -0.5
def forward(self, q, k, mask=None):
q = self.q_linear(q)
k = F.conv2d(k, self.k_linear.weight.unsqueeze(-1).unsqueeze(-1), self.k_linear.bias)
qh = q.view(q.shape[0], q.shape[1], self.num_heads, self.hidden_dim // self.num_heads)
kh = k.view(k.shape[0], self.num_heads, self.hidden_dim // self.num_heads, k.shape[-2], k.shape[-1])
weights = torch.einsum("bqnc,bnchw->bqnhw", qh * self.normalize_fact, kh)
if mask is not None:
weights.masked_fill_(mask.unsqueeze(1).unsqueeze(1), float("-inf"))
weights = F.softmax(weights.flatten(2), dim=-1).view_as(weights)
weights = self.dropout(weights)
return weights
def dice_loss(inputs, targets, num_boxes):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
"""
inputs = inputs.sigmoid()
inputs = inputs.flatten(1)
numerator = 2 * (inputs * targets).sum(1)
denominator = inputs.sum(-1) + targets.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
return loss.sum() / num_boxes
def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2):
"""
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
alpha: (optional) Weighting factor in range (0,1) to balance
positive vs negative examples. Default = -1 (no weighting).
gamma: Exponent of the modulating factor (1 - p_t) to
balance easy vs hard examples.
Returns:
Loss tensor
"""
prob = inputs.sigmoid()
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
p_t = prob * targets + (1 - prob) * (1 - targets)
loss = ce_loss * ((1 - p_t) ** gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
return loss.mean(1)
class PostProcessSegm(nn.Module):
def __init__(self, threshold=0.5):
super().__init__()
self.threshold = threshold
@torch.no_grad()
def forward(self, results, outputs, orig_target_sizes, max_target_sizes):
assert len(orig_target_sizes) == len(max_target_sizes)
max_h, max_w = max_target_sizes.max(0)[0].tolist()
outputs_masks = outputs["pred_masks"].squeeze(2)
outputs_masks = F.interpolate(outputs_masks, size=(max_h, max_w), mode="bilinear", align_corners=False)
outputs_masks = (outputs_masks.sigmoid() > self.threshold).cpu()
for i, (cur_mask, t, tt) in enumerate(zip(outputs_masks, max_target_sizes, orig_target_sizes)):
img_h, img_w = t[0], t[1]
results[i]["masks"] = cur_mask[:, :img_h, :img_w].unsqueeze(1)
results[i]["masks"] = F.interpolate(
results[i]["masks"].float(), size=tuple(tt.tolist()), mode="nearest"
).byte()
return results
class PostProcessPanoptic(nn.Module):
"""This class converts the output of the model to the final panoptic result, in the format expected by the
coco panoptic API """
def __init__(self, is_thing_map, threshold=0.85):
"""
Parameters:
is_thing_map: This is a whose keys are the class ids, and the values a boolean indicating whether
the class is a thing (True) or a stuff (False) class
threshold: confidence threshold: segments with confidence lower than this will be deleted
"""
super().__init__()
self.threshold = threshold
self.is_thing_map = is_thing_map
def forward(self, outputs, processed_sizes, target_sizes=None):
""" This function computes the panoptic prediction from the model's predictions.
Parameters:
outputs: This is a dict coming directly from the model. See the model doc for the content.
processed_sizes: This is a list of tuples (or torch tensors) of sizes of the images that were passed to the
model, ie the size after data augmentation but before batching.
target_sizes: This is a list of tuples (or torch tensors) corresponding to the requested final size
of each prediction. If left to None, it will default to the processed_sizes
"""
if target_sizes is None:
target_sizes = processed_sizes
assert len(processed_sizes) == len(target_sizes)
out_logits, raw_masks, raw_boxes = outputs["pred_logits"], outputs["pred_masks"], outputs["pred_boxes"]
assert len(out_logits) == len(raw_masks) == len(target_sizes)
preds = []
def to_tuple(tup):
if isinstance(tup, tuple):
return tup
return tuple(tup.cpu().tolist())
for cur_logits, cur_masks, cur_boxes, size, target_size in zip(
out_logits, raw_masks, raw_boxes, processed_sizes, target_sizes
):
# we filter empty queries and detection below threshold
scores, labels = cur_logits.softmax(-1).max(-1)
keep = labels.ne(outputs["pred_logits"].shape[-1] - 1) & (scores > self.threshold)
cur_scores, cur_classes = cur_logits.softmax(-1).max(-1)
cur_scores = cur_scores[keep]
cur_classes = cur_classes[keep]
cur_masks = cur_masks[keep]
cur_masks = interpolate(cur_masks[None], to_tuple(size), mode="bilinear").squeeze(0)
cur_boxes = box_ops.box_cxcywh_to_xyxy(cur_boxes[keep])
h, w = cur_masks.shape[-2:]
assert len(cur_boxes) == len(cur_classes)
# It may be that we have several predicted masks for the same stuff class.
# In the following, we track the list of masks ids for each stuff class (they are merged later on)
cur_masks = cur_masks.flatten(1)
stuff_equiv_classes = defaultdict(lambda: [])
for k, label in enumerate(cur_classes):
if not self.is_thing_map[label.item()]:
stuff_equiv_classes[label.item()].append(k)
def get_ids_area(masks, scores, dedup=False):
# This helper function creates the final panoptic segmentation image
# It also returns the area of the masks that appears on the image
m_id = masks.transpose(0, 1).softmax(-1)
if m_id.shape[-1] == 0:
# We didn't detect any mask :(
m_id = torch.zeros((h, w), dtype=torch.long, device=m_id.device)
else:
m_id = m_id.argmax(-1).view(h, w)
if dedup:
# Merge the masks corresponding to the same stuff class
for equiv in stuff_equiv_classes.values():
if len(equiv) > 1:
for eq_id in equiv:
m_id.masked_fill_(m_id.eq(eq_id), equiv[0])
final_h, final_w = to_tuple(target_size)
seg_img = Image.fromarray(id2rgb(m_id.view(h, w).cpu().numpy()))
seg_img = seg_img.resize(size=(final_w, final_h), resample=Image.NEAREST)
np_seg_img = (
torch.ByteTensor(torch.ByteStorage.from_buffer(seg_img.tobytes())).view(final_h, final_w, 3).numpy()
)
m_id = torch.from_numpy(rgb2id(np_seg_img))
area = []
for i in range(len(scores)):
area.append(m_id.eq(i).sum().item())
return area, seg_img
area, seg_img = get_ids_area(cur_masks, cur_scores, dedup=True)
if cur_classes.numel() > 0:
# We know filter empty masks as long as we find some
while True:
filtered_small = torch.as_tensor(
[area[i] <= 4 for i, c in enumerate(cur_classes)], dtype=torch.bool, device=keep.device
)
if filtered_small.any().item():
cur_scores = cur_scores[~filtered_small]
cur_classes = cur_classes[~filtered_small]
cur_masks = cur_masks[~filtered_small]
area, seg_img = get_ids_area(cur_masks, cur_scores)
else:
break
else:
cur_classes = torch.ones(1, dtype=torch.long, device=cur_classes.device)
segments_info = []
for i, a in enumerate(area):
cat = cur_classes[i].item()
segments_info.append({"id": i, "isthing": self.is_thing_map[cat], "category_id": cat, "area": a})
del cur_classes
with io.BytesIO() as out:
seg_img.save(out, format="PNG")
predictions = {"png_string": out.getvalue(), "segments_info": segments_info}
preds.append(predictions)
return preds