vstar / vstar_bench_eval.py
Penghao Wu
init
b11ae09
raw
history blame
12.6 kB
import argparse
import os
import json
from tqdm import tqdm
from collections import defaultdict
from copy import deepcopy
from PIL import Image
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from LLaVA.llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from LLaVA.llava.conversation import conv_templates, SeparatorStyle
from LLaVA.llava.model.builder import load_pretrained_model
from LLaVA.llava.utils import disable_torch_init
from LLaVA.llava.mm_utils import get_model_name_from_path, KeywordsStoppingCriteria, tokenizer_image_object_token
from visual_search import parse_args, VSM, visual_search
def normalize_bbox(bbox, image_width, image_height):
normalized_bbox = [bbox[0]/image_width, bbox[1]/image_height, (bbox[0]+bbox[2])/image_width, (bbox[1]+bbox[3])/image_height]
normalized_bbox = [np.clip(_, 0, 1) for _ in normalized_bbox]
return normalized_bbox
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img, 0, 0
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result, 0, (width - height) // 2
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result, (height - width) // 2, 0
class VQA_LLM:
def __init__(self, args):
disable_torch_init()
model_path = args.vqa_model_path
model_name = get_model_name_from_path(model_path)
model_name += 'llava'
model_base = None
device_map = "auto"
self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model(model_path, model_base, model_name)
self.conv_type = args.conv_type
def get_patch(self, bbox, image_width, image_height, patch_size=224, patch_scale=None):
object_width = int(np.ceil(bbox[2]))
object_height = int(np.ceil(bbox[3]))
object_center_x = int(bbox[0] + bbox[2]/2)
object_center_y = int(bbox[1] + bbox[3]/2)
if patch_scale is None:
patch_width = max(object_width, patch_size)
patch_height = max(object_height, patch_size)
else:
patch_width = int(object_width*patch_scale)
patch_height = int(object_height*patch_scale)
left = max(0, object_center_x-patch_width//2)
right = min(left+patch_width, image_width)
top = max(0, object_center_y-patch_height//2)
bottom = min(top+patch_height, image_height)
return [left, top, right, bottom]
def get_object_crop(self, image, bbox, patch_scale):
resized_bbox = self.get_patch(bbox, image.width, image.height, patch_scale=patch_scale)
object_crop = image.crop((resized_bbox[0], resized_bbox[1], resized_bbox[2], resized_bbox[3]))
object_crop = object_crop.resize((self.image_processor.crop_size['width'],self.image_processor.crop_size['height']))
object_crop = self.image_processor.preprocess(object_crop, return_tensors='pt')['pixel_values'][0]
return object_crop
@torch.inference_mode()
def free_form_inference(self, image, question, temperature=0, top_p=None, num_beams=1, max_new_tokens=200, object_crops=None, images_long=None, objects_long=None):
conv = conv_templates[self.conv_type].copy()
qs = DEFAULT_IMAGE_TOKEN + '\n' + question
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
input_ids = tokenizer_image_object_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
image_tensor = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
stopping_criteria = KeywordsStoppingCriteria(keywords, self.tokenizer, input_ids)
output_ids = self.model.generate(
input_ids,
images=image_tensor.unsqueeze(0).half().cuda(),
object_features=object_crops.half().cuda() if object_crops is not None else None,
images_long = images_long,
objects_long = objects_long,
do_sample= True if temperature > 0 else False,
num_beams=num_beams,
temperature=temperature,
top_p = top_p,
max_new_tokens=max_new_tokens,
use_cache=True,
stopping_criteria=[stopping_criteria])
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
outputs = self.tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[:-len(stop_str)]
outputs = outputs.strip()
return outputs
@torch.inference_mode()
def multiple_choices_inference(self, image, question, options, object_crops=None, images_long=None, objects_long=None):
conv = conv_templates[self.conv_type].copy()
qs = DEFAULT_IMAGE_TOKEN + '\n' + question
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
question_input_ids = tokenizer_image_object_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
image_tensor = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
output_question = self.model(
question_input_ids,
use_cache=True,
images=image_tensor.unsqueeze(0).half().cuda(),
object_features=object_crops.half().cuda() if object_crops is not None else None,
images_long = images_long,
objects_long = objects_long)
question_logits = output_question.logits
question_past_key_values = output_question.past_key_values
loss_list = []
for option in options:
conv = conv_templates[self.conv_type].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], option)
full_prompt = conv.get_prompt()
full_input_ids = tokenizer_image_object_token(full_prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
option_answer_input_ids = full_input_ids[:, question_input_ids.shape[1]:]
output_option = self.model(input_ids=option_answer_input_ids,
use_cache=True,
attention_mask=torch.ones(1, question_logits.shape[1]+option_answer_input_ids.shape[1], device=full_input_ids.device),
past_key_values=question_past_key_values)
logits = torch.cat([question_logits[:, -1:], output_option.logits[:, :-1]], 1)
loss_fct = CrossEntropyLoss()
logits = logits.view(-1, self.model.config.vocab_size)
labels = option_answer_input_ids.view(-1)
loss = loss_fct(logits, labels)
loss_list.append(loss)
option_chosen = torch.stack(loss_list).argmin()
return option_chosen.cpu().item()
def eval_model(args):
# init VQA LLM
vqa_llm = VQA_LLM(args)
# init VSM
vsm_args = parse_args({})
vsm_args.version = args.vsm_model_path
vsm = VSM(vsm_args)
results = {}
per_type_acc = defaultdict(list)
all_acc = []
missing_objects_msg = "Sorry, I can not answer the question. Some visual information about the following objects is missing or unclear:"
focus_msg = "Additional visual information to focus on: "
for test_type in ['direct_attributes', 'relative_position']:
results[test_type] = []
folder = os.path.join(args.benchmark_folder, test_type)
image_files = list(filter(lambda file: '.json' not in file, os.listdir(folder)))
for image_file in tqdm(image_files):
result_single_sample = {}
image_path = os.path.join(folder, image_file)
annotation_path = image_path.split('.')[0] + '.json'
image = Image.open(image_path).convert('RGB')
annotation = json.load(open(annotation_path))
image, _, _ = expand2square(image, tuple(int(x*255) for x in vqa_llm.image_processor.image_mean))
question = annotation['question']
# generate free-form response to check whether visual search needs to be activated
prediction = vqa_llm.free_form_inference(image, question)
missing_objects = []
if missing_objects_msg in prediction:
missing_objects = prediction.split(missing_objects_msg)[-1]
if missing_objects.endswith('.'):
missing_objects = missing_objects[:-1]
missing_objects = missing_objects.split(',')
missing_objects = [missing_object.strip() for missing_object in missing_objects]
search_result = []
if len(missing_objects) > 0:
# visual search
for object_name in missing_objects:
image = Image.open(image_path).convert('RGB')
smallest_size = max(int(np.ceil(min(image.width, image.height)/args.minimum_size_scale)), args.minimum_size)
final_step, path_length, search_successful, all_valid_boxes = visual_search(vsm, image, object_name, target_bbox=None, smallest_size=smallest_size)
if all_valid_boxes is not None:
# might exist multiple target instances
for search_bbox in all_valid_boxes:
search_final_patch = final_step['bbox']
search_bbox[0] += search_final_patch[0]
search_bbox[1] += search_final_patch[1]
search_result.append({'bbox':search_bbox.tolist(),'name':object_name})
else:
search_bbox = final_step['detection_result']
search_final_patch = final_step['bbox']
search_bbox[0] += search_final_patch[0]
search_bbox[1] += search_final_patch[1]
search_result.append({'bbox':search_bbox.tolist(),'name':object_name})
# predict the multiple-choice option
options = annotation['options']
image = Image.open(image_path).convert('RGB')
if len(missing_objects) > 0:
object_names = [_['name'] for _ in search_result]
bboxs = deepcopy([_['bbox'] for _ in search_result])
if len(object_names) <= 2:
images_long = [False]
objects_long = [True]*len(object_names)
else:
images_long = [False]
objects_long = [False]*len(object_names)
object_crops = []
for bbox in bboxs:
object_crop = vqa_llm.get_object_crop(image, bbox, patch_scale=1.2)
object_crops.append(object_crop)
object_crops = torch.stack(object_crops, 0)
image, left, top = expand2square(image, tuple(int(x*255) for x in vqa_llm.image_processor.image_mean))
bbox_list = []
for bbox in bboxs:
bbox[0] += left
bbox[1] += top
bbox_list.append(bbox)
bbox_list = [normalize_bbox(bbox, image.width, image.height) for bbox in bbox_list]
cur_focus_msg = focus_msg
for i, (object_name, bbox) in enumerate(zip(object_names, bbox_list)):
cur_focus_msg = cur_focus_msg + "{} <object> at location [{:.3f},{:.3f},{:.3f},{:.3f}]".format(object_name, bbox[0], bbox[1], bbox[2], bbox[3])
if i != len(bbox_list)-1:
cur_focus_msg = cur_focus_msg+"; "
else:
cur_focus_msg = cur_focus_msg +'.'
question_with_focus = cur_focus_msg+"\n"+question
option_chosen = vqa_llm.multiple_choices_inference(image, question_with_focus, options, object_crops, images_long=images_long, objects_long=objects_long)
else:
option_chosen = vqa_llm.multiple_choices_inference(image, question, options)
correct = 1 if option_chosen==0 else 0
per_type_acc[test_type].append(correct)
all_acc.append(correct)
result_single_sample['question'] = question
result_single_sample['options'] = options
result_single_sample['image'] = image_file
result_single_sample['prediction_freeform'] = prediction
result_single_sample['missing_objects'] = missing_objects
result_single_sample['search_result'] = search_result
result_single_sample['option_chosen'] = option_chosen
result_single_sample['correct'] = correct
results[test_type].append(result_single_sample)
print(test_type, np.mean(per_type_acc[test_type]))
print(np.mean(all_acc))
with open(args.output_path, 'w') as f:
json.dump(results, f, indent=4)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--vqa-model-path", type=str, default="craigwu/seal_vqa_7b")
parser.add_argument("--vqa-model-base", type=str, default=None)
parser.add_argument("--conv_type", default="v1", type=str,)
parser.add_argument("--benchmark-folder", type=str, default="vstar_bench")
parser.add_argument("--vsm-model-path", type=str, default="craigwu/seal_vsm_7b")
parser.add_argument("--output-path", type=str, default="eval_result.json")
parser.add_argument("--minimum_size_scale", default=4.0, type=float, help="minimum sub-image scale for the termination of search")
parser.add_argument("--minimum_size", default=224, type=int, help="minimum sub-image size for the termination of search")
args = parser.parse_args()
eval_model(args)