yolo-person / app.py
coutant's picture
removed warnings.
ed4ad05
raw
history blame
1.89 kB
from typing import List
import PIL.Image
import torch
import torchvision
import gradio as gr
article = "<p style='text-align: center'><a href='https://github.com/scoutant/yolo-person-gradio' target='_blank' class='footer'>Github Repo</a></p>"
model = torch.hub.load('ultralytics/yolov5', 'yolov5l')
model.classes = [ 0 ] # only considering class 'person' and not the 79 other classes...
model.conf = 0.6 # only considering detection above the threshold.
def inference(img:PIL.Image.Image, threshold:float=0.6):
if img is None:
return None,0
images:List[PIL.Image.Image] = [ img ] # inference operates on a list of images
model.conf = threshold
# detections:torchvision.Detections = model(images, size=640)
detections = model(images, size=640)
print( "detections type:" , type(detections))
print( "attributes:" , dir(detections))
predictions:torch.Tensor = detections.pred[0] # the predictions for our single image
result_image=detections.imgs[0]
detections.render() # bounding boxes and labels added into image
# return detections.imgs[0], predictions.size(dim=0) # image and number of detections
return result_image, predictions.size(dim=0) # image and number of detections
gr.Interface(
fn = inference,
inputs = [ gr.Image(type="pil", label="Input"), gr.Slider(minimum=0.5, maximum=0.9, step=0.05, value=0.7, label="Confidence threshold") ],
outputs = [ gr.Image(type="pil", label="Output"), gr.Label(label="nb of persons detected for given confidence threshold") ],
title="Person detection with YOLO v5",
description="Person detection, you can twik the corresponding confidence threshold. Good results even when face not visible.",
article=article,
examples=[['data/businessmen-612.jpg'], ['data/businessmen-back.jpg']],
allow_flagging="never"
).launch(debug=True, enable_queue=True, share=True)