from typing import List import PIL.Image import torch import torchvision import gradio as gr article = "
" model = torch.hub.load('ultralytics/yolov5', 'yolov5l') model.classes = [ 0 ] # only considering class 'person' and not the 79 other classes... model.conf = 0.6 # only considering detection above the threshold. def inference(img:PIL.Image.Image, threshold:float=0.6): if img is None: return None,0 images:List[PIL.Image.Image] = [ img ] # inference operates on a list of images model.conf = threshold # detections:torchvision.Detections = model(images, size=640) detections = model(images, size=640) print( "detections type:" , type(detections)) print( "attributes:" , dir(detections)) predictions:torch.Tensor = detections.pred[0] # the predictions for our single image result_image=detections.imgs[0] detections.render() # bounding boxes and labels added into image # return detections.imgs[0], predictions.size(dim=0) # image and number of detections return result_image, predictions.size(dim=0) # image and number of detections gr.Interface( fn = inference, inputs = [ gr.Image(type="pil", label="Input"), gr.Slider(minimum=0.5, maximum=0.9, step=0.05, value=0.7, label="Confidence threshold") ], outputs = [ gr.Image(type="pil", label="Output"), gr.Label(label="nb of persons detected for given confidence threshold") ], title="Person detection with YOLO v5", description="Person detection, you can twik the corresponding confidence threshold. Good results even when face not visible.", article=article, examples=[['data/businessmen-612.jpg'], ['data/businessmen-back.jpg']], allow_flagging="never" ).launch(debug=True, enable_queue=True, share=True)