multimodalart HF staff commited on
Commit
8226b60
1 Parent(s): 08500d8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +148 -0
app.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from diffusers import AutoPipelineForText2Image
3
+ import numpy as np
4
+ import math
5
+ import spaces
6
+ import torch
7
+ import random
8
+
9
+ theme = gr.themes.Base(
10
+ font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
11
+ )
12
+
13
+ pipe_xlc = AutoPipelineForText2Image.from_pretrained(
14
+ "temp-org-cc/CommonCanvas-XLC",
15
+ custom_pipeline="multimodalart/sdxl_perturbed_attention_guidance",
16
+ torch_dtype=torch.float16
17
+ )
18
+ pipe_xlnc = AutoPipelineForText2Image.from_pretrained(
19
+ "temp-org-cc/CommonCanvas-XLNC",
20
+ custom_pipeline="multimodalart/sdxl_perturbed_attention_guidance",
21
+ torch_dtype=torch.float16
22
+ )
23
+ pipe_sc = AutoPipelineForText2Image.from_pretrained(
24
+ "temp-org-cc/CommonCanvas-SC",
25
+ custom_pipeline="hyoungwoncho/sd_perturbed_attention_guidance",
26
+ torch_dtype=torch.float16
27
+ )
28
+ pipe_snc = AutoPipelineForText2Image.from_pretrained(
29
+ "temp-org-cc/CommonCanvas-SNC",
30
+ custom_pipeline="hyoungwoncho/sd_perturbed_attention_guidance",
31
+ torch_dtype=torch.float16
32
+ )
33
+
34
+ device="cuda"
35
+ pipe = pipe.to(device)
36
+
37
+ @spaces.GPU
38
+ def run_xlc(prompt, negative_prompt=None, guidance_scale=7.0, pag_scale=3.0, pag_layers=["mid"], randomize_seed=True, seed=42, progress=gr.Progress(track_tqdm=True)):
39
+ if(randomize_seed):
40
+ seed = random.randint(0, 9007199254740991)
41
+
42
+ generator = torch.Generator(device="cuda").manual_seed(seed)
43
+ image = pipe_xlc(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, pag_scale=pag_scale, pag_applied_layers=pag_layers, generator=generator, num_inference_steps=25).images[0]
44
+
45
+ return image, seed
46
+
47
+ @spaces.GPU
48
+ def run_xlnc(prompt, negative_prompt=None, guidance_scale=7.0, pag_scale=3.0, pag_layers=["mid"], randomize_seed=True, seed=42, progress=gr.Progress(track_tqdm=True)):
49
+ if(randomize_seed):
50
+ seed = random.randint(0, 9007199254740991)
51
+
52
+ generator = torch.Generator(device="cuda").manual_seed(seed)
53
+ image = pipe_xlnc(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, pag_scale=pag_scale, pag_applied_layers=pag_layers, generator=generator, num_inference_steps=25).images[0]
54
+
55
+ return image, seed
56
+
57
+ @spaces.GPU
58
+ def run_sc(prompt, negative_prompt=None, guidance_scale=7.0, pag_scale=3.0, pag_layers=["mid"], randomize_seed=True, seed=42, progress=gr.Progress(track_tqdm=True)):
59
+ if(randomize_seed):
60
+ seed = random.randint(0, 9007199254740991)
61
+
62
+ generator = torch.Generator(device="cuda").manual_seed(seed)
63
+ image = pipe_sc(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, pag_scale=pag_scale, pag_applied_layers=pag_layers, generator=generator, num_inference_steps=25).images[0]
64
+
65
+ return image, seed
66
+
67
+ def run_snc(prompt, negative_prompt=None, guidance_scale=7.0, pag_scale=3.0, pag_layers=["mid"], randomize_seed=True, seed=42, progress=gr.Progress(track_tqdm=True)):
68
+ if(randomize_seed):
69
+ seed = random.randint(0, 9007199254740991)
70
+
71
+ generator = torch.Generator(device="cuda").manual_seed(seed)
72
+ image = pipe_sc(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, pag_scale=pag_scale, pag_applied_layers=pag_layers, generator=generator, num_inference_steps=25).images[0]
73
+
74
+ return image, seed
75
+
76
+ css = '''
77
+ .gradio-container{
78
+ max-width: 768px !important;
79
+ margin: 0 auto;
80
+ }
81
+ '''
82
+
83
+ with gr.Blocks(css=css, theme=theme) as demo:
84
+ gr.Markdown('''# CommonCanvas
85
+ Demo for the CommonCanvas suite of models trained on the CommonCatalogue, a dataset with ~70M images dedicated to the Creative Commons
86
+ ''')
87
+ with gr.Group():
88
+ with gr.Tab("CommonCanvas XLC"):
89
+ with gr.Row():
90
+ prompt_xlc = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt")
91
+ button_xlc = gr.Button("Generate", min_width=120)
92
+ with gr.Tab("CommonCanvas XLNC"):
93
+ with gr.Row():
94
+ prompt_xlnc = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt")
95
+ button_xlnc = gr.Button("Generate", min_width=120)
96
+ with gr.Tab("CommonCanvas SC"):
97
+ prompt_sc = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt")
98
+ button_sc = gr.Button("Generate", min_width=120)
99
+ with gr.Tab("CommonCanvas SNC"):
100
+ prompt_snc = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt")
101
+ button_snc = gr.Button("Generate", min_width=120)
102
+ output = gr.Image(label="Your result", interactive=False)
103
+ with gr.Accordion("Advanced Settings", open=False):
104
+ guidance_scale = gr.Number(label="CFG Guidance Scale", info="The guidance scale for CFG, ignored if no prompt is entered (unconditional generation)", value=7.0)
105
+ negative_prompt = gr.Textbox(label="Negative prompt", info="Is only applied for the CFG part, leave blank for unconditional generation")
106
+ pag_scale = gr.Number(label="Pag Scale", value=3.0)
107
+ pag_layers = gr.Dropdown(label="Model layers to apply Pag to", info="mid is the one used on the paper, up and down blocks seem unstable", choices=["up", "mid", "down"], multiselect=True, value="mid")
108
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
109
+ seed = gr.Slider(minimum=1, maximum=9007199254740991, step=1, randomize=True)
110
+ gr.Examples(fn=run, examples=[" ", "an insect robot preparing a delicious meal, anime style", "a photo of a group of friends at an amusement park"], inputs=prompt, outputs=[output, seed], cache_examples=True)
111
+ gr.on(
112
+ triggers=[
113
+ button_xlc.click,
114
+ prompt_xlc.submit
115
+ ],
116
+ fn=run_xlc,
117
+ inputs=[prompt_xlc, negative_prompt, guidance_scale, pag_scale, pag_layers, randomize_seed, seed],
118
+ outputs=[output, seed],
119
+ )
120
+ gr.on(
121
+ triggers=[
122
+ button_xlnc.click,
123
+ prompt_xlnc.submit
124
+ ],
125
+ fn=run_xlnc,
126
+ inputs=[prompt_xlnc, negative_prompt, guidance_scale, pag_scale, pag_layers, randomize_seed, seed],
127
+ outputs=[output, seed],
128
+ )
129
+ gr.on(
130
+ triggers=[
131
+ button_sc.click,
132
+ prompt_sc.submit
133
+ ],
134
+ fn=run_sc,
135
+ inputs=[prompt_sc, negative_prompt, guidance_scale, pag_scale, pag_layers, randomize_seed, seed],
136
+ outputs=[output, seed],
137
+ )
138
+ gr.on(
139
+ triggers=[
140
+ button_snc.click,
141
+ prompt_snc.submit
142
+ ],
143
+ fn=run_sc,
144
+ inputs=[prompt_snc, negative_prompt, guidance_scale, pag_scale, pag_layers, randomize_seed, seed],
145
+ outputs=[output, seed],
146
+ )
147
+ if __name__ == "__main__":
148
+ demo.launch(share=True)