Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from diffusers import AutoPipelineForText2Image | |
import numpy as np | |
import math | |
import spaces | |
import torch | |
import random | |
theme = gr.themes.Base( | |
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'], | |
) | |
device="cuda" | |
pipe_xlc = AutoPipelineForText2Image.from_pretrained( | |
"temp-org-cc/CommonCanvas-XLC", | |
custom_pipeline="multimodalart/sdxl_perturbed_attention_guidance", | |
torch_dtype=torch.float16 | |
).to(device) | |
pipe_xlnc = AutoPipelineForText2Image.from_pretrained( | |
"temp-org-cc/CommonCanvas-XLNC", | |
custom_pipeline="multimodalart/sdxl_perturbed_attention_guidance", | |
torch_dtype=torch.float16 | |
).to(device) | |
pipe_sc = AutoPipelineForText2Image.from_pretrained( | |
"temp-org-cc/CommonCanvas-SC", | |
custom_pipeline="hyoungwoncho/sd_perturbed_attention_guidance", | |
torch_dtype=torch.float16 | |
).to(device) | |
pipe_snc = AutoPipelineForText2Image.from_pretrained( | |
"temp-org-cc/CommonCanvas-SNC", | |
custom_pipeline="hyoungwoncho/sd_perturbed_attention_guidance", | |
torch_dtype=torch.float16 | |
).to(device) | |
def run_xlc(prompt, negative_prompt=None, guidance_scale=7.0, pag_scale=3.0, pag_layers=["mid"], randomize_seed=True, seed=42, progress=gr.Progress(track_tqdm=True)): | |
if(randomize_seed): | |
seed = random.randint(0, 9007199254740991) | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
image = pipe_xlc(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, pag_scale=pag_scale, pag_applied_layers=pag_layers, generator=generator, num_inference_steps=25).images[0] | |
return image, seed | |
def run_xlnc(prompt, negative_prompt=None, guidance_scale=7.0, pag_scale=3.0, pag_layers=["mid"], randomize_seed=True, seed=42, progress=gr.Progress(track_tqdm=True)): | |
if(randomize_seed): | |
seed = random.randint(0, 9007199254740991) | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
image = pipe_xlnc(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, pag_scale=pag_scale, pag_applied_layers=pag_layers, generator=generator, num_inference_steps=25).images[0] | |
return image, seed | |
def run_sc(prompt, negative_prompt=None, guidance_scale=7.0, pag_scale=3.0, pag_layers=["mid"], randomize_seed=True, seed=42, progress=gr.Progress(track_tqdm=True)): | |
if(randomize_seed): | |
seed = random.randint(0, 9007199254740991) | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
image = pipe_sc(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, pag_scale=pag_scale, pag_applied_layers=pag_layers, generator=generator, num_inference_steps=25).images[0] | |
return image, seed | |
def run_snc(prompt, negative_prompt=None, guidance_scale=7.0, pag_scale=3.0, pag_layers=["mid"], randomize_seed=True, seed=42, progress=gr.Progress(track_tqdm=True)): | |
if(randomize_seed): | |
seed = random.randint(0, 9007199254740991) | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
image = pipe_sc(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, pag_scale=pag_scale, pag_applied_layers=pag_layers, generator=generator, num_inference_steps=25).images[0] | |
return image, seed | |
css = ''' | |
.gradio-container{ | |
max-width: 768px !important; | |
margin: 0 auto; | |
} | |
''' | |
with gr.Blocks(css=css, theme=theme) as demo: | |
gr.Markdown('''# CommonCanvas | |
Demo for the CommonCanvas suite of models trained on the CommonCatalogue, a dataset with ~70M images dedicated to the Creative Commons | |
''') | |
with gr.Group(): | |
with gr.Tab("CommonCanvas XLC"): | |
with gr.Row(): | |
prompt_xlc = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt") | |
button_xlc = gr.Button("Generate", min_width=120) | |
with gr.Tab("CommonCanvas XLNC"): | |
with gr.Row(): | |
prompt_xlnc = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt") | |
button_xlnc = gr.Button("Generate", min_width=120) | |
with gr.Tab("CommonCanvas SC"): | |
prompt_sc = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt") | |
button_sc = gr.Button("Generate", min_width=120) | |
with gr.Tab("CommonCanvas SNC"): | |
prompt_snc = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt") | |
button_snc = gr.Button("Generate", min_width=120) | |
output = gr.Image(label="Your result", interactive=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
guidance_scale = gr.Number(label="CFG Guidance Scale", info="The guidance scale for CFG, ignored if no prompt is entered (unconditional generation)", value=7.0) | |
negative_prompt = gr.Textbox(label="Negative prompt", info="Is only applied for the CFG part, leave blank for unconditional generation") | |
pag_scale = gr.Number(label="Pag Scale", value=3.0) | |
pag_layers = gr.Dropdown(label="Model layers to apply Pag to", info="mid is the one used on the paper, up and down blocks seem unstable", choices=["up", "mid", "down"], multiselect=True, value="mid") | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
seed = gr.Slider(minimum=1, maximum=9007199254740991, step=1, randomize=True) | |
#gr.Examples(fn=run, examples=[" ", "an insect robot preparing a delicious meal, anime style", "a photo of a group of friends at an amusement park"], inputs=prompt, outputs=[output, seed], cache_examples=True) | |
gr.on( | |
triggers=[ | |
button_xlc.click, | |
prompt_xlc.submit | |
], | |
fn=run_xlc, | |
inputs=[prompt_xlc, negative_prompt, guidance_scale, pag_scale, pag_layers, randomize_seed, seed], | |
outputs=[output, seed], | |
) | |
gr.on( | |
triggers=[ | |
button_xlnc.click, | |
prompt_xlnc.submit | |
], | |
fn=run_xlnc, | |
inputs=[prompt_xlnc, negative_prompt, guidance_scale, pag_scale, pag_layers, randomize_seed, seed], | |
outputs=[output, seed], | |
) | |
gr.on( | |
triggers=[ | |
button_sc.click, | |
prompt_sc.submit | |
], | |
fn=run_sc, | |
inputs=[prompt_sc, negative_prompt, guidance_scale, pag_scale, pag_layers, randomize_seed, seed], | |
outputs=[output, seed], | |
) | |
gr.on( | |
triggers=[ | |
button_snc.click, | |
prompt_snc.submit | |
], | |
fn=run_sc, | |
inputs=[prompt_snc, negative_prompt, guidance_scale, pag_scale, pag_layers, randomize_seed, seed], | |
outputs=[output, seed], | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) |