Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
+
import logging
|
| 4 |
+
import torch
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from diffusers import DiffusionPipeline
|
| 7 |
+
import spaces
|
| 8 |
+
|
| 9 |
+
# Load LoRAs from JSON file
|
| 10 |
+
with open('loras.json', 'r') as f:
|
| 11 |
+
loras = json.load(f)
|
| 12 |
+
|
| 13 |
+
# Initialize the base model
|
| 14 |
+
base_model = "black-forest-labs/FLUX.1-dev"
|
| 15 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
| 16 |
+
pipe.to("cuda")
|
| 17 |
+
|
| 18 |
+
def update_selection(evt: gr.SelectData):
|
| 19 |
+
selected_lora = loras[evt.index]
|
| 20 |
+
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
| 21 |
+
lora_repo = selected_lora["repo"]
|
| 22 |
+
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
|
| 23 |
+
return (
|
| 24 |
+
gr.update(placeholder=new_placeholder),
|
| 25 |
+
updated_text,
|
| 26 |
+
evt.index
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
@spaces.GPU
|
| 30 |
+
def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, seed, width, height, lora_scale):
|
| 31 |
+
if selected_index is None:
|
| 32 |
+
raise gr.Error("You must select a LoRA before proceeding.")
|
| 33 |
+
|
| 34 |
+
selected_lora = loras[selected_index]
|
| 35 |
+
lora_path = selected_lora["repo"]
|
| 36 |
+
trigger_word = selected_lora["trigger_word"]
|
| 37 |
+
|
| 38 |
+
# Load LoRA weights
|
| 39 |
+
pipe.load_lora_weights(lora_path)
|
| 40 |
+
|
| 41 |
+
# Set random seed for reproducibility
|
| 42 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 43 |
+
|
| 44 |
+
# Generate image
|
| 45 |
+
image = pipe(
|
| 46 |
+
prompt=f"{prompt} {trigger_word}",
|
| 47 |
+
negative_prompt=negative_prompt,
|
| 48 |
+
num_inference_steps=steps,
|
| 49 |
+
guidance_scale=cfg_scale,
|
| 50 |
+
width=width,
|
| 51 |
+
height=height,
|
| 52 |
+
generator=generator,
|
| 53 |
+
cross_attention_kwargs={"scale": lora_scale},
|
| 54 |
+
).images[0]
|
| 55 |
+
|
| 56 |
+
# Unload LoRA weights
|
| 57 |
+
pipe.unload_lora_weights()
|
| 58 |
+
|
| 59 |
+
return image
|
| 60 |
+
|
| 61 |
+
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
| 62 |
+
gr.Markdown("# FLUX.1 LoRA the Explorer")
|
| 63 |
+
selected_index = gr.State(None)
|
| 64 |
+
|
| 65 |
+
with gr.Row():
|
| 66 |
+
with gr.Column(scale=2):
|
| 67 |
+
result = gr.Image(label="Generated Image", height=768)
|
| 68 |
+
generate_button = gr.Button("Generate", variant="primary")
|
| 69 |
+
|
| 70 |
+
with gr.Column(scale=1):
|
| 71 |
+
gallery = gr.Gallery(
|
| 72 |
+
[(item["image"], item["title"]) for item in loras],
|
| 73 |
+
label="LoRA Gallery",
|
| 74 |
+
allow_preview=False,
|
| 75 |
+
columns=2
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
with gr.Row():
|
| 79 |
+
with gr.Column():
|
| 80 |
+
prompt_title = gr.Markdown("### Click on a LoRA in the gallery to select it")
|
| 81 |
+
selected_info = gr.Markdown("")
|
| 82 |
+
prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Type a prompt after selecting a LoRA")
|
| 83 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", lines=2, value="low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry")
|
| 84 |
+
|
| 85 |
+
with gr.Column():
|
| 86 |
+
with gr.Row():
|
| 87 |
+
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5)
|
| 88 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=30)
|
| 89 |
+
|
| 90 |
+
with gr.Row():
|
| 91 |
+
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
| 92 |
+
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
| 93 |
+
|
| 94 |
+
with gr.Row():
|
| 95 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=2**32-1, step=1, value=0, randomize=True)
|
| 96 |
+
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=1)
|
| 97 |
+
|
| 98 |
+
gallery.select(update_selection, outputs=[prompt, selected_info, selected_index])
|
| 99 |
+
|
| 100 |
+
generate_button.click(
|
| 101 |
+
fn=run_lora,
|
| 102 |
+
inputs=[prompt, negative_prompt, cfg_scale, steps, selected_index, seed, width, height, lora_scale],
|
| 103 |
+
outputs=[result]
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
app.queue()
|
| 107 |
+
app.launch()
|