import pickle | |
import numpy as np | |
import gradio as gr | |
# install transformers and torch in requirements.txt | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
model = pickle.load(open("model.pkl", "rb")) | |
vectorizer = pickle.load(open("vectorizer.pkl", "rb")) | |
def classify_text(inp): | |
new_question_vector = vectorizer.transform([inp]) | |
prediction = model.predict(new_question_vector) | |
return str(prediction[0]) | |
iface = gr.Interface(fn=classify_text, inputs="text", outputs="label",title="Tabibu Bot", | |
interpretation="default", examples=[ | |
["I am feeling depressed"], | |
["I am feeling anxious"], | |
["I am feeling stressed"], | |
["I am feeling sad"], | |
]) | |
iface.launch() |