import pickle import numpy as np import gradio as gr # install transformers and torch in requirements.txt from transformers import AutoTokenizer, AutoModelForSequenceClassification from sklearn.feature_extraction.text import TfidfVectorizer model = pickle.load(open("model.pkl", "rb")) vectorizer = pickle.load(open("vectorizer.pkl", "rb")) def classify_text(inp): new_question_vector = vectorizer.transform([inp]) prediction = model.predict(new_question_vector) return str(prediction[0]) iface = gr.Interface(fn=classify_text, inputs="text", outputs="label",title="Tabibu Bot", interpretation="default", examples=[ ["I am feeling depressed"], ["I am feeling anxious"], ["I am feeling stressed"], ["I am feeling sad"], ]) iface.launch()