plantclassifier / app.py
cmani's picture
Updated from colab
3106870
import datasets
import torch
import gradio as gr
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
dataset = datasets.load_dataset('beans')
feature_extractor = AutoFeatureExtractor.from_pretrained("saved_model_files")
model = AutoModelForImageClassification.from_pretrained("saved_model_files")
labels = dataset['train'].features['labels'].names
def classify(im):
features = feature_extractor(im, return_tensors='pt')
logits = model(features["pixel_values"])[-1]
probability = torch.nn.functional.softmax(logits, dim=-1)
probs = probability[0].detach().numpy()
confidences = {label: float(probs[i]) for i, label in enumerate(labels)}
return confidences
Instruction = "Submit leaf images"
title="Bean leaf disease classification demo"
description = "classification of leaves by uploading an image"
interface = gr.Interface(
classify,
interpretation="default",
inputs='image',
outputs='label',
instructuction = Instruction,
title = title,
description = description,
examples=["image1.png",
"image2.png",
"image3.png"]
)
interface.launch(debug=True)